Comparing different trends of the data for Pion-photon transition form factor

S. Mikhailov^b

in collaboration with A. Bakulev[♭], A. Pimikov[♯], and N. Stefanis[♯] based on **1205.3770 [hep-ph], appears in PRD**

Bogoliubov Lab. Theor. Phys., JINR (Dubna, Russia)[♭] Departamento de Física Teórica -IFIC, Universidad de Valencia[↓] ITP-II, Ruhr-Universität (Bochum, Germany)[♯]

Experiments to $e^+e^- \rightarrow e^+e^-\pi^0$

One of the **most accurate** results on exclusive reactions is data on transition FF $F^{\gamma^*\gamma^*\pi^0}(-Q^2 = q_1^2, q_2^2)$ provided by the experiments $e^+e^- \rightarrow e^+e^-\pi^0$, $q_2^2 \approx 0$.

CELLO (1991) $Q^2 : 0.7 - 2.2 \text{ GeV}^2$, CLEO (1998) $Q^2 : 1.6 - 8.0 \text{ GeV}^2$, followed to collinear QCD.

BaBar (2009) $Q^2 : 4 - 40$ GeV² FF certainly growth with Q^2 , creating the "BaBar puzzle",

Belle (2012) $Q^2 : 4 - 40$ GeV² return to collinear QCD?

BESIII (????) $Q^2 \le 5$ GeV², promises very precise data

Experiments to $e^+e^- \rightarrow e^+e^-\pi^0$

BaBar data [June 2009] on pion-photon transition form factor **grows like** \sqrt{Q} , while behavior like $Q^2/(Q^2 + \Lambda^2)$ was expected

[B. Aubert, Phys. Rev. D 80, 052002 (2009); arXiv:1101.1142]:

- 1. Pion-photon transition FF in QCD, its components
- 2. Why we need Light Cone Sum Rules for Transition FF, there ingredients
- 3. FF from experiments: history, lessons, conclusion
- 4. Extraction Pion DA from different experimental data
- 5. Conclusions

Factorization
$$\gamma^*(q_1)\gamma^*(q_2) \to \pi^0(P)$$
 in pQCD

$$\int d^4x e^{-iq_1 \cdot z} \langle \pi^0(P) | T\{j_\mu(z)j_\nu(0)\} | 0 \rangle = i\epsilon_{\mu\nu\alpha\beta}q_1^{\alpha}q_2^{\beta} \cdot F^{\gamma^*\gamma^*\pi}(Q^2, q^2),$$
where $-q_1^2 = Q^2 > 0, -q_2^2 = q^2 \ge 0$
Collinear factorization at $Q^2, q^2 \gg$ (hadron scale $\sim m_\rho$)² for the leading twist
 $F^{\gamma^*\gamma^*\pi}(Q^2, q^2) = T(Q^2, q^2, \mu_F^2; x) \otimes \varphi_{\pi}(x; \mu_F^2) + O(\frac{1}{Q^4}),$
 μ_F^2 - boundary between large scale Q^2 and hadronic one. At the parton level
 $F^{\gamma^*\gamma^*\pi}(Q^2, q^2) = \frac{\sqrt{2}}{3}f_{\pi}\int_0^1 dx \frac{1}{Q^2x + q^2\bar{x}}\varphi_{\pi}(x).$
 $\gamma^*(q_2) = \frac{\sqrt{2}}{xP}$

$$Q^2 F^{\gamma^* \gamma \pi}(Q^2, q^2 \to 0) = \frac{\sqrt{2}}{3} f_\pi \int_0^1 \frac{dx}{x} \varphi_\pi(x) \equiv \frac{\sqrt{2}}{3} f_\pi \langle x^{-1} \rangle_\pi$$

Pion distribution amplitude $\varphi_{\pi}(x, \mu^2)$

The pion DA parameterizes the matrix element:

$$\left. \left< 0 | \, \bar{d}(z) \gamma_{\nu} \gamma_{5}[z,0] u(0) \, | \, \pi(P) \right> \right|_{z^{2}=0} = i f_{\pi} P_{\nu} \int_{0}^{1} dx \; e^{i x(zP)} \varphi_{\pi}(x,\mu^{2}) \, ,$$

where the path-ordered exponential ensures the gauge invariance

$$[z,0] = \mathcal{P} \exp\left[ig \int_{0}^{z} t^{a} A^{a}_{\mu}(y) dy^{\mu}\right].$$

Pion DA describes the transition of a physical pion into two valence quarks, separated at light cone.

