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Motivation

Main objects of interest:

I models of critical dynamics

I theory of turbulence

Our main goal is to perform numerical calculation of β-function
and anomalous dimensions for this models.

I ε-expansion

I dimensional regularization

I Euclidean space



Motivation. Why numerical calculations?

Models of critical dynamics1 (A,B,...,H) are nonrelativistic

dissipative models

∆(k , ω) ∝ 1

iω + νk2

Most models are calculated only at 2-loop order.

Simpliest model "A"is calculated at 3-loop order.

3-loop corrections → dilogarithm (Spence's integral)

4-loop corrections → a number of unsuccessfull attempts2

1see A.N.Vasil'ev The Field Theoretic Renormalization Group in Critical
Behaviour Theory and Stochastic Dynamics

2by A.N.Vasil'ev, S.E.Derkachov and J.Honkonen.



Motivation.

Solution: To develop a numerical approach that can be applied to a

wide range of models with minimal modi�cations

The main testing ground for our approch is model φ4

(D = 4− ε, Euclidean space)

I analitical results up to 5-loop order3 4

3Chetyrkin K.G, Kataev A.L., Tkachev F.V.,
Phys.Lett., B99, 147 (1981); B101,457(E) (1981)

4Kleinert H., Neu J., Shulte-Frohlinde V., Chetyrkin K.G., Larin S.A.,
Phys.Lett., B272,39 (1991); Erratum: B319, 545 (1993)



Theory without divergences

A common scheme used for calculations in the framework of

ε-expansion:

I calculation of renormalization constants Z (singular functions

containing poles on ε)

I calculation of anomalous dimensions (γ), β-function, �xed
point and other quantities using the obtained Z

(all poles on ε cancel each other)

γi = β∂g ln Zi

↙ ↘
e�ecively extract pole residues �nd representation for β and γ

on ε from diagrams where there are no poles on ε
↓ ↓

Sector decomposition Theory without divergences



Theory without divergences

We need

I to construct representation of β and γ through renormalized

Green functions

I to represent renormalized quantities as a uni�ed integrals

I No subtractions like �large�−�large� should arise in this

integrals

The key point for all this tasks is subtraction scheme.

We use subtraction scheme that can be termed �zero-momentum

subtraction at normalization point m = µ�

µ � renormalization mass



Subtraction scheme

Renormalized action for model φ4:

S = −1

2
(m2Z1 + p2Z2 + δm2)φ2 − 1

4!
gµεZ3φ

4 , (1)

To �x subtraction scheme we need to specify 4 normalization

conditions for renormalization constants Z1, Z2, Z3, and

parameter δm2 (shift of critical temperature):

ΓR
2 |p=0,m=µ= −µ2 , ∂p2ΓR

2 |p=0,m=µ= −1 , (2)

ΓR
4 |p=0,m=µ= −gµε , ΓR

2 |p=0,m=0= 0 . (3)

Compare to subtraction at zero momentum:

ΓR
2 |p=0 = −m2 , ∂p2ΓR

2 |p=0 = −1 , ΓR
4 |p=0 = −gµε

Contribution of counter terms that comes from renormalization

constants may be replaced by action of R-operation



R-operation

ΓR = RΓ = (1− K )R ′Γ, (4)

Where R ′ - incomplete R operation (eliminating divergences in

subgraphs)

1− K - eliminates remaining super�cial divergence

The choice of a particular operator K amounts to the choice of

subtraction scheme

KΓ4 = Γ4|p=0,m=µ , (5)

KΓ2 =

[
Γ2|m=0 +

m2

µ2
(Γ2|m=µ − Γ2|m=0)

]
p=0

+ p2∂p2Γ2|p=0,m=µ .

(6)

For quantities in which substitution m = µ is performed, operation

(6) becomes:

KΓ2|m=µ =
(
Γ2|p=0 + p2∂p2Γ2|p=0

)
|m=µ . (7)



Theory without divergences
What was planned:

I to construct representation of β and γ through renormalized

Green functions
I to represent renormalized quantities as a uni�ed integral

Combination of representation5

χR = Rχ =
∏

i

(1− Ki )χ,
6

and our subtraction scheme solves this problem

I No subtractions like �large�−�large� should arise in this

integrals
Using F (k)−

∑n
m=0

km

m! F
(m)|k=0 = 1

n!

∫ 1

0
da(1− a)n∂n+1

a F (ak)

R(χ)|m=µ =
∏

i

1

ni !

∫ 1

0

dai (1− ai )
ni∂ni+1

ai
χ({a}), 7 8

5O.I.Zav'yalov, Renormalized Quantum Field Theory, 1979,1990
6i enumerates subgraphs and diagram χ as a whole
7ai - a parameters that strech moments �owing into subgraph χi
8ni - subgraph dimension



Representation of β and γ through renormalized Green

functions

In our subtraction scheme renormalization group equations are the

same as in MS:(
µ∂µ + β∂g − γm2m2∂m2

)
ΓR

n = nγϕΓR
n , (8)

Usualy β and γi are calculated from Zi using:

β = −g(ε+ γg ), γi = −ε · g∂g ln Zi

1 + g∂g ln Zg
. (9)

We will calculate quantities (9) using RG-equations at

normalization point (p = 0, m = µ)



Representation of β and γ through renormalized Green functions.

