QCD studies and Higgs searches at the LHC *part one*

Sven-Olaf Moch

sven-olaf.moch@desy.de

DESY, Zeuthen

- CALC-2012, Dubna, July 28-29 2012 -

Hunt for the Higgs

• Higgs candidate event ($2e 2\mu$ final state) in LHC run at $\sqrt{s} = 7$ TeV

Challenges

Solve master equation

new physics = data – Standard Model

- LHC explores the energy frontier
 - searches require understanding of SM background
 - theory has to match or exceed accuracy of LHC data

Challenges

Solve master equation

new physics = data – Standard Model

- LHC explores the energy frontier
 - searches require understanding of SM background
 - theory has to match or exceed accuracy of LHC data

Perturbative QCD at Work

- QCD the gauge theory of the strong interactions
- QCD covers dynamics in a large range of scales
 - asymptotically free theory of quarks and gluons at short distances
 - confining theory of hadrons at long distances
- Essential and established part of toolkit for discovering new physics
 - Tevatron and LHC
 - we no longer "test" QCD

Basic concepts of perturbative QCD

- Theoretical framework for QCD predictions at high energies relies on few basic concepts
 - infrared safety
 - factorization
 - evolution

Infrared safety

- Small class of cross sections at high energies and decay rates directly calculable in perturbation theory
- Infrared safe quantities
 - free of long range dependencies at leading power in large momentum scale *Q* Kinoshita '62; Lee, Nauenberg '64
- General structure of cross section
 - large momentum scale Q, renormalization scale μ

$$Q^2 \hat{\sigma} \left(Q^2, \mu^2, \alpha_s(\mu^2) \right) = \sum_n \alpha_s^n c^{(n)} (Q^2/\mu^2)$$

- Examples
 - total cross section in $e^+ e^-$ -annihilation $R^{had}(s) = \frac{\sigma(e^+ e^- \rightarrow hadrons)}{\sigma(e^+ e^- \rightarrow \mu^+ \mu^-)}$
 - jet cross sections in $e^+ e^-$ -annihilation
 - total width of Z-boson

Soft and collinear singularities

• e^+e^- -annihilation (massless quarks)

• Born cross section
$$\sigma^{(0)} = \frac{4\pi\alpha^2}{3s}$$

Soft and collinear singularities

- e^+e^- -annihilation (massless quarks)
 - Born cross section $\sigma^{(0)} = \frac{4\pi\alpha^2}{3s}$

Study QCD corrections (real emissions)

- Cross section
 - dimensional regularization $D = 4 2\epsilon$ (with $f(\epsilon) = 1 + O(\epsilon^2)$)

$$\sigma^{q\bar{q}g} = \sigma^{(0)} 3 \sum_{q} e_{q}^{2} f(\epsilon) C_{F} \frac{\alpha_{s}}{2\pi} \int dx_{1} dx_{2} \frac{x_{1}^{2} + x_{2}^{2} - \epsilon(2 - x_{1} - x_{2})}{(1 - x_{1})^{1 + \epsilon} (1 - x_{2})^{1 + \epsilon}}$$

• Soft and collinear divergencies $(0 \le x_1, x_2 \le 1 \text{ and } x_1 + x_2 \ge 1)$ p - k $1 - x_1 = x_2 \frac{E_g}{\sqrt{s}} (1 - \cos \theta_{2g}) \text{ and}$ $1 - x_2 = x_1 \frac{E_g}{\sqrt{s}} (1 - \cos \theta_{1g})$

Integrate over phase space for real emission contributions

$$\sigma^{q\bar{q}g} = \sigma^{(0)} 3 \sum_{q} e_q^2 f(\epsilon) C_F \frac{\alpha_s}{2\pi} \left(\frac{2}{\epsilon^2} + \frac{3}{\epsilon} + \frac{19}{2} + \mathcal{O}(\epsilon)\right)$$

• Soft and collinear divergencies $(0 \le x_1, x_2 \le 1 \text{ and } x_1 + x_2 \ge 1)$ p - k $1 - x_1 = x_2 \frac{E_g}{\sqrt{s}} (1 - \cos \theta_{2g}) \text{ and}$ $1 - x_2 = x_1 \frac{E_g}{\sqrt{s}} (1 - \cos \theta_{1g})$

Integrate over phase space for real emission contributions

$$\sigma^{q\bar{q}g} = \sigma^{(0)} 3 \sum_{q} e_q^2 f(\epsilon) C_F \frac{\alpha_s}{2\pi} \left(\frac{2}{\epsilon^2} + \frac{3}{\epsilon} + \frac{19}{2} + \mathcal{O}(\epsilon)\right)$$

