Numerical simulations for

W-pair production and decay

in Modified Perturbation Theory in NNLO

M.L.Nekrasov

IHEP, Protvino

Outline:

- Statement of the problem
- General formalism of the MPT
- W-pair production
- Specific model
- Numerical calculations, estimate of errors
- Results of calculations
- Conclusions

The problem:

W-pair production is one of the main tools for testing SM, constraining its free parameters and searching for physics beyond
\rightarrow precision measuring of W mass
near threshold
\rightarrow measuring interactions among gauge bosons
(anomalous contributions to triple gauge coupling),
search for new physics
\rightarrow important background to most searches for new physics
International e+e- linear collider (ILC) must provide high precision measurements

At ILC a few of $10^{6} \mathrm{~W}$-pair is assumed to be produced at $\sqrt{ } \mathrm{s} \sim 500 \mathrm{GeV} \ldots$
This means per-mille (0.1%) accuracy of measurement of the cross-section

Theoretical support must be made with per-mille precision

The problem:

NNLO calculations must provide
(i) gauge cancellations and unitarity;
(ii) high accuracy of computation of resonant contributions

amplitude:

$$
\Delta(s)=\frac{1}{s-M^{2}+\mathrm{i} M \Gamma}
$$

Existing methods

$\overbrace{\text { non-integrable }})$

Pole expansion/DPA: Laurent expansion around complex poles

- Complex mass scheme (CMS): complex-valued renormalized mass
\Rightarrow comnlex-valued Weinherg angle, counlings etc. / A nomnor, s nittmaier, M.Roth, etc. / - Pinch-technique method \Rightarrow huge volume of extra calculations

The problem:

NNLO calculations must provide
(i) gauge cancellations and unitarity;
(ii) high accuracy of computation of resonant contributions

amplitude:

$$
\Delta(s)=\frac{1}{s-M^{2}+\mathrm{i} M \Gamma}
$$

Existing methods:

- Pole expansion/DPA: Laurent expansion around complex poles
+ conventional PT for residues / LEP1, LEP2 /
- Complex mass scheme (CMS): complex-valued renormalized mass

$$
\Rightarrow \text { complex-valued Weinberg angle, couplings etc. / A.Denner, S.Dittmaier, M.Roth, etc. /) }
$$

- Pinch-technique method \Rightarrow huge volume of extra calculations
/ J.Papavassiliou, A.Pilaftsis, D.Binosi, etc. /

The problem:

Modified perturbation theory (MPT):

direct expansion of the cross-section in powers of the coupling constant with the aid of distribution-theory methods
(i) Asymptotic expansion in $\alpha \Rightarrow$ gauge invariance must be maintained
(ii) The accuracy of description of resonant contributions $=?$

The full bibliography on MPT:

The problem:

Modified perturbation theory (MPT):

direct expansion of the cross-section in powers of the coupling constant with the aid of distribution-theory methods
(i) Asymptotic expansion in $\alpha \Rightarrow$ gauge invariance must be maintained
(ii) The accuracy of description of resonant contributions =?

The full bibliography on MPT:
\longrightarrow F.Tkachov, in Proc. 32 PNPI Winter School, 1999, arXive: hep-ph/9802307
F.Tkachov, in Proc. 14 Int. Workshop QFTHEP, 1999, arXive: hep-ph/0001220
M.Nekrasov, in Proc. 15 Int. Workshop QFTHEP, 2000, arXive: hep-ph/0102284
M.Nekrasov, Eur.Phys.J. C19 (2001) 441
M.Nekrasov, Phys.Lett. B545 (2002) 119
$\longrightarrow \quad$ M.Nekrasov, Int.J.Mod.Phys.. A 24 (2009) 6071
M.Nekrasov, Mod.Phys.Lett. A26 (2011) 223
M.Nekrasov, in Proc. 14th Lomonosov Conf. EPP, 2009, arXive: 1001.2210
$\longrightarrow \quad$ M.Nekrasov, PoS ACAT2010 (2010) 085
\longrightarrow M.Nekrasov, Mod.Phys.Lett. A 26 (2011) 1807
M.Nekrasov, PoS QFTHEP2011 (2011) 036
\longrightarrow M.Nekrasov, arXive: 1205.6340