RG-equations at normalization point

It is enough to choose the following set of Green functions:

Γ̄1 = −
(

Γ2 − Γ2|m=0

m2

) ∣∣∣
p=0

, Γ̄2 = −∂p2Γ2|p=0 , Γ̄4 =
Γ4|p=0

−gµ2ε
,

(10)

R Γ̄i |m=µ= 1 , Γ̄i (m, µ) ≡ Γ̄i (τ) , τ ≡ m2

µ2
, i = 1, 2, 4.

RG-equations have the following form:(
β∂g − (2 + γm2)τ∂τ − γi

)
Γ̄R

i = 0 , i = 1, 2, 4 . (11)

At normalization point (τ = 1):

(2 + γm2) Fi = γi , Fi ≡ ∂̂τ Γ̄R
i , i = 1, 2, 4 , (12)

∂̂τ ... ≡ −∂τ ... |τ=1 .



Representation of β and γ through renormalized Green functions.

(2 + γm2) Fi = γi , Fi ≡ ∂̂τ Γ̄R
i , i = 1, 2, 4

Solving this system:

γi =
2Fi

1 + F2 − F1
, i = 1, 2, 4. (13)

Fi are �nite quantities, but they are not suitable for calculations due to
complicated subtraction operation.

KΓ2 = Γ2 |p=0,m=0 +
m2

µ2
(Γ2 |p=0,m=µ −Γ2 |p=0,m=0)+p2·(∂p2Γ2) |p=0,m=µ

Thus we can't use representation

Rχ =
∏

i
1
ni !

∫ 1

0
dai (1− ai )

ni∂ni+1
ai

χ({a}),

More suitable quantities are fi = R(−m2∂m2 Γ̄i )|m=µ , for which
subtraction has the simple form:

(KΓ2) |m=µ= Γ2 |p=0,m=µ +p2 · (∂p2Γ2) |p=0,m=µ , (14)

and representation Rχ =
∏

i
1
ni !

∫ 1

0
dai (1− ai )

ni∂ni+1
ai

χ({a}), is possible



Representation of β and γ through renormalized Green functions.

It is possible to express quantities fi in terms of Fi

fi =
Fi

1− F1
, i = 2, 4 , (15)

and obtain representation:

γi =
2fi

1 + f2
, fi = R(−m2∂m2 Γ̄i )|m=µ , i = 2, 4 . (16)

this is desired representation of anomalous dimensions that satis�es our
requirements.
Although relation (15) looks very simple, it took much e�ort to prove it.

Thus,

I anomalous dimensions are calculated directly from diagrams of
1-irreducible functions

I the contribution of each diagram is presented in a form of

UV-�nite integral



Current results

We've calculated9 5-loop corrections for index η and ω (compared

to exact results10):

η = 0.0256566ε5 − 0.00832874ε4 + 0.018689988ε3 + 0.0(185)ε2

ηexact = 0.025656451ε5−0.008328770ε4+0.0186899862ε3+0.0(185)ε2

ω = 20.741ε5 − 5.23517ε4 + 1.618219ε3 − 0.(629)ε2 + ε

ωexact = 20.74984ε5 − 5.2351359ε4 + 1.61822067ε3 − 0.(629)ε2 + ε

9about 80 hours on 64-core cluster

10Chetyrkin K.G, Kataev A.L., Tkachev F.V.,
Phys.Lett., B99, 147 (1981); B101,457(E) (1981)
Kleinert H., Neu J., Shulte-Frohlinde V., Chetyrkin K.G., Larin S.A.,
Phys.Lett., B272,39 (1991); Erratum: B319, 545 (1993)



Technical part

Fast Sector Decomposition for
diagrams at zero external momenta



Fast Sector Decomposition

Why we don't use FIESTA?

I in our approach integrand has the following form:∫ 1

0
da1 . . . dan

∫ 1

0
du1 . . . dumδ(1−

m∑
i=1

ui )f (u1, . . . , um, a1, . . . , an)

which doesn't suites good to any known decomposition

strategy

I we don't need to extract poles on ε

I we'd like to take into account graph symmetries



Fast Sector Decomposition

Main idea:

analyse graph not integrand

I no symbolic calculations (symbolic calculations are very slow)

we construct sector decomposition for diagramm analysing it

as graph (not as expression).

(graph analysis can be written in a very e�cient way)

I do not calculate equal sectors

graph analisys easily allows one to �nd nontrivial equal sectors

using graph symmetries

less sectors ⇒ faster calculations ⇒ higher accuracy



Fast Sector Decomposition

To construct Feynman representation for graph we use

�conservation laws�

γ =
m−3ε

8
Γ(3ε/2) Γ3(2− ε/2)

∫ 1

0
du1...

