QCD studies and Higgs searches at the LHC *part three*

Sven-Olaf Moch

sven-olaf.moch@desy.de

DESY, Zeuthen

– CALC-2012, Dubna, July 28-29 2012 –

Plan

Some new results on the heaviest elementary particle

Abundant production of top-quarks

TOP QUARK t Discovered at Fermilab in 1995, the TOP QUARK is as short-lived as it is massive. Weighing in at a hefty 175 GeV, its lifetime, a mere 10-24 second, is the briefest of the six quarks. Top Quarks are an enigmatic particle whose personal life is sought after by thousands of physicists. Acrylic felt with gravel fill for maximum mass. \$9.75 PLUS SHIPPING HEAVY LIGHT

Orders for top-quarks from www.particlezoo.com

Sven-Olaf Moch

Top-quark decays

Top quark production

Leading order Feynman diagrams

- NLO in QCD Nason, Dawson, Ellis '88; Beenakker, Smith, van Neerven '89; Mangano, Nason, Ridolfi '92; Bernreuther, Brandenburg, Si, Uwer '04; Mitov, Czakon '08; ...
 - accurate to $\mathcal{O}(15\%)$ at LHC

Top quark production

Leading order Feynman diagrams

- NLO in QCD Nason, Dawson, Ellis '88; Beenakker, Smith, van Neerven '89; Mangano, Nason, Ridolfi '92; Bernreuther, Brandenburg, Si, Uwer '04; Mitov, Czakon '08; ...
 - accurate to $\mathcal{O}(15\%)$ at LHC
- First steps towards higher orders in QCD: explore limits
- Study of massive QCD amplitudes in high-energy limit $s \gg m^2$
 - exploit high-energy factorization in BFKL formalism
- Partonic threshold $s \simeq 4m^2$
 - Sudakov logarithms $\ln \beta$ (velocity of heavy quark $\beta = \sqrt{1 4m^2/s}$)

Sudakov logarithms

- Recall perturbative QCD:
 - calculation of observables as series in $\alpha_s \ll 1$
 - but: large logarithmic corrections, $\ln(...) \gg 1$ double logarithms (Sudakov)
- Soft/Collinear regions of phase space
 - double logarithms from singular regions in Feynman diagrams
 - propagator vanishes for: $E_g = 0$, soft $\theta_{qg} = 0$ collinear

$$\frac{1}{(p+k)^2} = \frac{1}{2p \cdot k} = \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$p / (p+k)^2 \longrightarrow \alpha_s \int dE_g d \sin \theta_{qg} \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$p + k \longrightarrow \alpha_s \ln^2(\dots)$$

- Improved perturbation theory: resum logarithms to all orders
 - Iong history of resummation Kidonakis, Sterman '97; Bonciani, Catani, Mangano, Nason '98; Kidonakis, Laenen, S.M., Vogt '01; ...

Sven-Olaf Moch

QCD studies and Higgs searches at the LHC – p.6

Sudakov logarithms in cross sections

Intuitive aspects of higher order corrections

- at threshold for $t\bar{t}$ -creation
 - strong Sudakov-supression inelastic tendency

```
\sigma \sim \exp\left[-\alpha_s \ln^2(1 - 4m_t^2/s)\right]
```

 universal factor for parton splittings (leading log accuracy) modelling of MC parton showers

- Hadronic reaction $p\bar{p}$:
 - recall master equation

$$\sigma_{pp \to t\bar{t}} = \sum_{ij} f_i \otimes f_j \otimes \hat{\sigma}_{ij \to t\bar{t}}$$

initial partons: also Sudakov-supressed

$$\hat{\sigma}_{ij\to t\bar{t}} = \frac{\sigma_{pp\to t\bar{t}}}{f_i \otimes f_j} = \frac{\mathrm{e}^{-\alpha_s \ln^2(\dots)}}{\left(\mathrm{e}^{-\alpha_s \ln^2(\dots)}\right)^2} = \mathrm{e}^{+\alpha_s \ln^2(\dots)}$$