General formalism:

Expansion in powers of α

$$
\hat{\sigma}\left(s ; s_{1}, s_{2}\right)=\frac{1}{s^{2}} \Theta\left(\sqrt{s}-\sqrt{s_{1}}-\sqrt{s_{2}}\right) \sqrt{\lambda\left(s ; s_{1}, s_{2}\right)} \Phi\left(s ; s_{1}, s_{2}\right) \rho\left(s_{1}\right) \rho\left(s_{2}\right)
$$

in the sense of distributions

General formalism:

- Asymptotic expansion of BW factors in powers of α

$$
\begin{aligned}
& \rho(s)=\frac{M \Gamma_{0}}{\pi} \frac{1}{\left|s-M^{2}+\Sigma(s)\right|^{2}}=\delta\left(s-M^{2}\right)+P V_{7} \mathcal{T}[\rho(s)]+\sum_{n} c_{n}(\alpha) \delta^{(n)}\left(s-M^{2}\right) \\
& \text { NNLO : Taylor in } \alpha \\
& =\delta\left(s-M^{2}\right)+\frac{M \Gamma_{0}}{\pi}\left[P V \frac{1}{\left(s-M^{2}\right)^{2}}-P V \frac{2 \alpha \operatorname{Re} \Sigma_{1}(s)}{\left(s-M^{2}\right)^{3}}\right]+\sum_{n=0}^{2} c_{n}(\alpha) \delta^{(n)}\left(s-M^{2}\right)+O\left(\alpha^{3}\right)
\end{aligned}
$$

- Analytic regularization of the kinematic factor

$$
\sqrt{\lambda\left(s, s_{1}, s_{2}\right)} \longrightarrow \lim _{\nu \rightarrow 1 / 2} \frac{\left\{\lambda\left(s, s_{1}, s_{2}\right)\right\}^{\nu}}{\sqrt{2}}
$$

- Conventional-perturbation-theory for "test" function Φ
=> not a problem of MPT

General formalism:

NNLO:

$$
\rho(s)=\delta\left(s-M^{2}\right)+\frac{M \Gamma_{0}}{\pi}\left[P V \frac{1}{\left(s-M^{2}\right)^{2}}-P V \frac{2 \alpha \operatorname{Re} \Sigma_{1}(s)}{\left(s-M^{2}\right)^{3}}\right]+\sum_{n=0}^{2} c_{n}(\alpha) \delta^{(n)}\left(s-M^{2}\right)
$$

OMS conventional: $\quad R_{n}=R_{n}^{\prime}=0$

$$
c_{0}=-\alpha \frac{I_{2}}{I_{1}}+\alpha^{2}\left(\frac{I_{2}^{2}}{I_{1}^{2}}-\frac{I_{3}}{I_{1}}-\frac{1}{2} I_{1} I_{1}^{\prime \prime}\right)
$$

$$
c_{1}=-\alpha^{2} I_{1} I_{1}^{\prime}, \quad c_{2}=-\alpha^{2} I_{1}^{2}
$$

$$
\begin{aligned}
I_{n} & =\operatorname{Im} \Sigma_{n}\left(M^{2}\right), I_{n}^{\prime}=\operatorname{Im} \Sigma_{n}^{\prime}\left(M^{2}\right), \\
R_{n} & =\operatorname{Re} \Sigma_{n}\left(M^{2}\right), R_{n}^{\prime}=\operatorname{Re} \Sigma_{n}^{\prime}\left(M^{2}\right), \\
\Sigma & =\alpha \Sigma_{1}+\alpha^{2} \Sigma_{2}+\alpha^{3} \Sigma_{3}+\cdots
\end{aligned}
$$