∫ 1

0
du6

δ(1−
∑6

i=1 ui )

D2−ε/2 .

Conservation laws: (1, 2, 3), (1, 4, 6), (2, 4, 5), (3, 5, 6)

D = u1u2u3 + u1u2u4 + u1u2u5 + u1u2u6 + u1u3u4 + u1u3u5 + u1u3u6

+ u1u4u5 + u1u4u6 + u1u5u6 + u2u3u4 + u2u3u5 + u2u3u6

+ u2u4u5 + u2u4u6 + u2u5u6 + u3u4u5 + u3u4u6 + u3u5u6 + u4u5u6



Fast Sector Decomposition

To construct Feynman representation for graph we use

�conservation laws�

γ =
m−3ε

8
Γ(3ε/2) Γ3(2− ε/2)

∫ 1

0
du1...

∫ 1

0
du6

δ(1−
∑6

i=1 ui )

D2−ε/2 .

Conservation laws: (1, 2, 3), (1, 4, 6), (2, 4, 5), (3, 5, 6)

D = u1u2u3+ u1u2u4 + u1u2u5 + u1u2u6 + u1u3u4 + u1u3u5 + u1u3u6

+ u1u4u5+u1u4u6 + u1u5u6 + u2u3u4 + u2u3u5 + u2u3u6

u2u4u5 + u2u4u6 + u2u5u6 + u3u4u5 + u3u4u6+u3u5u6 + u4u5u6

Completly equivalent to 1- and 2- tree approach (but more intuitive)



Fast Sector Decomposition

Main task of Sector Decomposition is to remove integrable

divergences like ∫ 1

0
dx

∫ 1

0
dy

1

x + y

splitting on sectors (x < y and x > y) and transforming expression

to ∫ 1

0
dx

∫ x

0
dy

1

x + y
+

∫ 1

0
dy

∫ y

0
dx

1

x + y
=

=

∫ 1

0
dx̃

∫ 1

0
dy

1

1 + x̃
+

∫ 1

0
dx

∫ 1

0
dỹ

1

1 + ỹ



Fast Sector Decomposition

Conservation laws: (1, 2, 3), (1, 4, 6), (2, 4, 5), (3, 5, 6)



Fast Sector Decomposition

Conservation laws: (1, 2, 3), (1, 4, 6), (2, 4, 5), (3, 5, 6)

Total: 96 sectors, only 4 unique sectors 11

(1,2,4), (1,2,5), (1,2,6), (1,5,2)

11can be easily found using Nickel index
Nikel B., Meiron D. Baker G. Compilation of 2-pt. and 4-pt. graphs for
continous spin models. - University of Guelf Report,1977



Fast Sector Decomposition

Conservation laws: (1, 2, 3), (1, 4, 6), (2, 4, 5), (3, 5, 6)

Using symmetries we are able to calculate this diagramm 24x faster.



Fast Sector Decomposition

γ =
m−3ε

8
Γ(3ε/2) Γ3(2− ε/2)

∫ 1

0
du1...

∫ 1

0
du5

u1δ(1−
∑5

i=1 ui )

D2−ε/2 .

Conservation laws: (1, 2, 3), (1, 4, 5), (2, 3, 4, 5)

D = u1u2u3 + u1u2u4 + u1u2u5 + u1u3u4 + u1u3u5

+ u1u4u5 + u2u3u4 + u2u3u5 + u2u4u5 + u3u4u5



Fast Sector Decomposition

γ =
m−3ε

8
Γ(3ε/2) Γ3(2− ε/2)

∫ 1

0
du1...

∫ 1

0
du5

u1δ(1−
∑5

i=1 ui )

D2−ε/2 .

Conservation laws: (1, 2, 3), (1, 4, 5), (2, 3, 4, 5)

D = u1u2u3 + u1u2u4 + u1u2u5 + u1u3u4 + u1u3u5

u1u4u5 + u2u3u4 + u2u3u5 + u2u4u5 + u3u4u5



Fast Sector Decomposition

Conservation laws: (1, 2, 3), (1, 4, 5), (2, 3, 4, 5)



Fast Sector Decomposition

Conservation laws: (1, 2, 3), (1, 4, 5), (2, 3, 4, 5)

Total: 48 sectors, only 6 unique sectors

(1,2,4), (2,1,4), (2,3,4), (2,4,1), (2,4,3), (2,4,5)



Fast Sector Decomposition

Conservation laws: (1, 2, 3), (1, 4, 5), (2, 3, 4, 5)

Using symmetries we are able to calculate this diagramm 8x faster.



6 loop?

Decomposition time: 2 hours

Evaluation with accuracy 0.01%: 2 days on 48 core cluster

To calculate 6 loop corrections we need

I either to use realy huge cluster

I or to use combined calculation scheme

(evaluate as much diagramms as possible analiticaly using

master integrals and rest integrals evaluate using normalization

point scheme)



Thank you


