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DRA Method: What is it about?
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DRA Method

Achievements

The DRA method has been introduced in 2010 (Lee 2010a) and since then it
was very successful in application for various multiloop integrals
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Achievements

The DRA method has been introduced in 2010 (Lee 2010a) and since then it
was very successful in application for various multiloop integrals
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DRA Method

Achievements

The DRA method has been introduced in 2010 (Lee 2010a) and since then it
was very successful in application for various multiloop integrals

3-loop onshell massless Veﬂices'":
(Lee, Smirnov and Smirnov 2010).

3 -loop onshell mass operator type@p @6m€ju@
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4-loop QED-type tadpoles(Lee and
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DRA Method

Achievements

The DRA method has been introduced in 2010 (Lee 2010a) and since then it
was very successful in application for various multiloop integrals

g

3-loop
° (Lee, S

Form of the DRA results
Results are exact in Z and have the form of multiple

3 -loop SuUms with factorized summand and allow for fast

1ntegra high-precision (e.g. 103digits) calculation of

Allsws \8 expansion around any point.
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Loop Integral

Lloop, E+1 legs

Loop integral

azn, 4?1 .
B / d7ly...d71,
n1 N
Po=-P1-P2----Pe e D Dy
Dy,...,Dy — denominators of
the diagram,
Tt Dyry1,...,Dy conveniently
E external momenta chosen numerators.
[m] = = =
~ RN.Lee (BINP,Novosibirsk)
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Loop Integral

Loop integral
7l d?l
_/ d7ly...d71,
IO ..DWY

Lloop, E+1 legs

Po=-P1-P2----Pe

Dy,...,Dy — denominators of
. the diagram,
Tt Dyry1,...,Dy conveniently
E external momenta chosen numerators.

Notation

All Dy linearly depend on s;; = [; - g, any s;; can be qi..="h. 1
expressed via Dy. = N =#s; =L(L+1)/2+LE qL41,.L+E =D1,.E
o F = E E DAl
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IBP reduction

IBP identities (Tkachov 1981, Chetyrkin and Tkachov 1981)
d?ly...d%l, = qji(n) =0
/ 1 Lo g;j(m)

Explicitely making a differentiation, we obtain identities betwen the integrals
with shifted indices.

Reduction

Using IBP Identities, it is possible to reduce all integrals to a finite set of
them, called masters. For a given subset of {Dy,...,Dy} there can be

@ No masters = The corresponding topology is reducible

@ One master = The corresponding topology is said to have simple
master

o Several masters = The corresponding topology is said to have
multimaster — a column of masters.
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Operator representation

Operators Ay, ..., AN, B

In order to write identities between integrals with different indices, it is
convenient to introduce the operators:

(Aof) (n1y...,nn) = nef (n1,...,ng+1,...,05),
(Bof) (n1y...,nn) =f (n1,...,ng —1,...,n5).

Commutator

[Aa, Bp] = Sap J
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Operator representation

Operators Ay, ..., AN, B

In order to write identities between integrals with different indices, it is
convenient to introduce the operators:

(Aof) (n1y...,nn) = nef (n1,...,ng+1,...,05),
(Boﬁf)(nlv"'anN) :f(nla--- Ny

Commutator
1, cen ,I’lN) .
Compact form of identities

[Aa, Bp] = Sap J

nlJ(nl +1,n2) :J(I’ll,nz— 1)—|—J(n1,n2) — A J=ByJ+J
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Dimensional recurrence relation

nal recurrence relation (Tarasov 1996)

Original Tarasov’s formula is derived from the parametric representation. For
no numerators it has a nicely-looking form

trees

J D m)=p" Y Ay ALY (n),
i1,...,i; enumerate tree chords; 4 = |g| = £1
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Dimensional recurrence relation

Dimensional recurrence relation (Tarasov 1996)

Original Tarasov’s formula is derived from the parametric representation. For
no numerators it has a nicely-looking form

JO D (m)=pt Y A AT (),

trees

i1,...,i; enumerate tree chords; u = |g| = £1.