Divergencies cancel against virtual contributions

p

Infrared safety

• Total cross section (R(s)) is directly calculable in perturbation theory (finite)

$$R(s) = 3 \sum_{q} e_q^2 \left\{ 1 + \frac{\alpha_s}{\pi} + \mathcal{O}(\alpha_s^2) \right\}$$

Infrared safety

• Total cross section (R(s)) is directly calculable in perturbation theory (finite)

$$R(s) = 3 \sum_{q} e_q^2 \left\{ 1 + \frac{\alpha_s}{\pi} + \mathcal{O}(\alpha_s^2) \right\}$$

Collinear singularities

• Collinear divergencies remain for hadronic observables \rightarrow factorization

- Left: single-hadron inclusive e^+e^- -annihilation (time-like kinematics)
- Center: Drell-Yan process in pp-scattering (space-like kinematics)
- Right: Deep-inelastic e^-p -scattering (space-like kinematics)

QCD factorization

$$\sigma_{pp\to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \hat{\sigma}_{ij\to X} \left(\alpha_s(\mu^2), Q^2, \mu^2, m_X^2 \right)$$

• Hard parton cross section $\hat{\sigma}_{ij \to X}$ calculable in perturbation theory

- known to NLO, NNLO, \dots ($\mathcal{O}(\text{few}\%)$) theory uncertainty)
- Non-perturbative parameters: parton distribution functions f_i , strong coupling α_s , particle masses m_X
 - known from global fits to exp. data, lattice computations, ...

Factorization

- Large class of hard-scattering reactions with initial state hadrons
 - cross section not infrared safe
 - dependent on quark and gluon degrees of freedom in hadron
 - sensitive to nonperturbative processes at long distances
- Factorization of cross section
 - infrared safe hard part $\hat{\sigma}_{pt}$ calculable in perturbative QCD
 - nonperturbative function f determined from data
 - f parametrizes hadron structure
- General structure of cross section
 - Iarge momentum scale Q, factorization scale μ

 $Q^2 \sigma_{\text{phys}} (Q) = \hat{\sigma}_{\text{pt}} (Q/\mu, \alpha_s(\mu)) \otimes f(\mu)$

- convolution
 in suitable kinematical variables
- Factorization
 - generalization of operator product expansion

Higgs cross section

Cross section for Higgs production at the LHC

Dominant channels for Higgs boson production LHC Higgs XS WG '10

Higgs discovery at LHC

Atlas coll. July 2012

- Higgs mass in the range $m_H = 125 \text{ GeV}$
 - Higgs search driven predominantly by $gg \rightarrow H$
 - current range of excluded Higgs masses at Tevatron optimistic and consequences for LHC interesting

gg-fusion

Effective theory

- Integration of top-quark loop (finite result)
 - decay width $H \rightarrow gg$ ($m_q = 0$ for light quarks, m_t heavy)

$$\Gamma_{H \to gg} = \frac{G_{\mu} m_H^3}{64 \sqrt{2} \pi^3} \alpha_s^2 f\left(\frac{m_H^2}{4m_t^2}\right)$$

- Effective theory in limit $m_t \to \infty$; Lagrangian $\mathcal{L} = -\frac{1}{4} \frac{H}{v} C_H G^{\mu\nu a} G^a_{\mu\nu}$
 - operator $HG^{\mu\nu a} G^a_{\mu\nu}$ relates to stress-energy tensor
 - additional renormalization proportional to QCD β-function required Kluberg-Stern, Zuber '75; Collins, Duncan, Joglekar '77

QCD corrections to ggF p g higgs p

- Hadronic cross section $\sigma_{pp \rightarrow H}$ with $\tau = m_H^2/S$
 - renormalization/factorization (hard) scale $\mu = \mathcal{O}(m_H)$

$$\sigma_{pp\to H} = \sum_{ij} \int_{\tau}^{1} \frac{dx_1}{x_1} \int_{x_1}^{1} \frac{dx_2}{x_2} f_i\left(\frac{x_1}{x_2}, \mu^2\right) f_j\left(x_2, \mu^2\right) \hat{\sigma}_{ij\to H}\left(\frac{\tau}{x_1}, \frac{\mu^2}{m_H^2}, \alpha_s(\mu^2)\right)$$

• Partonic cross section $\hat{\sigma}_{ij \to H}$

$$\hat{\sigma}_{ij \to H} = \alpha_s^2 \left[\hat{\sigma}_{ij \to H}^{(0)} + \alpha_s \, \hat{\sigma}_{ij \to H}^{(1)} + \alpha_s^2 \, \hat{\sigma}_{ij \to H}^{(2)} + \dots \right]$$

NLO: standard approximation (large uncertainties)