$\overline{\mathrm{OMS}}: \quad / \mathrm{M}$. Nekrasov, $2002 / \quad R_{1}=R_{1}^{\prime}=0, \quad R_{2}=-I_{1} I_{1}^{\prime}, \quad R_{2}^{\prime}=-I_{1} I_{1}^{\prime \prime} / 2$
(pole scheme) / B.Kniel \& A.Sirlin, 2002 /

$$
\begin{aligned}
& c_{0}=-\alpha \frac{I_{2}}{I_{1}}+\alpha^{2}\left[\frac{I_{2}^{2}}{I_{1}^{2}}-\frac{I_{3}}{I_{1}}-\left(I_{1}^{\prime}\right)^{2}\right], \\
& c_{1}=0, \quad c_{2}=-\alpha^{2} I_{1}^{2}
\end{aligned}
$$

M = pole mass, gauge-invariant and scheme-independent (observable mass)

Unitarity:

$$
\begin{gathered}
\alpha I_{1}=M \Gamma_{0}, \quad \alpha^{2} I_{2}=M \alpha \Gamma_{1}, \quad \alpha^{3} I_{3}=M \alpha^{2} \Gamma_{2}+\Gamma_{0}^{3} /(8 M) \\
\Gamma=\Gamma_{0}+\alpha \Gamma_{1}+\alpha^{2} \Gamma_{2}+\cdots
\end{gathered}
$$

General formalism:

Dimensionless

 variables$$
s \rightarrow x
$$

$$
\hat{\sigma}(x)=\iint \mathrm{d} x_{1} \mathrm{~d} x_{2}\left(x-x_{1}-x_{2}\right)_{+}^{\nu} \rho\left(x_{1}\right) \rho\left(x_{2}\right) \Phi\left(x ; x_{1}, x_{2}\right)
$$

at given

$$
\begin{aligned}
& n_{1} \text { and } n_{2} \text { : } \\
& \qquad \Phi\left(x ; x_{1}, x_{2}\right)=\sum_{k_{1}=0}^{n_{1}-1} \sum_{k_{2}=0}^{n_{2}-1} \frac{x_{1}^{k_{1}}}{k_{1}!} \frac{x_{2}^{k_{2}}}{k_{2}!} \Phi^{\left(k_{1}, k_{2}\right)}(x ; 0,0)+\Delta \Phi\left(x ; x_{1}, x_{2}\right)
\end{aligned}
$$

$$
\left\{P V \frac{1}{x_{1}^{n_{1}}}, \delta^{\left(n_{1}-1\right)}\left(x_{1}\right)\right\}\left\{P V \frac{1}{x_{2}^{n_{2}}}, \delta^{\left(n_{2}-1\right)}\left(x_{2}\right)\right\}
$$

$$
\text { at } \mathrm{V}=1 / 2
$$

$$
A_{l_{1} l_{2}}^{\nu}(x)=\iint \mathrm{d} x_{1} \mathrm{~d} x_{2}\left(x-x_{1}-x_{2}\right)_{+}^{\nu} \delta^{\left(l_{1}-1\right)}\left(x_{1}\right) \delta^{\left(l_{2}-1\right)}\left(x_{2}\right) \quad \sim(x)_{+}^{5 / 2-l_{1}-l_{2}}+{ }^{\prime} \mathrm{reg}^{\prime}
$$

$$
B_{l_{1} l_{2}}^{\nu}(x)=\iint \mathrm{d} x_{1} \mathrm{~d} x_{2}\left(x-x_{1}-x_{2}\right)_{+}^{\nu} P V \frac{1}{x_{1}^{l_{1}}} \delta^{\left(l_{2}-1\right)}\left(x_{2}\right) \quad \sim(-x)_{+}^{5 / 2-l_{1}-l_{2}}+\text { 'reg' }
$$