Baikov’s approach to reduction (Baikov 1997)

Change of variables d”1; ...d”l; — dsyidsya...dsp 1.
Jacobian is expressed via Gram determinant

V(ll,. . .lL,pl,. . .,pE) = det{q,- -qj} = P(Dl,. . .DN)
P(Dy,...Dy) is polynomial of L+ E-th order.
~ RN.Lee (BINP,Novosibirsk) DRA Method _




Dimensional recurrence relation

Dimensional recurrence relation (Tarasov 1996)
Original Tarasov’s formula is derived from the parametric representation. For
no numerators it has a nicely-looking form

JO D (m)=pt Y A AT (),

trees

i1,...,i; enumerate tree chords; u = |g| =

Baikov’s approach to reduction (Baikov 1997)

—LE/2—L(L—1)/4

/ d71ly...d71; uln
mLZ2p DWW T(2—-E—-L+1)/2,...,(2—E) /2]

L L+E [P(D], DN):I(@—E—L—I)/Z
X/ dsjj Vi (7-E-D/2p D'
Ly--sP )] YN
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Dimensional recurrence relation
DRR from Baikov’s formula

J(.@JrZ) ( )

Lowering&Raising DRR from Baikov’s formula (Lee 2010b)

_ Ve pe) !
nt?2(9—E—-L+1),

/d@zl ...d?1LP(Dy,...,Dy)j(n)
(LDRR)
AL asll %ale
J7=2) () = % / d?ly...d7l i |j(m). (RDRR)
g %ale aSLL
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Dimensional recurrence relation
DRR from Baikov’s formula

J(.@+2) (n)

Lowering&Raising DRR from Baikov’s formula (Lee 2010b)

WY ()]

1
P(B
(2—E—L+1), (B,

,By)J?) (n).  (LDRR)
(7-2) L 9Dy (2)
J (n) = phdet | Y S—A; JZ) (n) (RDRR)
T Jsij
ij=1,..L
Automatization

These formulae have no reference to the graph and therefore can be easily
implemented.
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Dimensional recurrence relation
Example:Obtaining DRRs is very easy

d?1,d”1, DY
J(n) z/n.@Dn] D6
I...D}

Dy =8,Dy=08,Dy=(p1—1)",Ds = (p2—b)7,

Ds=(p1—li+h)*,Ds= (pr—b+0)*,D7 = (I, —)*

P1

2 loop vertex

P

Pr+p2
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Dimensional recurrence relation
Example:Obtaining DRRs is very easy

J(n) = / d?1Ld?1, DY
~J n7D}'...Dg

Dy =8,Dy=08,Dy=(p1—1)",Ds = (p2—b)7,

Ds=(pi—L+b)*,Ds=(po—L+11)*,D7 = (I — )
Dy are linear functions of s;;

P1

2 loop vertex

P

Pr+p2

2
Dy = s11,D3 = 522,D3 = 511 — 2513+ p7,

D4y =530 — 2524 +p%,D5 =511+ — 2510 — 2513 + 2523 —i—p%,

D = D5 = 511 + 520 — 2512 — 2524 + 2514 + p3,D7 = 511 + 520 — 2512

DRA Method

DA



Dimensional recurrence relation
Example:Obtaining DRRs is very easy

d?1,d”1, DY
J(n) z/n.@Dn] D6
I...D}

Dy =8,Dy=08,Dy=(p1—1)",Ds = (p2—b)7,

2 loop vertex

P

P1tp2
Ds=(p1—li+0h)*,Ds=(p—L+1)* Dy =(h—h)* | _
Expressing in terms of Ds
asll %aSIZ 1
= d,,05,, — =0
%asll a522 R 4 2
o = =
~ RN.Lee (BINP,Novosibirsk) DRA Method
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Dimensional recurrence relation
Example:Obtaining DRRs is very easy

2 loop vertex
d911d912 D;7 p1
J(n) = / 72D" D

... D

Dy =8,Dy=08,Dy=(p1—1)",Ds = (p2—b)7,

P1tp2
Ds=(p1—li+0h)*,Ds=(p—L+1)* Dy =(h—h)* | _
Expressing in terms of Ds
) 1o, 1.,
LR

<= Pass from s;;to Dy
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Dimensional recurrence relation
Example:Obtaining DRRs is very easy

d?1,d?1, D
J(H)Z/ 1 2 g

2 loop vertex
7D ... D¢

P

Dy =8,Dy=08,Dy=(p1—1)",Ds = (p2—b)7,

P1tp2
Ds=(p1—lL+h)’De=(pr—bL+h)" D7 = (1 — )’
Expressing in terms of Ds

1

aSll faSIZ
1
fasll a

522

P1

=4

— Usn

1
dy,, — 4_183212 <= Pass from s;jto Dy
_ aD] aDz + aDz aD3 + aD] 304 + aD3 aD4 + aD] aDS + 8D2 8D5 + 8D3 aDS + aD4 aDS