Iarge double logarithms

Total cross section at Tevatron

Top-pair hadro-production

- NNLO cross section for heavy-quark hadro-production
- **•** Exact results for channel $q\bar{q} \rightarrow t\bar{t}$ Czakon, Mitov '12

Top-pair hadro-production

- NNLO cross section for heavy-quark hadro-production
- Approximate results for channel $qg/gg \rightarrow t\bar{t}$
 - threshold at $s \simeq 4m_t^2$ with logarithms $\ln(\beta)$ in velocity of heavy

quark $\beta = \sqrt{1 - 4m_t^2/s}$ at nth-order

S.M, Uwer '08; Beneke, Czakon, Falgari, Mitov, Schwinn '09

• high-energy limit for $\rho = 4m_t^2/s \rightarrow 1$ Catani, Ciafaloni, Hautmann '91; Ball, Ellis '01; S.M. Uwer, Vogt '12

Scale dependence

- Theoretical uncertainty from variation of scales μ_R, μ_F
 - plot with PDF set MSTW 2008 (but largely independent on PDFs)
 - mass $m_t = 173 \text{ GeV}$
 - stable predictions in range $\mu_R, \mu_F \in [m_t/2, 2m_t]$
 - $-3\% \leq \Delta \sigma \leq +1\%$ at LHC
 - $-5\% \le \Delta \sigma \le +3\%$ at Tevatron

Sven-Olaf Moch

Electroweak corrections

- Electroweak corrections (ratio of $\sigma_{\rm EW}/\sigma_{\rm LO}$)
 Bernreuther, Fücker '05; Kühn, Uwer, Scharf '06
- Effect depends on Higgs mass (choices $m_H = 120 \text{GeV}, m_H = 200 \text{GeV}, m_H = 1000 \text{GeV}$)

- Tevatron: vanishing contribution for light Higgs
- LHC: $\mathcal{O}(2\%)$ with respect to σ_{LO} negative contribution to total cross section $\Delta \sigma_{\text{EW}} \simeq \mathcal{O}(10 - 15)$ pb

Top-quark pairs with one jet

Production of $t\bar{t}$ +jet at fixed order

- LHC: large rates for production of $t\bar{t}$ -pairs with additional jets
- Scale dependence at LO large

• Feynman diagrams (sample) for $t\bar{t}$ + jet production at LO

- NLO QCD corrections Dittmaier, Uwer, Weinzierl '07-'08
 - scale dependence greatly reduced at NLO
 - corrections for total rate at scale $\mu_r = \mu_f = m_t$ are almost zero
 - transverse-momentum distributions of top-quark $p_{T,t}$ along with K-factor and scale variation $m_t/2 \le \mu \le 2m_t$

Monte Carlo and parton showers at NLO

- Merging of fixed order NLO with parton shower Monte Carlo Frixione, Webber '02, Nason '04
 - combining accuracy of exact hard matrix elements for large angle scattering at NLO with soft/collinear emission of parton shower
- POWHEG BOX as standard interface to parton shower programs PYTHIA or HERWIG Alioli, Nason, Oleari, Re '10
- Production of $t\bar{t}$ + jet and parton showers Kardos, Papadopoulos, Trocsanyi '11, Alioli, S.M., Uwer '11

Implementation

- Event generation with cut on $p_t^{\text{gen}} \simeq 1 \text{ GeV}$
- Alternative option for soft and collinear divergences at Born level: generation of weighted events with Born suppression factor $\bar{B}_{supp} = \bar{B} \times F(p_t) \text{ Alioli, Nason, Oleari, Re '10}$

$$F(p_t) = \left(\frac{p_t^2}{p_t^2 + (p_t^{\text{supp}})^2}\right)^n$$

Production $t\bar{t}$ + jet and parton shower (I)

- Differential distributions in top-quark's transverse momentum p_T^t and rapidity y_t at LHC7
 - comparision of NLO, LHEF for POWHEG hardest emission without showering, and POWHEG with shower/hadronization with HERWIG or PYTHIA