$$
C_{l_{1} l_{2}}^{\nu}(x)=\iint \mathrm{d} x_{1} \mathrm{~d} x_{2}\left(x-x_{1}-x_{2}\right)_{+}^{\nu} P V \frac{1}{x_{1}^{l_{1}}} P V \frac{1}{x_{2}^{l_{2}}} \quad \sim(x)_{+}^{5 / 2-l_{1}-l_{2}}+\text { 'reg' }
$$

$$
\rightarrow \sigma(x)=\int \mathrm{d} x^{\prime} \phi\left(x^{\prime}, x\right) \hat{\sigma}\left(x^{\prime}\right) \quad \int \mathrm{d} x x_{+}^{\prime \prime} \varphi(x) \frac{\bar{U}}{\overline{d e f}} \int_{0}^{\infty} \mathrm{d} x x^{\nu}\left\{\varphi(x)-\sum_{k=0}^{N-1} \frac{x^{k}}{k!\varphi^{k h}}(0)\right\}
$$

$$
-N-1<\operatorname{Re} \nu<-N
$$

General formalism:

single production \& interference

$$
\begin{aligned}
& \hat{\sigma}_{\text {single-res }}(x)=\iint \mathrm{d} x_{1} \mathrm{~d} x_{2}\left(x-x_{1}-x_{2}\right)_{+}^{\nu} \rho\left(x_{i}\right) \Phi\left(x ; x_{1}, x_{2}\right) \\
& \text { at given } n \text { : }\left\{P V \frac{1}{x_{i}^{n}}, \overleftarrow{\left.\delta^{(n-1)}\left(x_{i}\right)\right\}}\right.
\end{aligned}
$$

$$
\begin{gathered}
\Phi\left(x ; x_{1}, x_{2}\right)=\sum_{k=0}^{n-1} \frac{x_{i}^{k}}{k!} \Phi^{(k)}\left(x ; x_{1}, x_{2}\right)+\Delta \Phi\left(x ; x_{1}, x_{2}\right) \\
\text { at } \mathrm{V}=1 / 2 \\
\mathrm{I}_{n}^{\nu}\left(x-x_{j}\right)=\int \mathrm{d} x_{i}\left(x-x_{i}-x_{j}\right)_{+}^{\nu} \delta^{(n-1)}\left(x_{i}\right) \sim(x)_{+}^{3 / 2-n}+\text { 'reg' } \\
\mathrm{J}_{n}^{\nu}\left(x-x_{j}\right)=\int \mathrm{d} x_{i}\left(x-x_{i}-x_{j}\right)_{+}^{\nu} P V \frac{1}{x_{i}^{n}} \sim(-x)_{+}^{3 / 2-n}+\text { 'reg' }
\end{gathered}
$$

$$
\hat{\sigma}_{\text {interfer }}(x)=\iint \mathrm{d} x_{1} \mathrm{~d} x_{2}\left(x-x_{1}-x_{2}\right)_{+}^{\nu} \rho\left(x_{i}\right) \Delta\left(x_{j}\right) \Phi\left(x ; x_{1}, x_{2}\right)
$$

$$
\left\{P V \frac{1}{x_{1}^{n_{1}}}, \delta^{\left(n_{1}-1\right)}\left(x_{1}\right)\right\} \quad\left\{P V \frac{1}{x_{2}^{n_{2}}}, \delta^{\left(n_{2}-1\right)}\left(x_{2}\right)\right\}
$$

Similarly to the case

$$
\Delta(s)=\frac{1}{s-M^{2}+\mathrm{i} \Sigma} \Rightarrow \frac{1}{s-M^{2}+\mathrm{i} 0}+\frac{\mathrm{i} \Sigma}{\left(s-M^{2}+\mathrm{i} 0\right)^{2}}+\cdots
$$ of pair-production