—|—3D1 81)6 + 31)2 81)6 + 81)3 31)6 + 81)4 31)6 + 31)1 3D7 + 31)2 3D7 + 31)3 31)7 + 31)4 8D7

(=] =y
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Dimensional recurrence relation
Example:Obtaining DRRs is very easy

2 loop vertex
J(n) B / d911d912 D;7 p1
~J n7D}'...Dg

Dy =8,Dy=08,Dy=(p1—1)",Ds = (p2—b)7,

P1tp2
Ds=(p1—lL+h)’De=(pr—bL+h)" D7 = (1 — )’
Expressing in terms of As

P1

Replace dp, — —A;, add u* = +1 factor

= dp,9p, + Ip,p, + Ip, Ip, + Ip,9p, + Ip, Ip, + b, Ip, + Ip,Ip; + Ip, ;s
+0dp, b, + Ip, 9, + I, 9p¢ + I, p, + I, Op, + D, 9D, + Ip,Ip, + Ip, I,

(=] =y
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Dimensional recurrence relation
Example:Obtaining DRRs is very easy

2 loop vertex
d911d912 D;7 p1
J(n) = / 72D" D

... D

Dy =8,Dy=08,Dy=(p1—1)",Ds = (p2—b)7,

P1tp2
Ds=(p1—lL+h)’De=(pr—bL+h)" D7 = (1 — )’
Expressing in terms of As

P1

Replace dp, — —A;, add ,uL = =1 factor and voila:

J772) (m) = (A1A2 + A2A3 +A1As + A3A4 + A1As + AsAs + A3As + A4As

+A1Ag +ArAs +AsAg + AaAs+ A1A7 + ArA7 +AsA7 +A4A7) 7 (n)
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Dimensional recurrence relation
Example:Obtaining DRRs is very easy

2 loop vertex
d911d912 D;7 p1
J(n) = / 72D" D

... D

Dy =8,Dy=08,Dy=(p1—1)",Ds = (p2—b)7,

P1tp2
Ds=(p1—lL+h)’De=(pr—bL+h)" D7 = (1 — )’
Expressing in terms of As

P1

Replace dp, — —A;, add ,uL = =1 factor and voila:

J772) (m) = (A1A2 + A2A3 +A1As + A3A4 + A1As + AsAs + A3As + A4As

+A1Ag +ArAs +AsAg + AaAs+ A1A7 + ArA7 +AsA7 +A4A7) 7 (n)
the masters.

If we take master on the L.h.s. and reduce r.h.s., we obtain an equation for

(=] =y
DRA Method
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Solution of DRR

Inhomogeneous part

General form of DRR for master

J(v+1)=C(v)J(V)+R(V),

Notation

v=29/2 I

J can be either simple, or multi- master. R (V) contains
simpler integrals, which are assumed to be known.
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DA



Solution of DRR

Inhomogeneous part

General form of DRR for master

J(v+1)=CV)J(V)+R(v), Notation
J can be either simple, or multi- master. R (v) contains V= %/2 I

simpler integrals, which are assumed to be known.

Solution of DRR

J(V)=R(v—-1)+C(v-1)J(v—1)

o — Rt T



Solution of DRR

Inhomogeneous part

General form of DRR for master

J(v+1)=CV)J(V)+R(v), Notation
J can be either simple, or multi- master. R (v) contains V= %/2 I

simpler integrals, which are assumed to be known.

Solution of DRR

J(V)=R(v—-1)+C(v—-1)R(v=2)+C(v—-1)C(v=2)J(v-2)
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Solution of DRR

Inhomogeneous part

General form of DRR for master

J(v+1)=CV)J(V)+R(v), Notation
J can be either simple, or multi- master. R (v) contains V= %/2 I

simpler integrals, which are assumed to be known.

Solution of DRR

J(V)=R(v—-1)+C(v—-1)R(v=2)+C(v—1)C(v—=2)R(v—3)
+C(v—-1)C(v—=2)C(v—-3)J(v—-3)

o — Rt T



Solution of DRR

Inhomogeneous part

General form of DRR for master

J(v+1)=CV)J(V)+R(v), Notation
J can be either simple, or multi- master. R (v) contains V= %/2 I

simpler integrals, which are assumed to be known.

Solution of DRR
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Solution of DRR

Inhomogeneous part

General form of DRR for master

J(v+1)=C(v)J(V)+R(V)

simpler integrals, which are assumed to be known.