Radiative corrections in a nutshell

- Leading order
 - partonic cross section $x = \tau/x_1$

$$\hat{\sigma}_{gg \to H}^{(0)} = \delta(1-x)$$

- virtual correction (time-like kinematics) (infrared divergent; proportional to Born)
- dimensional regularization $D = 4 2\epsilon$

$$\hat{\sigma}_{gg\to H}^{(1),v} = C_A \frac{\alpha_s}{4\pi} \,\delta(1-x) \,\left(\frac{\mu^2}{m_H^2}\right)^\epsilon \,\left(-\frac{2}{\epsilon^2} + 7\,\zeta_2 + \mathcal{O}(\epsilon)\right)$$

additional contribution from renormalization of effective operator

g

Next-to-leading order

- add real and virtual corrections $\hat{\sigma}_{gg \to H}^{(1)} = \hat{\sigma}_{gg \to H}^{(1),r} + \hat{\sigma}_{gg \to H}^{(1),v}$
- collinear divergence remains splitting functions $P_{gg}^{(0)}$

$$\begin{aligned} \hat{\sigma}_{gg \to H}^{(1)} &= \frac{\alpha_s}{4\pi} \left(\frac{\mu^2}{m_H^2}\right)^{\epsilon} \left\{ \\ &\frac{1}{\epsilon} C_A \left(\frac{8}{1-x} + \frac{8}{x} - 8(2-x+x^2) + \frac{22}{3}\delta(1-x)\right) - \frac{1}{\epsilon} n_f \frac{4}{3}\delta(1-x) \\ &+ C_A \left(16\frac{\ln(1-x)}{1-x} + \left(\frac{22}{3} + 8\zeta_2\right)\delta(1-x) - 16x(2-x+x^2)\ln(1-x) \\ &- 8\frac{(1-x+x^2)^2}{1-x}\ln(x) - \frac{22}{3}(1-x)^3 \right) \end{aligned}$$

 $+\mathcal{O}(\epsilon)
ight\}$ Sven-Olaf Moch

- Structure of NLO correction
 - absorb collinear divergence $P_{gg}^{(0)}$ in renormalized parton distributions

$$\hat{\sigma}_{gg \to H}^{(1),\text{bare}} = \frac{\alpha_s}{4\pi} \left(\frac{\mu^2}{m_H^2}\right)^{\epsilon} \left\{\frac{1}{\epsilon} 2P_{gg}^{(0)}(x) + \hat{\sigma}_{gg \to H}^{(1)}(x) + \mathcal{O}(\epsilon)\right\}$$
$$g^{\text{ren}}(\mu_F^2) = g^{\text{bare}} - \frac{\alpha_s}{4\pi} \frac{1}{\epsilon} P_{gg}^{(0)}(x) \left(\frac{\mu^2}{\mu_F^2}\right)^{\epsilon}$$

• partonic (physical) structure function at factorization scale μ_F

$$\hat{\sigma}_{gg \to H} = \delta(1-x) + \frac{\alpha_s}{4\pi} \left\{ \hat{\sigma}_{gg \to H}^{(1)}(x) - \ln\left(\frac{m_H^2}{\mu_F^2}\right) 2 P_{gg}^{(0)}(x) \right\}$$

Resummation

Large logarithmic corrections soft/collinear regions of phase space

- Resummation
 - \blacksquare reorganize perturbative expansion \longrightarrow stability
 - generating functional for higher orders of perturbation theory

$$\mathcal{O} = 1 + \alpha \left(\ln^2 + \ln + 1 \right) + \alpha^2 \left(\ln^4 + \ln^3 + \ln^2 + \ln + 1 \right) + \dots$$

= $(1 + \alpha 1 + \alpha^2 1 + \dots) \exp(\alpha \ln^2 + \alpha \ln + \alpha^2 \ln + \dots)$

• Higgs cross section $\hat{\sigma}_{gg \to H}$ with $x = \frac{M_H^2}{s}$ ($x \simeq 1$ close to threshold)

$$\alpha_s^n \left(\frac{\ln^{2n-1}(1-x)}{1-x}\right)_+ \longleftrightarrow \alpha_s^n \ln^{2n}(N)$$

Inclusive cross section

Apparent convergence of perturbative expansion

- NNLO corrections still large Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03
- improvement through complete soft N³LO corrections S.M., Vogt '05 or NNLL resummtion Catani, de Florian, Grazzini, Nason '03, Ahrens et al. '10
- Perturbative stability under renormalization scale variation

Sven-Olaf Moch

Cross section at LHC with scale variation: fixed order predictions (left) and resummed perturbation series (right)

NNLO corrections

Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03

NNLL resummation

Catani, Grazzini, de Florian, Nason '03, Ahrens et al. '10

Total Higgs cross section and resummation

 Cross section at LHC with scale variation: fixed order predictions (left) and resummed perturbation series (right)

- NNLO corrections
 Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03
- NNLL resummation (lots of activity in the last years)
 Catani, Grazzini, de Florian, Nason '03, Ahrens et al. '10

gg fusion (fully exclusive)