W-pair production:

CC3 contributions:

1. nonanalyticity in Φ due to $\sqrt{\lambda}$:

$$
\begin{aligned}
\Delta_{\nu} & =\frac{1}{s-s_{1}-s_{2}-\sqrt{\lambda} \cos \theta} \sim \frac{1}{t_{\nu}} \\
& =\frac{s-s_{1}-s_{2}+\sqrt{\lambda} \cos \theta}{\left(s-s_{1}-s_{2}\right)^{2}-\lambda \cos ^{2} \theta} \\
& \sqrt{\lambda} \Phi=\sqrt{\lambda} \Phi_{1}+\lambda \Phi_{2}
\end{aligned}
$$

2. zeros in denominator in non-phys. region

$$
\begin{aligned}
\left(s-s_{1}-s_{2}\right)^{2}-\lambda \cos ^{2} \theta & =\lambda\left(1-\cos ^{2} \theta\right)+4 s_{1} s_{2} \\
=> & H(\lambda)\left(1-\cos ^{2} \theta\right)+4 s_{1} s_{2} \\
& H(\lambda)=\Theta(\lambda) \lambda+\Theta(-\lambda) h(\lambda)
\end{aligned}
$$

$$
\Delta_{\nu}=\frac{s-s_{1}-s_{2}+\sqrt{\lambda} \cos \theta}{H(\lambda)\left(1-\cos ^{2} \theta\right)+4 s_{1} s_{2}}
$$

pole due to Z-propagator

Application of MPT expansion if $s \approx M_{z}{ }^{2}$

W-pair production:

CC3 contributions:

1. nonanalyticity in Φ due to $\sqrt{\lambda}$:

$$
\begin{aligned}
\Delta_{\nu} & =\frac{1}{s-s_{1}-s_{2}-\sqrt{\lambda} \cos \theta} \sim \frac{1}{t_{\nu}} \\
& =\frac{s-s_{1}-s_{2}+\sqrt{\lambda} \cos \theta}{\left(s-s_{1}-s_{2}\right)^{2}-\lambda \cos ^{2} \theta} \\
& \sqrt{\lambda} \Phi=\sqrt{\lambda} \Phi_{1}+\lambda \Phi_{2}
\end{aligned}
$$

2. zeros in denominator in non-phys. region

$$
\begin{aligned}
\left(s-s_{1}-s_{2}\right)^{2}-\lambda \cos ^{2} \theta & =\lambda\left(1-\cos ^{2} \theta\right)+4 s_{1} s_{2} \\
=> & H(\lambda)\left(1-\cos ^{2} \theta\right)+4 s_{1} s_{2} \\
& H(\lambda)=\Theta(\lambda) \lambda+\Theta(-\lambda) h(\lambda)
\end{aligned}
$$

$$
\Delta_{\nu}=\frac{s-s_{1}-s_{2}+\sqrt{\lambda} \cos \theta}{H(\lambda)\left(1-\cos ^{2} \theta\right)+4 s_{1} s_{2}}
$$

pole due to Z-propagator

Application of MPT expansion

$$
\text { if } s \approx M_{z}^{2}
$$

CC11 family contributions:

Specific model for testing MPT in NNLO

- Breigt-Wigner factors :
$\Sigma=\alpha \Sigma_{1}+\alpha^{2} \Sigma_{2}+\alpha^{3} \Sigma_{3} \longleftarrow$ 3-loop contributions
- Test function Φ :

$$
e^{+} e^{-} \rightarrow(\gamma, Z) \rightarrow W^{+} W^{-} \rightarrow 4 f \quad \longleftarrow \quad \text { improved Born approximation }
$$

- Universal soft massless-particles contributions :

Flux function in leading-log approximation:

$$
\phi(z ; s)=\beta_{e}(1-z)^{\left(\beta_{e}-1\right)}-\frac{1}{2} \beta_{e}(1+z), \quad \quad \beta_{e}=\frac{2 \alpha}{\pi}\left(\ln \frac{s}{m_{e}^{2}}-1\right)
$$