Notation

J can be either simple, or multi- master. R (v) contains V= %/2 I

Solution of DRR
J(V)=R(v—-1)+C(v—-1)R(v=2)+C(v—1)C(v—=2)R(v—3)
+C(v—-1)C(v=2)C(v—-3)R(v—4)
+C(v-1)C(v=2)C(v—-3)C(Vv—4)R(v-5)
+C(v—1)C(v=2)C(v=3)C(v—4)C(v—-5)J(v-5)
© RN.Lec BINBNowosbisk) DRA Method EEEEE—————



Solution of DRR

Inhomogeneous part

General form of DRR for master

J(v+1)=CV)J(V)+R(v), Notation
J can be either simple, or multi- master. R (v) contains V= %/2 I

simpler integrals, which are assumed to be known.

Solution of DRR
oo k—1 ok
Ji (v ZHC (v—=DR(v=k) or J"(v) ==Y T]C " (v+D)R(v+k)
k=01=0

o — Rt T



Solution of DRR

Inhomogeneous part

General form of DRR for master

J(v+1)=CV)J(V)+R(v), Notation
J can be either simple, or multi- master. R (v) contains V= %/2 I

simpler integrals, which are assumed to be known.

Solution of DRR
oo k—1

T" (v ZHC (v—D)R(v—k) or J* (v i

C M (VD) R(v+k)

:»

T
S

We should add a general solution J° of the homogeneous equation

J(v)=J"(v)+J%(v)

o — Rt TR



Solution of DRR

Homogeneous part

Homogeneous equation

Summing factor

Summing factor: some solution of

S(v)=8(v+1)C(v)

DRA Method
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Solution of DRR

Homogeneous part

Homogeneous equation

Summing factor
S+ =cwv)I’(v)
Simple master

Summing factor: some solution of
C (V) is a rational function which we
represent as

S(v)=8(v+1)C(v)
Simple master
E.g., we can take .
[ (v— ) LIS T (v =B)
C — _ viY
y=c 2 (v—B)) S)=c [TL T (v—a)

DRA Method
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Solution of DRR

Homogeneous part

Homogeneous equation

S+ =cwv)I’(v)

Simple master

C (V) is a rational function which we
represent as

_ CH?:1 (Vv—ay)
M =nE vop)

Summing factor

Summing factor: some solution of

S(v)=8(v+1)C(v)

Simple master

E.g., we can take

BT
SV = T v =)

General solution vs specific solution

Fv)=5s"Mol),

o (z) = o (exp[2imVv]) is an arbitrary periodic function of v. Obviously, we
have to use some information not contained in DRR to fix @ (z).

DRA Method



Mittag-Leffler’s&Liouville’s theorems

Informal formulation of Mittag-Leffler’s&Liouville’s theorems

If we know about a function f (z) on the complex plane 7

@ that it has only poles, no branching sungularities
@ the position of the poles and singular terms of expansion of f (z) in each
(including the possible pole at 7 = oo)
© One zeroth order term of function expansion in any point
then we know f (z).

Complex vs Real analysis

" fis analytic function

f=0 (complex)
. . in —— 2 1
falling off at infinity f=e" 1, (rea)
X
=] =)
T T T ——— N
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Key idea of DRA method
Complex Z to fix o(z)
General solution reads

Let us express @(z) as

JW) ="M +S T (v o(z)

DRA Method



Key idea of DRA method
Complex Z to fix o(z)

General solution reads

JWV)=T"V)+S (V) o(z)
Let us express @(z) as

®(2) =S (V) [/ (v) =J"(v)]
Suppose that we know all singularities of S (v)J (v) on some basic stripe

{v,RevV € (v, Vo + 1]} and its behaviour at Imv — +eo. Then we can use
Mittag-Leffler’s&Liouville’s theorems to fix @ (z).

DRA Method

DA



Key idea of DRA method

Complex Z to fix o(z)

General solution reads
JW) ="M +S T (v o(z)

Let us express @(z) as .
() =SW)[J(v)=J"(v)]

Suppose that we know all singularities of S (v)J (v) on some basic stripe
{v,Rev € (v, o+ 1]} and its behaviour at Imv — +eo. Then we can use
Mittag-Leffler’s&Liouville’s theorems to fix @ (z).

Important observation

S (v) allows for the mutiplication by periodic function. We can use this
freedom to get rid of some poles in S(v)J (v) and/or improve its behavior at
Imv — £oco. The same concerns the choice of the basic stripe.

o — R TR



Parametric representation

Analytical properties from parametric representation

reads

If I is the number of internal lines of the integral, parametric representation

vL—-I
J(V)=T(~1v) [ dn...dus (1-Lx) [2]C))
graph.