Production $t\bar{t}$ + jet and parton shower (II)

Differential distributions as function of $t\bar{t}$ -pair invariant mass $m_{t\bar{t}}$ and transverse momentum $p_T^{t\bar{t}}$ at LHC7

Heavy-quark masses

QCD Lagrangian

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \sum_{\text{flavors}} \bar{q} \left(i \not\!\!D - m_q \right) q$$

- Covariant derivative $D_{\mu} = \partial_{\mu} + ig_s A_{\mu}$
- Formal parameters of the theory (no observables)
 - strong coupling $\alpha_s = g_s^2/(4\pi)$
 - quark masses m_q
- Quantum corrections (loop integrals) require UV renormalization; (scheme dependence):
 - $\alpha_s \rightarrow \text{asymptotic freedom, running coupling } (\overline{MS} \text{ scheme})$
 - $m_q \rightarrow$ pole mass or running mass (\overline{MS} scheme)

Pole mass

Based on (unphysical) concept of top-quark being a free parton

- heavy-quark self-energy $\Sigma(p, m_q)$ receives contributions from regions of all loop momenta also from momenta of $\mathcal{O}(\Lambda_{QCD})$
- Definition of pole mass ambiguous up to corrections $\mathcal{O}(\Lambda_{QCD})$

Running quark masses

- \overline{MS} mass definition $m(\mu_R)$ realizes running mass (scale dependence)
 - renormalization group equation (mass anomalous dimension γ)

$$\left(\mu_R^2 \frac{\partial}{\partial \mu_R^2} + \beta(\alpha_s) \frac{\partial}{\partial \alpha_s}\right) m(\mu_R) = \gamma(\alpha_s) m(\mu_R)$$

- short distance mass probes at scale of hard scattering $m_{\text{pole}} = m_{\text{short distance}} + \delta m$
- conversion between pole mass and \overline{MS} mass definition in perturbation theory: $m = m(\mu_R) \left(1 + a_s(\mu_R)d^{(1)} + a_s(\mu_R)^2d^{(2)}\right)$

Scale dependence

- Renormalization group equation for scale dependence
 - strong coupling α_s and mass m

$$\mu^2 \frac{d}{d\mu^2} \alpha_s(\mu) = \beta(\alpha_s) \qquad \qquad \mu^2 \frac{d}{d\mu^2} m(\mu) = \gamma(\alpha_s) m(\mu)$$

- Perturbative expansion known to four loops
 - β -function van Ritbergen, Vermaseren, Larin '97 and mass anomalous dimension γ Chetyrkin '97; Larin, van Ritbergen, Vermaseren '97
 - very good convergence of perturbative series even at low scales
- Plot at low scales $\mu = 1.0...3.0$ GeV

 α_s (left) and mass ratio $m(3 \text{GeV})/m(\mu)$ (right)

• Use of charm-quark mass $m_c(m_c)$ is well justified

Illustration for top-quark mass ILC

- Pole mass measurements are strongly order-dependent
 - e.g. threshold scan of cross section in e⁺e⁻ collision
 Beneke, Signer, Smirnov '99; Hoang, Teubner '99; Melnikov, Yelkhovsky '98; Penin, Pivovarov '99; Yakovlev '99
 - LO (dotted), NLO (dashed), NNLO (solid)

Illustration for top-quark mass Tevatron

- Total cross section and different channels of Tevatron analyses (theory uncertainty band from scale variation)
- Determination of m_t from total cross section (slope $d\sigma/dm_t$)
 - e.g. DZero '09: NLO $m_t = 165.5^{+6.1}_{-5.9}$; NNLO $m_t = 169.1^{+5.9}_{-5.2}$; ...