- Bin-integrated Higgs rapidity distribution including decay $H \rightarrow \gamma \gamma$
 - QCD corrections up to NNLO Anastasiou, Melnikov, Petriello '05
 - fast parton level Monte Carlo HNNLO Catani, Grazzini '07

- Impact of kinematical cuts on higher order corrections (LHC $\sqrt{s} = 14$ TeV)
 - left: Higgs mass $M_h = 125$ GeV, no cuts on p_t of jets
 - right: Higgs mass $M_h = 165 \text{ GeV}$ and veto on jets with $p_t > 40 \text{ GeV}$ (k_t algorithm for jet reconstruction with jet size D = 0.4)

PDF dependence of *gg*-fusion cross section at LHC

- PDFs uncertainty
 - PDFs (gluon at large x) largest single source of uncertainty
 - PDF uncertainty estimates by LHC Higgs XS WG too optimistic
- Linear addition of errors
 - PDF uncertainty and error due to effective theory:

 $\Delta \sigma = \Delta \sigma_{\rm PDF} + \Delta \sigma_{\rm EFT}$

Vector-boson fusion

Second largest rate at LHC (WWH coupling)

Signatures

- WW, ZZ fusion \longrightarrow Higgs is color singlet
 - two hard (forward) tagging jets (visible in detector)
 - no (or small) hadronic activity between tagging jets
 - color connection between forward jet and proton remnant
 - Higgs decay in the central rapidity region

Vector-boson fusion

Second largest rate at LHC (WWH coupling)

NLO QCD radiative corrections

Vector-boson fusion

Second largest rate at LHC (WWH coupling)

 NLO QCD corrections factorize (color conservation eliminates *t*-channel gluon in squared ME)

Exact factorization

- Deep-inelastic scattering building block of cross section with structure functions F_1 , F_2 and F_3
- Exact factorization at NLO: so-called strucure function approach Han, Valencia, Willenbrock '92
- Structure function approach is NOT exact at NNLO in QCD
 - but can be still considered a good approximation, holds to $\mathcal{O}(1\%)$
 - NNLO QCD corrections to F_1 , F_2 and F_3 long known Kazakov, Kotikov '88; Zijlstra, van Neerven '92; S.M., Vermaseren '99

VBF cross section at LHC

Bolzoni, Maltoni, S.M., Zaro '11

- VBF at NNLO
- QCD corrections at second order small
 - apparent convergence
- NNLO results very stable at 2% against QCD scales variation (uniformly over the full mass range)
- Significant reduction of theoretical uncertainty

Scale stability at NNLO

- VBF cross sections displays very good scale stability at NNLO over large range for $\mu_R = \mu_F$ preferred (minimal sensitivity)
- Scale choice $\mu_R = \mu_F \simeq Q$ preferred (minimal sensitivity)

PDF dependence of VBF cross section at LHC

- PDF uncertainty
 - moderate for small Higgs masses $\mathcal{O}(\pm 2\%)$
 - increasingly larger for heavy Higgs bosons up to $\mathcal{O}(\pm 10\%)$

Higgs strahlung

WH production (fully exclusive) Ferrara, Tramontana, Grazzini '11

Scale dependence at the 1% level both at NLO and NNLO

- LHC $\sqrt{s} = 14$ TeV: lepton $p_t > 30$ GeV, |y| < 2.5 and $p_t^{miss} > 30$ GeV; require $p_t^W > 200$ GeV; (cone alg. with R = 1.2)
 - one fat jet with $p_t > 200 \text{ GeV}$ (and $b\overline{b}$ -pair), |y| < 2.5; no other jet with $p_t > 20 \text{ GeV}$ and |y| < 5

Sven-Olaf Moch

LHC measurements

Atlas coll. July 2012

- Measured $H \rightarrow \gamma \gamma$ decay mode (left)
- Signal strength of all analyzed decay modes normalized to SM expectation (right)
- Agreement with SM for $H \to ZZ$; excess of $H \to \gamma\gamma$ (new physics ?)

Theory uncertainty

- Theory uncertainty of SM expectations revisited Baglio, Djouadi, Godbole '12
 - ratios $R_{XX} = \sigma_{H \to XX}^{obs} / \sigma_{H \to XX}^{SM}$
 - Iarger PDF uncertainties and linear addition of errors

Summary (part I)

Standard Model

- Successful experimental program at LHC relies crucially on detailed understanding of Standard Model processes
- QCD at work
 - concepts of factorization, infrared safety, evolution

Higgs measurements

- Precision predictions for Higgs production at LHC available
 - radiative corrections (higher orders) important
 - essential to control theory uncertainties
 - non-perturbative parameters currently source of largest differences for Higgs cross section predictions