[P (x)]V(L%»l)fI
P(x) > 0 and Q(x) > 0 are determined in terms of trees and 2-trees of the

DRA Method
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Analytical properties from parametric representation

Parametric representation

If I is the number of internal lines of the integral, parametric representation
reads

vL—-I
J(v)= F(I—LV)/dxl codxp6 (1—Yx) [P[(Qx;?%

P(x) > 0 and Q(x) > 0 are determined in terms of trees and 2-trees of the
graph.

Analytical properties

@ The integral is a meromorphic function (Bernshtein and Gelfand 1969)
@ When Im v — oo the integral can be estimated as

J(v) < const x [T'(I — Lv)| ~ const x e "HmZ1/4

o — R TR



Fixing @

In real life
@ Use FIESTA (Smirnov et al. 2009) to determine the position and order of
singularities of J (V) on the basic stripe. (Very rarely it is possible to

manually analyze parametric representation).

@ Try to multiply S(v) by some periodic factors of sin (7 (Vv — vp)) to make
S(v)J (v) regular on the basic stripe.

@ Don’t go too far in that because sin (7 (v — vy)) makes v — +ico
behaviour of S(v)J (v) worse. If S(v)J (V) vanishes at some points,
instead, divide by sin (7 (v — vj)) to improve behaviour at infinity.

e If it was not possible to cancel all singularities of J (v) on the basic
stripe, use Mellin-Barnes (or other techniques) to fix the singular
coefficients of S(v)J (V).

o Finally, use Mittag-Leffler’s&Liouville’s theorems to fix .

=} F = E DA
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Numerical issues

Form of the DRA results

The DRA results are expressed in
terms of the multiple sums

Y A). Sk

o>k 2.2k,

The summand has a factorized form.

Form of the MB results

The MB results are expressed in terms
of the multiple sums

Y Y Sk k)

ki kn

The summand is not factorized.

DRA Method
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Numerical issues

Form of the DRA results Form of the MB results
The DRA results are expressed in The MB results are expressed in terms
terms of the multiple sums of the multiple sums
Y filk) . fu(ka) Y Yk k)
o>k 2.2k, ky ky

The summand has a factorized form. | The summand is not factorized.

Complexity scales linearly with n. Complexity scales exponentially.
for k = 0..k,,, do for k| = 0..k;;,4x do ...//n-fold

fori=0..ndo for k, = 0..ndo

| Si=Si+Ss—1fi(k) | S=S+f(ki,...)

end end
end end
return S, return S

o =2 = = = wac

o — R Ty



Numerical issues

Form of the DRA results Convergence acceleration
The DRA results are expressed in @ Mostly, the summands in DRA
terms of the multiple sums results fall off exponentially.

Evaluation time scales as #;gjts.

Y, fiki) .S (k)

kst Sk @ Sometimes, the sums in DRA

results fall off as a power.
The summand has a factorized form. Convergence acceleration:

Iterative transformation

Complexity scales linearly with n. (Broadhurst 1996)

for k = 0..k,,, do

fori — 0.1 do Sk = WSk + (1 — wi) Si1,
| Si=Si+Ss—1fi(k) where wy is some properly
end chosen weight. Evaluation time
end scales as (#digits)z.
return S,

=} F = E DA
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Some results
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Some results
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Not a fair play of course: DRA method gives exact in & results, so obtaining
new g-terms is easy. Exact results for tadpoles above are taken from (Lee and
Terekhov 2011).
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Example

Twisted 3-loop tadpole

twisted tadpole | (N
7

d?1, ...d71
J(n) :/ 1 3

32 ’
n2 DY'...Dg

Dy 3=8 3+1,Dy= (5 —h)*,

Ds= (I, —5)*, Dg = (12-1-11)2
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Example

Twisted 3-loop tadpole

twisted tadpole I

// 1= 4D3/

g = () «Trivial

+——for 2 < 2 IR divs, for 2 > 4 UV divs
(9+2)

Jy = J 222111 —

Ji = &Jz
&

@<:New master, finite on RZ € [3,5)

DRA Method
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Example
Twisted 3-loop tadpole

twisted tadpole I

r

/ D3, ">
J = (% Jr = g ’ =4 '&//(, J3 = @ <—Trivial

®<:f0r 92 < 2 IR divs, for 2 > 4 UV divs

Jy= 1229;121 = @<:New master, finite on RZ € [3,5)

W V(i)
(9 —E—L+1),

P(By,...

o — DRt Y G



Example
Twisted 3-loop tadpole

twisted tadpole I

r

/ D3, ">
J = (% Jr = g ’ =4 '&//(, J3 = @ <—Trivial
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Example
Twisted 3-loop tadpole

twisted tadpole I

r

/ D3, ">
J = (% Jr = g ’ =4 '&//(, J3 = @ <—Trivial

®<:f0r 92 < 2 IR divs, for 2 > 4 UV divs

Jy= 1229;121 = @<:New master, finite on RZ € [3,5)

P(By,...,Bg)J) (n).