The running top-quark mass

- \overline{MS} mass definition $m(\mu_R)$ realizes running mass (scale dependence)
 - short distance mass probes at scale of hard scattering
 - conversion between pole mass and \overline{MS} mass definition in perturbation theory: $m_t = m(\mu_R) \left(1 + a_s(\mu_R)d^{(1)} + a_s(\mu_R)^2d^{(2)}\right)$
- Scale dependence greatly reduced

The running top-quark mass

- \overline{MS} mass definition $m(\mu_R)$ realizes running mass (scale dependence)
 - short distance mass probes at scale of hard scattering
 - conversion between pole mass and \overline{MS} mass definition in perturbation theory: $m_t = m(\mu_R) \left(1 + a_s(\mu_R)d^{(1)} + a_s(\mu_R)^2d^{(2)}\right)$
- Pole mass scheme for comparison

- Perturbative stability of predictions with \overline{MS} mass definition
- Parton cross section for channels $q\bar{q}$, gg and qg
 - on-shell scheme for $m_t = 173 \text{ GeV}$ (left)
 - \overline{MS} scheme for m(m) = 163 GeV (right)

- Perturbative stability of predictions with \overline{MS} mass definition
- Parton cross section for channels $q\bar{q}$, gg and qg
 - on-shell scheme for $m_t = 173 \text{ GeV}$ (left)
 - \overline{MS} scheme for m(m) = 163 GeV (right)
- \overline{MS} scheme
 - more emphasis on LO contribution
 - less significance to threshold region at NLO

Top quark's \overline{MS} mass dependence

- Total top-quark cross section as function of m Langenfeld, S.M., Uwer '09
 - theoretical uncertainity (band) due to variation of $\mu_R \in [\overline{m}/2, 2\overline{m}]$ for fixed set $\mu_F \in \overline{m}/2, \overline{m}, 2\overline{m}$

Top quark mass determination

- Determine top quark mass from Tevatron cross section data
 - $\sigma_{t\bar{t}} = 7.56^{+0.63}_{-0.56}$ pb D0 coll. arXiv:1105.5384
 - $\sigma_{t\bar{t}} = 7.50 {+0.48 \atop -0.48}$ pb CDF coll. CDF-note-9913
- Fit of m_t for individual PDFs
 (parton luminosity at Tevatron driven by $q\bar{q}$)

	ABM11	JR09	MSTW08	NN21
$m_t^{\overline{\mathrm{MS}}}(m_t)$	$162.0^{+2.3}_{-2.3}{}^{+0.7}_{-0.6}$	$163.5^{+2.2}_{-2.2}{}^{+0.6}_{-0.2}$	$163.2^{+2.2}_{-2.2}{}^{+0.7}_{-0.8}$	$164.4^{+2.2}_{-2.2}{}^{+0.8}_{-0.2}$
$m_t^{ m pole}$	$171.7 \substack{+2.4 \\ -2.4 } \substack{+0.7 \\ -0.6}$	$173.3^{+2.3}_{-2.3}{}^{+0.7}_{-0.2}$	173.4 $^{+2.3}_{-2.3} {}^{+0.8}_{-0.8}$	$174.9^{+2.3}_{-2.3}{}^{+0.8}_{-0.3}$
$(m_t^{ m pole})$	$(169.9^{+2.4}_{-2.4}{}^{+1.2}_{-1.6})$	$(171.4^{+2.3}_{-2.3}^{+1.2}_{-1.1})$	$(171.3^{+2.3}_{-2.3}^{+1.4}_{-1.8})$	$(172.7 {}^{+2.3}_{-2.3} {}^{+1.4}_{-1.2})$

Top quark cross section at LHC

- Check predictions at LHC with $\sqrt{s} = 7 \text{ TeV}$
 - cross section computation with HATHOR (version 1.3) Aliev, Lacker, Langenfeld, S.M., Uwer, Wiedermann '10
- Atlas at $\sqrt{s} = 7$ TeV $\sigma_{t\bar{t}} = 177^{+11}_{-10}$ pb Atlas coll. ATLAS-CONF-2012-024
- CMS at $\sqrt{s} = 7$ TeV $\sigma_{t\bar{t}} = 165.8^{+13.3}_{-13.3}$ pb CMS coll. CMS-PAS-TOP-11-024