Pion distribution amplitude $\varphi_{\pi}(x, \mu^2)$

The pion DA parameterizes the matrix element:

$$\langle 0|\bar{d}(z)\gamma_{\nu}\gamma_{5}[z,0]u(0)|\pi(P)
angle\Big|_{z^{2}=0} = if_{\pi}P_{\nu}\int_{0}^{1}dx\;e^{ix(zP)}\varphi_{\pi}(x,\mu^{2}),$$

P ERBL **[79-80]** rules DA evolution with μ^2 . The expansion in Gegenbauer modes:

$$\varphi_{\pi}(x,\mu^2) = 6x\bar{x}(1+a_2(\mu^2)\cdot C_2^{3/2}(x-\bar{x})+a_4(\mu^2)\cdot C_4^{3/2}(x-\bar{x})+\ldots)$$

Pion distribution amplitude $\varphi_{\pi}(x, \mu^2)$

The pion DA parameterizes the matrix element:

$$\langle 0 | \bar{d}(z) \gamma_{\nu} \gamma_{5}[z,0] u(0) | \pi(P) \rangle \Big|_{z^{2}=0} = i f_{\pi} P_{\nu} \int_{0}^{1} dx \; e^{i x(zP)} \varphi_{\pi}(x,\mu^{2}) \, ,$$

Solution ERBL **[79-80]** rules DA evolution with μ^2 . The expansion in Gegenbauer modes:

 $\varphi_{\pi}(x,\mu^2) = 6x\bar{x}(1+a_2(\mu^2)\cdot C_2^{3/2}(x-\bar{x})+a_4(\mu^2)\cdot C_4^{3/2}(x-\bar{x})+\ldots)$

$\gamma^*\gamma \rightarrow \pi$: Light-Cone Sum Rules

LCSR effectively takes into account long-distances effects of real photon using **quark-hadron duality** in vector channel and **dispersion relation** in q^2 (Balitsky et. al.-[NPB (1989)], Khodjamirian [EJPC (1999)])

$$F_{\gamma\gamma^*\pi}(Q^2, q^2) = \int_0^{s_0} \frac{\rho^{\mathsf{PT}}(Q^2, s)}{m_\rho^2 + q^2} e^{(m_\rho^2 - s)/M^2} ds + \int_{s_0}^{\infty} \frac{\rho^{\mathsf{PT}}(Q^2, s)}{s + q^2} ds \,,$$

where $s_0 \simeq 1.5 \text{ GeV}^2$ – effective threshold in vector channel, M^2 – Borel parameter ($0.5 - 0.9 \text{ GeV}^2$). Limit to real-photon $q^2 \rightarrow 0$ can be done.

Spectral density was calculated in QCD:

$$\rho^{\mathsf{PT}}(Q^2,s) = \mathsf{Im}F^{\mathsf{PT}}_{\gamma^*\gamma^*\pi}(Q^2, -s - \imath \varepsilon) = \mathsf{Tw-2} + \mathsf{Tw-4} + \mathsf{``Tw-6''} + \dots,$$

twists contributions are given in a form of convolution with pion DA:

Tw-2 ~ $(T_{\text{LO}} + T_{\text{NLO}} + T_{\text{NNLO}_{\beta_0}} + \ldots) \otimes \varphi_{\pi}^{\text{Tw2}}(x,\mu)$.

Main Ingredients of Spectral Density

- LO Spectral Density, Tw-4 term [Khodjamirian(1999)]
- NLO Spectral Density, [M&Stefanis(2009)],corr. in [Agaev et.al.(2011)]
- NNLO_{β0} Spectral Density, [M&Stefanis(2009)]
- "Tw-6" contribution, [Agaev et.al.(ABOP 2011)]
- In the second second

Terms of Pion-Photon FF at $Q^2 = 8$ GeV²

- Result is dominated by the Twist-2 LO and NLO.
- **"Twist-6"** contribution is taken into account together with NNLO_{β_0} one they has close absolute values and opposite signs.