1
P(Bi,...,Bg) =det[s;] =4—4B; +B%—4Bz+33132—53%32+...
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Example
Twisted 3-loop tadpole

twisted tadpole I

r

/ D3, ">
J = (% Jr = g ’ =4 '&//(, J3 = @ <—Trivial

@<:f0r 92 < 2 IR divs, for 2 > 4 UV divs

Jy= 1229;121 = @<:New master, finite on RZ € [3,5)

(2) (2) (2) (2) (2) 1(2)
2+2) _ 4o — i oo — o 3020 — 2o -

222111 — (@_2)(@_1)/4
1
P(By,...,Bg) = det[s;] =4—4B, +B%—4Bz+33132—53%32+...
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Example
Twisted 3-loop tadpole

twisted tadpole I

/ D3, ">
J = (% Jr = g ’ =4 '&//(, J3 = @ <—Trivial

®<:f0r 92 < 2 IR divs, for 2 > 4 UV divs

Jy= 1229;121 = @<:New master, finite on RZ € [3,5)

A1) (v—7/4) 3(v—1)(3v—5)(3v—4)(184v3—1224v2+2708v—1989)
Ja (V+1) —22v(v—1/2)(v—11/4) J4( )+ Iv—2)v(v—3)(2v—3)2v—T)[@v—11){dv—9)

2(g0v3 4 3 2
6(v—1)(3v—5)(Bv—4)(Tv—13) _(v=12 (80v3 72444260203 dsdav +3759v—1131)
+( *Z)V(2V75)(2V*3)(2V71)<4vf11)J (V) 2(v=2)v(2v—5)(2v—3)2 (2v—1)(4v—11) Ji (V)
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Twisted 3-loop tadpole

twisted tadpole I

r

/ D3, ">
J = (% Jr = g ’ =4 '&//(, J3 = @ <—Trivial

®<:f0r 92 < 2 IR divs, for 2 > 4 UV divs

Jy= 1229;121 = @<:New master, finite on RZ € [3,5)

Jp(v+1)= AU Ts g, (v)4+R(V)

(v=2)2v(v—1/2)(v—11/4)
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Twisted 3-loop tadpole

twisted tadpole

I Summing factor

S(V) — S(V+ 1) : 4(v=1)(v=7/4)

v—2)2v(v—1/2)(v—11/4)

J4(V+1)ZMJ4(V)+R(V)

v=2)2v(v—1/2)(v—11/4)
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Twisted 3-loop tadpole

twisted tadpole

I Summing factor

S(V) — S(V+ 1) : 4(v=1)(v=7/4)

v—2)2v(v—1/2)(v—11/4)

J4(V+1)ZMJ4(V)+R(V)

v=2)2v(v—1/2)(v—11/4)

S(v+D)Js(v+1)=8S(V)Js (V) +S(V+1)R(V)
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Twisted 3-loop tadpole

twisted tadpole

I Summing factor

S(V) — S(V+ 1) : 4(v=1)(v=7/4)

v—2)2v(v—1/2)(v—11/4)

J4(V+1)ZMJ4(V)+R(V)

v=2)2v(v—1/2)(v—11/4)

SWJs(v)=0w(z)— iS(v+1-|—k)R(v+k)
k=0
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Twisted 3-loop tadpole

twisted tadpole

I Summing factor

S(v)= S(v+1)

V

v 1)(v=7/4)
(v—1/2)(v—11/4)

T(v—2)21(v

{ 4Vrv 1 (v—1/4) )}*1

I(v-1/2)(v—-11/4

J4 (V + 1) — 4(v=1)(v=7/4)

(v=2)2v(v—1/2)(v—11/4)

S(V)Ja(v)=w(z)— iS(v

k=0

Jy (V) +R (V)

+1+k)R(V+k)
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Twisted 3-loop tadpole

twisted tadpole

I Summing factor

S(v)= S(v+1)

V

v 1)(v=7/4)
(v—1/2)(v—11/4)

T(v—2)21(v

{ 4Vrv 1 (v—1/4) )}*1

I(v-1/2)(v—-11/4

J (V+1) (v 1)(v=7/4)