	ABM11	JR09	MSTW08	NN21
$m_t^{\overline{ ext{MS}}}(m_t)$	$159.0^{+2.1}_{-2.0}{}^{+0.7}_{-1.4}$	$165.3^{+2.3}_{-2.2}{}^{+0.6}_{-1.2}$	$166.0^{+2.3}_{-2.2}{}^{+0.7}_{-1.5}$	166.7 $^{+2.3}_{-2.2}$ $^{+0.8}_{-1.3}$
$m_t^{ m pole}$	$168.6 {}^{+2.3}_{-2.2} {}^{+0.7}_{-1.5}$	175.1 $^{+2.4}_{-2.3}{}^{+0.6}_{-1.3}$	176.4 $^{+2.4}_{-2.3} {}^{+0.8}_{-1.6}$	177.4 $^{+2.4}_{-2.3}{}^{+0.8}_{-1.4}$
($m_t^{ m pole}$)	(166.1 $^{+2.2}_{-2.1}{}^{+1.7}_{-2.3}$)	(172.6 $^{+2.4}_{-2.3}{}^{+1.6}_{-2.1}$)	$(173.5^{+2.4}_{-2.3}{}^{+1.8}_{-2.5})$	$(174.5^{+2.4}_{-2.3}{}^{+2.0}_{-2.3})$

New Observable

Mass measurement with $t\bar{t} + jet$ -samples

- Mass determination with new observable Alioli, Fuster, Irles, S.M., Uwer, Vos '12
 - define normalized-differential $t\bar{t} + jet$ cross section

0.2

0.3

05

06

Upshot

- Independent determination of top-quark mass m_t
 - alternative to kinematic reconstruction and extraction from total cross section

07

0.8

0.9

 ρ_s

Implications on electroweak vacuum

- Relation between Higgs mass m_H and top-quark mass m_t
 - condition of absolute stability of electroweak vacuum $\lambda(\mu) \ge 0$
 - extrapolation of Standard Model up to Planck scale M_P
 - $\lambda(M_P) \ge 0$ implies lower bound on Higgs mass m_H

$$m_H \ge 129.2 + 1.8 \times \left(\frac{m_t^{\text{pole}} - 173.2 \text{ GeV}}{0.9 \text{ GeV}}\right) - 0.5 \times \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007}\right) \pm 1.0 \text{ GeV}$$

- recent NNLO analyses Bezrukov, Kalmykov, Kniehl, Shaposhnikov '12;
 Degrassi, Di Vita, Elias-Miro, Espinosa, Giudice et a. '12
- uncertainity in results due to α_s and m_t (pole mass scheme)

\mathcal{T} riviality \mathcal{B} ound

- Quantum corrections to the Higgs potential: $V(\Phi) = \lambda [\Phi^{\dagger}\Phi \frac{v^2}{2}]^2$
- \bullet Corrections to coupling λ

$$16\pi^2 \frac{d\lambda}{d\ln Q} = 24\lambda^2 - (3g^{'2} + 9g^2 - 12y_t^2)\lambda + \frac{3}{8}g^{'4} + \frac{3}{4}g^{'2}g^2 + \frac{9}{8}g^4 - 6y_t^4 + \text{higher order}$$

• Large mass $\rightsquigarrow \lambda$ dominated renormalisation group equation (RGE):

$$16\pi^2 \frac{d\lambda}{d\ln Q} = 24\lambda^2 \qquad \Longrightarrow \qquad \lambda(Q) = \frac{M_H^2}{2v^2 - \frac{3}{2\pi^2}M_H^2\ln(Q/v)}$$

 λ increases with Q

• Landau pole

$$\Lambda \le v e^{4\pi^2 v^2/3M_H^2}$$

New Physics must appear before this point to restore stability

- \implies For Λ fixed upper bound on M_H
- Triviality No quantum theory for $\Lambda \to \infty$: trivial theory $\lambda = 0$.