Blue - negative terms

Red - positive terms

Parameters of LC SR

Experimental Data on $F_{\gamma\gamma^*\pi}$: CELLO, CLEO, BaBar and Belle [1205.3249[hep-ex]]

Belle data do not confirm "BaBar puzzle" behavior above 10 GeV² (except outlier at $Q^2 = 27.33$ GeV²).

Experimental Data on $F_{\gamma\gamma^*\pi}$: CELLO, CLEO, BaBar and Belle [1205.3249[hep-ex]]

Belle data do not confirm "BaBar puzzle" behavior above 10 GeV² (except outlier at $Q^2 = 27.33$ GeV²).

BMPS predicted "data" agree well with **CELLO**, CLEO, **BaBar** $_{Q^2 < 9 \text{ GeV}^2}$ (2009), **BaBar** $_{n'}^{\eta}$ (2011), and the most of **Belle** (2012).

Pion TFF Data and Models

Most data points either inside green "Belle" strip (scaling) or within red "BaBar" strip (auxesis).

- BaBar η, η' data are within green strip
- Blue strip mostly theoretical.

Alternatives for Pion-Gamma FF Analysis

Alternative: To consider data as forming **two independent data strips** (left) or **one single data strip** (right) **[1205.3770]**

We suggest to explore the first Alternative: To consider all data as forming two independent data strips,

namely, CELLO&CLEO&Belle and CELLO&CLEO&BaBar

Confidential regions in 2D (a_2, a_4)

In vertexes of a triangle – χ^2/ndf , all estimates at $\mu_{SY} = 2.4$ GeV.

On sides of triangle: discrepancy in terms of stand. deviation (1 $\sigma \approx 68\%$)

Confidential regions in 2D (a_2, a_4)

BMS DA (X & green bunch) from QCD SR with nonlocal condensates: $\leq 1\sigma$. **Asymptotic DA, CZ DA:** $> 6\sigma$.

Vertic. lines – lattice constraints: wider – Braun et al.[2006], thinner – [2011].

NLC SR Results vs 3D Constraints

3D 1σ -error ellipsoid for (a_2, a_4, a_6) at $\mu_{SY} = 2.4$ GeV scale with theoretical $\pm \Delta \delta_{tw4}^2$ -error shown by green(-) and red(+) length.

NLC SR Results vs 3D Constraints

3D 1σ -error ellipsoid for (a_2, a_4, a_6) at $\mu_{SY} = 2.4$ GeV scale with theoretical $\pm \Delta \delta_{tw4}^2$ -error shown by green(-) and red(+) length.

NLC SR Results vs 3D Constraints

3D 1σ -error ellipsoid for (a_2, a_4, a_6) at $\mu_{SY} = 2.4$ GeV scale with theoretical $\mp \Delta \delta_{tw4}^2$ -error shown by green(-) and red(+) length.

Data fit of pion DA vs NLC SR profiles

average incline:

 $17.2 \pm 8.5;$

 $\textbf{25.6} \pm \textbf{5.25}$

- The main difference a sharper behaviour of BaBar near endpoints.
- CELLO, CLEO, Belle data agrees with BMS bunch based on NLC QCD SR.
- **BaBar** data above 10 GeV² does not support BMS bunch.

Conclusions

- 1. Performed **2D** and **3D** analysis of **CELLO**, **CLEO**, **BaBar**, **Belle** data using LCSRs at NLO and Tw-4 term and taking [NNLO_{β} + "twist6"] as uncertainties.
- 2. We showed that the data from CELLO, CLEO, BaBar, and Belle at $Q^2 = 1 9 \text{ GeV}^2$ in 2D analysis favor a pion DA with endpoint suppression, like BMS bunch.
- 3. Beyond $Q^2 = 9 \text{ GeV}^2$, the best fit to data including BaBar on $F_{\gamma^*\gamma \to \pi}$ requires a sizeable coefficient a_6 .
- 4. 2D analysis of CLEO-CELLO-Belle data agrees with BMS bunch and does not agree with CLEO-CELLO-BaBar one.
- 5. **3D** analysis of CLEO-CELLO-**Belle** certainly **does not agree** with CLEO-CELLO-**BaBar** one.
- 6. The promising **fine accuracy** of future **BESSIII** experiment can clarify choice between **BaBar** and **Belle** results.