Coulomb singularities through one-photon exchanges:

$$
\delta_{c}=\frac{\alpha \pi}{2 \beta}\left[1-\frac{2}{\pi} \arctan \left(\frac{\left|\beta_{M}\right|^{2}-\beta^{2}}{2 \beta \operatorname{Im} \beta_{M}}\right)\right] \quad \begin{aligned}
& \beta=s^{-1} \sqrt{\lambda\left(s, s_{1}, s_{2}\right)} \\
& \beta_{M}=\sqrt{1-4\left(M^{2}-\mathrm{i} M \Gamma\right) / s}
\end{aligned}
$$

Specific model for testing MPT in NNLO

Propagators of unstable particles :
(NNLO precision in MTB)

$$
\begin{aligned}
\Delta^{-1}(s) & \equiv s-M^{2}+\Sigma(s) \\
& =s-M^{2}+\alpha \operatorname{Re} \Sigma_{1}(s)+\mathrm{i} \alpha \operatorname{Im} \Sigma_{1}(s) \\
& +\alpha^{2}\left[R_{2}+\mathrm{i} I_{2}+\left(s-M^{2}\right)\left(R_{2}^{\prime}+\mathrm{i} I_{2}^{\prime}\right)\right]+\alpha^{3}\left(R_{3}+\mathrm{i} I_{3}\right)
\end{aligned}
$$

$\overline{\mathrm{OMS}}$

$$
\begin{array}{rrr}
R_{2}=-I_{1} I_{1}^{\prime}, & R_{2}^{\prime}=-I_{1} I_{1}^{\prime \prime} / 2, & R_{3}=-I_{2} I_{1}^{\prime}-I_{1} I_{2}^{\prime}+I_{1}^{2} R_{1}^{\prime \prime} / 2 \\
\alpha I_{1}=M \Gamma_{0}, & \alpha^{2} I_{2}=M \alpha \Gamma_{1}, & \alpha^{3} I_{3}=M \alpha^{2} \Gamma_{2}+\Gamma_{0}^{3} /(8 M)
\end{array}
$$

Parameters in the model:

$$
\begin{array}{ll}
\Gamma_{0}^{W}=1.977 \mathrm{GeV} & \Gamma_{0}^{Z}=2.362 \mathrm{GeV} \\
\Gamma_{1}^{W}=0.102 \mathrm{GeV} & \Gamma_{1}^{Z}=0.169 \mathrm{GeV} \\
\Gamma_{2}^{W}=0.006 \mathrm{GeV} & \Gamma_{2}^{Z}=-0.036 \mathrm{GeV} \\
& \\
M_{W}=80.40 \mathrm{GeV} & M_{Z}=91.19 \mathrm{GeV}
\end{array}
$$

Numerical calculations, estimate of errors

- Fortran code with double precision
- Simpson method for calculating absolutely convergent integrals (relative accuracy $\delta_{0}=10^{-5}$)
- Linear patches for resolving 0/0-indeterminacies $\left(x / x, x^{2} / x^{2}, \ldots\right)$

additional errors:

δ_{1} : due to patches themselves

δ_{2} : due to the loss of decimals near indeterminacy points:

$$
\begin{array}{llll}
\mathrm{X} / \mathrm{X}: & \frac{f(x)-f(0)}{x} \Rightarrow \frac{\varepsilon f^{\prime}(0)}{\varepsilon} & \varepsilon=10^{-N} & \delta_{2} \sim 10^{-(D-N)} \frac{f_{0}}{f_{0}^{\prime}} \\
\mathrm{X}^{2} / \mathrm{X}^{2}: & \frac{f(x)-f(0)-x f^{\prime}(0)}{x^{2}} \Rightarrow \frac{\varepsilon^{2} f^{\prime \prime}(0) / 2}{\varepsilon^{2}} & \varepsilon^{2}=10^{-N} & \delta_{2} \sim 10^{-(D-N)} \frac{2 f_{0}}{f_{0}^{\prime \prime}}
\end{array}
$$

 minimization of errors $\delta_{1} \oplus$
(numerical estimate) Overall error: $\quad \delta=\delta_{0} \oplus \delta_{1} \oplus \delta_{2}<10^{-4} \longleftarrow$ NNLO