(v=2)2v(v— 1/2)v 11/4)

J4(V)+R(v)

SW)J4(v)=w(z) - ZS(V+1+k)R(v+k)

k=0

16 18 20 22 24
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Twisted 3-loop tadpole

twisted tadpole

I Summing factor

S(v)=S(v+1) Gl i
o v -1 .2
V - {Fv 2421"Fv 1v 1‘;2)7/(4\3 11/4)} sin TL'(V—2)

Jy(v+1)= o (v v1>1v/2)7/v4>11/4)14(v)+R(v)
S(v)Ja(v) = —ZS(V+1+k)R(v+k)
k=0

16 1.8 20 22 24
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Example

Twisted 3-loop tadpole

twisted tadpole . s
I Summing factor

S(v)=S(v+1)

4VT(v—DI(v=7/4)

4(v=1)(v=7/4)
(v=2)2v(v—1/2)(v—11/4)

V—rtico

1S(v)J (V)]

S(v) = {r(vfz)zr(v)l“(v—l/z)l"(vf
~ |S(v)I(3v)|—0

1.
5 ) sin’ (v —2)

J4 (V+ 1) — ( 4(v=1)(v=7/4)

v=2)2v(v—1/2)(v—11/4)

Jy(V)+R(V)
SWI (V)=o) — Y SV+1+kR(V k)
k=0

16 1.8 20 22 24

DRA Method



Example
Twisted 3-loop tadpole

twisted tadpole

I Summing factor

S(v) 5‘(\/4_])%"7/4

(v—1/2)(v—11/4)

. v -1 2
(v) = {Fv 2421"Fv 1v 1‘;27/(4\3 11/4)} sin" (v —2)

Conclusion: o (z) has nosingularities and falls off at z — 0,00 — © =0

SWLV) =0~ Y SV+1+RHRV K
k=0
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Example

Twisted 3-loop tadpole

In 12 sec. we obtain with 103-digits precision

J4(2—¢€) =0.11370563888010938116553575708364686384899973128....
+0.4325720853315840790082719148377619761106501243 ... €

+ 1.234780884637645769680928205178898681790397505 . . . £2
+2.64178560642366133079922615872495919558223873 ... . €
+4.97722179963484562814624858135304407080163679 ... £*
+8.2769473303454444800233461011189107927706402 ... €% + ...



Example

Twisted 3-loop tadpole

Using PSLQ we can convert it to nice analytic form

J4(2—s)=%—21n2
2
+(28 5 a2 3m2)e
8 2
20a1l3 | 4 164 5o 5tta 45¢; 1517t 9n® 69 ,
+( 2 +aj 3 aj +6ay 2 1lay +24ay 3 730 3 +2 £
40 294% 2
+ (212 4 B0l _da | P iﬂza?—Sa?Jrgﬂ:zu%JrZZu%er—157[ 9 150, +104a,
2 5 3 3 120
2 2
+96a5_63n §3+111§3_651c5_367n4+7i_@ &
32 8 16 1440 8 2
+...¢*
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Solution of DRR for Multimasters

Specific solution of inhomogeneous equation

General form of DRR(Multimasters)

J(v+1)=C(v)J(v)+R(v),
functions.

Now J and R are columns, C is a square matrix with elements being rational

DRA Method
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Solution of DRR for Multimasters

Specific solution of inhomogeneous equation

General form of DRR(Multimasters)

J(v+1)=C(v)J(v)+R(v),
functions.

Now J and R are columns, C is a square matrix with elements being rational

Specific solution of inhomogeneous equation: no problem
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Il
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C(v—-D)R(v—k)
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=
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|
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—

T
=
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Il
o

CHv+DR(V+k)

DRA Method
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Solution of DRR for Multimasters

General solution of the homogeneous equation

Homogeneous equation

Now a twisted system of equations

P+ =CcWv)J(v)

DRA Method

DA



Solution of DRR for Multimasters

General solution of the homogeneous equation

Homogeneous equation

Now a twisted system of equations

1 (v+1)=C()I°(v)
Similar to the differential equations, one first-order difference equation can be
solved in a closed form, but the system can not.

DRA Method

DA



Solution of DRR for Multimasters

General solution of the homogeneous equation

Homogeneous equation
Now a twisted system of equations

P+ =CcWv)J(v)

Similar to the differential equations, one first-order difference equation can be
solved in a closed form, but the system can not.

Hope

Maybe we can reduce the system to triangular form by passing to

J(v)=TW)I(v),

where T (V) is some smartly chosen rational matrix? Whether/how can we
check this?