M.M.Mühlleitner, 24-26 July 2012, Dubna
N.Mühlleitner (CALC 2012)
QCD studies and Higgs searches at the LHC – p.29

\mathcal{V} acuum \mathcal{S} tability

• Corrections to coupling λ

$$16\pi^2 \frac{d\lambda}{d\ln Q} = 24\lambda^2 - (3g^{'2} + 9g^2 - 12y_t^2)\lambda + \frac{3}{8}g^{'4} + \frac{3}{4}g^{'2}g^2 + \frac{9}{8}g^4 - 6y_t^4 + \text{higher order}$$

• Small mass $\rightsquigarrow y_t$ dominated RGE:

$$16\pi^2 \frac{d\lambda}{d\ln Q} = -6y_t^4 \implies \lambda(Q) = \lambda_0 - \frac{\frac{3}{8\pi^2} y_0^4 \ln \frac{Q}{Q_0}}{1 - \frac{9}{16\pi^2} y_0^2 \ln \frac{Q}{Q_0}}$$

 λ decreases with Q; $\lambda < 0 \rightsquigarrow$ potential unbounded from below $\lambda = 0$ for $\lambda_0 \approx \frac{3}{8\pi^2} y_0^4 \ln \frac{Q}{Q_0}$

• Vacuum stability

$$\Lambda < v e^{4\pi^2 M_H^2/3y_t^4 v^2}$$

New Physics must appear before this point to ensure vacuum stability

 \Longrightarrow For Λ fixed lower bound on M_{H}

M.M.Mühlleitner, 24-26 July 2012, Dubna

M. Mühlleitner (CALC 2012)

Implications on electroweak vacuum

Relation between Higgs mass m_H and top-quark mass m_t

$$m_H \ge 129.2 + 1.8 \times \left(\frac{m_t^{\text{pole}} - 173.2 \text{ GeV}}{0.9 \text{ GeV}}\right) - 0.5 \times \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007}\right) \pm 1.0 \text{ GeV}$$

- Uncertainty in Higgs bound due to m_t determined in \overline{MS} scheme $m_t^{\overline{MS}}(m_t) = 163.3 \pm 2.7 \text{ GeV}$
- Implications:
 - m_t in pole mass scheme: $m_t^{\text{pole}} = 173.3 \pm 2.8 \text{ GeV}$
 - bound on $m_H \ge 129.4 \pm 5.6 \text{ GeV}$

Implications on electroweak vacuum

Relation between Higgs mass m_H and top-quark mass m_t

$$m_H \ge 129.2 + 1.8 \times \left(\frac{m_t^{\text{pole}} - 173.2 \text{ GeV}}{0.9 \text{ GeV}}\right) - 0.5 \times \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007}\right) \pm 1.0 \text{ GeV}$$

- Uncertainty in Higgs bound due to m_t determined in \overline{MS} scheme $m_t^{\overline{MS}}(m_t) = 163.3 \pm 2.7 \text{ GeV}$
- Implications:
 - m_t in pole mass scheme: $m_t^{\text{pole}} = 173.3 \pm 2.8 \text{ GeV}$
 - bound on $m_H \ge 129.4 \pm 5.6 \text{ GeV}$

Speculations on Planck-scale dynamics

And moving m_t down by ~ 2 GeV, we reach the even more peculiar configuration where $\lambda(M_{pl})=0$

Looking at the plane from a more distant perspective, it appears more clearly that "we live" in a quite "peculiar" region...

Summary (part III)

- Top quark theory
 - improved understanding of theory and application of new concepts
 - resummation important for Tevatron and LHC phenomenology
- Cross sections
 - NNLO predictions for $t\bar{t}$
 - NLO corrections to $t\bar{t}$ + jet
 - electroweak corrections
- \blacksquare \overline{MS} mass definition
 - greatly reduced scale dependence
 - much improved convergence of perturbation theory