Results of calculations

Total cross-section $\sigma(\mathrm{s})$:

$\sqrt{ }$ S	σ [pb]	$\sigma_{\text {LO }}$	$\sigma_{\text {NLO }}$	σ_{NNLO}
200	$\begin{aligned} & 15.258 \\ & 100 \% \end{aligned}$	$\begin{aligned} & 17.839 \\ & 116.92 \% \end{aligned}$	$\begin{aligned} & 15.175 \\ & 99.46 \% \end{aligned}$	$\begin{aligned} & 15.235(2) \\ & 99.85(1)^{\%} \% \end{aligned}$
500	$\begin{aligned} & 6.9355 \\ & 100 \% \end{aligned}$	$\begin{aligned} & 7.5657 \\ & 109.09 \% \end{aligned}$	$\begin{aligned} & 6.9294 \\ & 99.91 \% \end{aligned}$	$\begin{aligned} & 6.9342(7) \\ & 99.98(1) \% \end{aligned}$
1000	$\begin{aligned} & 2.8286 \\ & 100 \% \end{aligned}$	$\begin{aligned} & 2.9733 \\ & 105.12 \% \end{aligned}$	$\begin{aligned} & 2.8263 \\ & 99.92 \% \end{aligned}$	$\begin{aligned} & 2.8285(3) \\ & 100.00(1) \% \end{aligned}$
3000	$\begin{aligned} & 0.61023 \\ & 100 \% \end{aligned}$	$\begin{aligned} & 0.55733 \\ & 91.33 \% \end{aligned}$	$\begin{aligned} & 0.60625 \\ & 99.35 \% \end{aligned}$	$\begin{aligned} & 0.61026(6) \\ & 100.00(1) \% \end{aligned}$

Results of calculations

Angular distribution (the $\cos \theta$ - distribution, unpolarized beams):

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \cos \theta}[\mathrm{pb}] \quad \sqrt{s}=800 \mathrm{GeV}
$$

Results of calculations

Angular distribution (the $\cos \theta$ - distribution, unpolarized beams):

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \cos \theta}[\mathrm{pb}] \quad \sqrt{s}=800 \mathrm{GeV}
$$

Results of calculations

Angular distribution (the $\cos \theta$ - distribution, unpolarized beams):

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \cos \theta}[\mathrm{pb}] \quad \sqrt{s}=800 \mathrm{GeV}
$$

Results of calculations

Angular distribution. Even contributions to $\cos \theta$ - distribution:

$$
\sqrt{s}=500 \mathrm{GeV} \quad \text { (right-polarized electron beam) } \quad \sqrt{s}=800 \mathrm{GeV}
$$

Results of calculations

Angular distribution. Odd contributions to $\cos \theta$ - distribution:

Conclusion

In the case of W -pair production and decays:

- MPT stably works at the energies near the maximum of the cross-section and higher
- At ILC energies MPT in NNLO provides accuracy of description at $\mathbf{0 . 1 \% - l e v e l ,}$
- in the case of total cross-section;
- in the case of angular distributions with unpolarized beams and not very large backward scattering angle
- in the case of angular distributions with right-handed e^{-}-beam (left-handed e^{+}-beam) at any scattering angles

MTV is a good candidate for support at the ILC of W-pair production processes

- Working FORTRAN code, a substantial part of a code for realistic processes, up to NNLO is written