=} F = E DA
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Solution of DRR for Multimasters

General solution of the homogeneous equation

Maybe we can reduce the system to triangular form by passing to

Jv)=
Whether/how can we check this?

T(V)J(v),

DRA Method
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Solution of DRR for Multimasters

General solution of the homogeneous equation

Maybe we can reduce the system to triangular form by passing to

J(v)=TW)I(v),

Whether/how can we check this?

There is a tool!

Petkovsek ‘s algorithm Hyper (Petkovsek et al. 1996) checks whether a given
n-th order difference equation (n>1) has a hypergeometric solution, i.e., a

solution f (V) such that © S)Zj)l) is a rational function.
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Solution of DRR for Multimasters

General solution of the homogeneous equation

Maybe we can reduce the system to triangular form by passing to
Jv)=T(v)J(v),
Whether/how can we check this?

There is a tool!

Petkovsek ‘s algorithm Hyper (Petkovsek et al. 1996) checks whether a given
n-th order difference equation (n>1) has a hypergeometric solution, i.e., a
solution f (V) such that © S)&r)l) is a rational function.

Hyper tells us that the equations for multimaster are really twisted = No
general way to obtain the solution.
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Solution of DRR for Multimasters

General solution of the homogeneous equation

Guessing the solution

If we would not know the origin of the homogeneous equation, we would fail.
Fortunately, we can use some additional methods to guess the solution (Lee

and Smirnov, to be published). The result has the form of hypergeometric
sums.

Is there a way to check the guess?

@ Numerically

@ Using Zeiberger*s algorithm Zeil (Petkovsek et al. 1996)

u]
@
1
nl
it

DA

o — R TR



Solution of DRR for Multimasters

Construction of the summing factor

Sums in the denominators

If we know a fundamental matrix J° (v) of the homogeneous solutions, the
summing factor is

s(v)=[1'w)] "

Sums in the denominators complicate analysis of the singularities.

DRA Method

DA



Solution of DRR for Multimasters

Construction of the summing factor

Sums in the denominators

If we know a fundamental matrix J° (v) of the homogeneous solutions, the

summing factor is S(v) [JO( )}_1
V)= 1% .

Sums in the denominators complicate analysis of the singularities.

Observation

Pm] =0 P W)
|70 (v)| satisfies
30 (v+1)| = [C ()| [3°(v)|

Solution of this equation is the product of I'-functions (as for the case of
simple master). Arbitrary periodic factor is not a problem.

o =) = = £ A
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Fixing ® for multimasters

In real life

e Find summing factor S (v), using some additional techniques.

@ Use FIESTA to determine the singularities of J (V) on the basic stripe.

e Try to multiply S (v) from the left by some periodic matrices,
constructed of sin (7 (v — vp)), to make S (v) J (v) regular on b.s.

@ Don’t go too far in that because sin (7 (v — vp)) makes v — +ico
behaviour of S (v)J(v) worse. If S(v)J (V) vanishes at some points,
divide by sin (7 (v — vp)) to improve behaviour at infinity. Find also
“hidden” zeros — the points where |S(v)| =0, but S(v) # 0.

e If it was not possible to cancel all singularities of J (v) on the basic
stripe, use Mellin-Barnes (or other techniques) to fix the singular
coefficients of S (V) J (V).

o Finally, use Mittag-Leffler’s&Liouville’s theorems to fix @ (z).

=} F = E DA
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@ Finding DRR for masters: manually or automatically, using formulae
presented

IBP reduction of the right-hand side: FIRE and many private versions
Determining the position and order of singularities: FIESTA

Finding missing constants: Mellin-Barnes technique

Finding summing factor for multimasters: Mellin-Barnes technique
Checking summing factor for multimasters Zeil

DRA application&High-precision numerics: DRAMA is being developed

Expressing results in terms of conventional transcendental constants:
PSLQ
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Summary

@ DRA method is being very successful in the calculation of multiloop
integrals. Since the previous workshop CALCO9 it was successfully
applied to a number of problems:

o Calculation of master integrals for 3-loop onshell massless vertices.
o Calculation of master integrals for 3-loop onshell mass operator type
integrals.

e Calculation of master integrals for 4-loop QED-type tadpoles.
e Calculation of master integrals for 4-loop massless propagators.

@ The application of the DRA method to multimasters is being currently
developed: DRAMA in its early stage already successfully applied to the
masters for 3-loop static quark potential (work in progress with V.
Smirnov).

@ Future: The application of the DRA method to the problems with several
scales.
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