Multiloop calculations in normalization point scheme

L.Ts. Adzhemyan, G.D. Dovjenko, M.V. Kompaniets, S.V. Novikov

Department of Theoretical Physics, Saint Petersburg State University

$$
\text { July 24, } 2012
$$

Outline

- Motivation
- Theoretical background
- normalization point scheme
- free of divergences representation of RG-functions ("Theory without divergences")
- 5-loop results for ϕ^{4} model
- Technical details
- some ideas used to improve sector decomposition

Motivation

Main objects of interest:

- models of critical dynamics
- theory of turbulence

Our main goal is to perform numerical calculation of β-function and anomalous dimensions for this models.

- ϵ-expansion
- dimensional regularization
- Euclidean space

Motivation. Why numerical calculations?

Models of critical dynamics ${ }^{1}(\mathrm{~A}, \mathrm{~B}, \ldots, \mathrm{H})$ are nonrelativistic dissipative models

$$
\Delta(k, \omega) \propto \frac{1}{i \omega+\nu k^{2}}
$$

Most models are calculated only at 2-loop order.
Simpliest model "A"is calculated at 3-loop order.
3-loop corrections \rightarrow dilogarithm (Spence's integral)
4-loop corrections \rightarrow a number of unsuccessfull attempts ${ }^{2}$

[^0]
Motivation.

Solution: To develop a numerical approach that can be applied to a wide range of models with minimal modifications

The main testing ground for our approch is model ϕ^{4}
($D=4-\epsilon$, Euclidean space)

- analitical results up to 5-loop order ${ }^{3} 4$

[^1]
Theory without divergences

A common scheme used for calculations in the framework of ε-expansion:

- calculation of renormalization constants Z (singular functions containing poles on ε)
- calculation of anomalous dimensions (γ), β-function, fixed point and other quantities using the obtained Z (all poles on ε cancel each other)

$$
\gamma_{i}=\beta \partial_{g} \ln Z_{i}
$$

Theory without divergences

We need

- to construct representation of β and γ through renormalized Green functions
- to represent renormalized quantities as a unified integrals
- No subtractions like "large" - "large" should arise in this integrals

The key point for all this tasks is subtraction scheme.
We use subtraction scheme that can be termed "zero-momentum subtraction at normalization point $m=\mu$ "
μ - renormalization mass

Subtraction scheme

Renormalized action for model ϕ^{4} :

$$
\begin{equation*}
S=-\frac{1}{2}\left(m^{2} Z_{1}+p^{2} Z_{2}+\delta m^{2}\right) \phi^{2}-\frac{1}{4!} g \mu^{\varepsilon} Z_{3} \phi^{4} \tag{1}
\end{equation*}
$$

To fix subtraction scheme we need to specify 4 normalization conditions for renormalization constants Z_{1}, Z_{2}, Z_{3}, and parameter δm^{2} (shift of critical temperature):

$$
\begin{gather*}
\left.\Gamma_{2}^{R}\right|_{p=0, m=\mu}=-\mu^{2},\left.\quad \partial_{p^{2}} \Gamma_{2}^{R}\right|_{p=0, m=\mu}=-1 \tag{2}\\
\left.\Gamma_{4}^{R}\right|_{p=0, m=\mu}=-g \mu^{\varepsilon},\left.\quad \Gamma_{2}^{R}\right|_{p=0, m=0}=0 . \tag{3}
\end{gather*}
$$

Compare to subtraction at zero momentum:

$$
\left.\Gamma_{2}^{R}\right|_{p=0}=-m^{2},\left.\quad \partial_{p^{2}} \Gamma_{2}^{R}\right|_{p=0}=-1,\left.\quad \Gamma_{4}^{R}\right|_{p=0}=-g \mu^{\epsilon}
$$

Contribution of counter terms that comes from renormalization constants may be replaced by action of R-operation

R-operation

$$
\begin{equation*}
\Gamma^{R}=R \Gamma=(1-K) R^{\prime} \Gamma \tag{4}
\end{equation*}
$$

Where R^{\prime} - incomplete R operation (eliminating divergences in subgraphs)
$1-K$ - eliminates remaining superficial divergence
The choice of a particular operator K amounts to the choice of subtraction scheme

$$
\begin{equation*}
K \Gamma_{4}=\left.\Gamma_{4}\right|_{p=0, m=\mu}, \tag{5}
\end{equation*}
$$

$K \Gamma_{2}=\left[\left.\Gamma_{2}\right|_{m=0}+\frac{m^{2}}{\mu^{2}}\left(\left.\Gamma_{2}\right|_{m=\mu}-\left.\Gamma_{2}\right|_{m=0}\right)\right]_{p=0}+\left.p^{2} \partial_{p^{2}} \Gamma_{2}\right|_{p=0, m=\mu}$.
For quantities in which substitution $m=\mu$ is performed, operation (6) becomes:

$$
\begin{equation*}
\left.K \Gamma_{2}\right|_{m=\mu}=\left.\left(\left.\Gamma_{2}\right|_{p=0}+\left.p^{2} \partial_{p^{2}} \Gamma_{2}\right|_{p=0}\right)\right|_{m=\mu} \tag{7}
\end{equation*}
$$

Theory without divergences

What was planned:

- to construct representation of β and γ through renormalized Green functions
- to represent renormalized quantities as a unified integral Combination of representation ${ }^{5}$

$$
\begin{equation*}
\chi^{R}=R \chi=\prod_{i}\left(1-K_{i}\right) \chi \tag{6}
\end{equation*}
$$

and our subtraction scheme solves this problem

- No subtractions like "large" - "large" should arise in this integrals
Using $F(k)-\left.\sum_{m=0}^{n} \frac{k^{m}}{m!} F^{(m)}\right|_{k=0}=\frac{1}{n!} \int_{0}^{1} d a(1-a)^{n} \partial_{a}^{n+1} F(a k)$

$$
\left.R(\chi)\right|_{m=\mu}=\prod_{i} \frac{1}{n_{i}!} \int_{0}^{1} d a_{i}\left(1-a_{i}\right)^{n_{i}} \partial_{a_{i}}^{n_{i}+1} \chi(\{a\}), \quad 78
$$

[^2]
Representation of β and γ through renormalized Green functions

In our subtraction scheme renormalization group equations are the same as in MS:

$$
\begin{equation*}
\left(\mu \partial_{\mu}+\beta \partial_{g}-\gamma_{m^{2}} m^{2} \partial_{m^{2}}\right) \Gamma_{n}^{R}=n \gamma_{\varphi} \Gamma_{n}^{R} \tag{8}
\end{equation*}
$$

Usualy β and γ_{i} are calculated from Z_{i} using:

$$
\begin{equation*}
\beta=-g\left(\varepsilon+\gamma_{g}\right), \quad \gamma_{i}=-\varepsilon \cdot \frac{g \partial_{g} \ln Z_{i}}{1+g \partial_{g} \ln Z_{g}} \tag{9}
\end{equation*}
$$

We will calculate quantities (9) using RG-equations at normalization point ($p=0, m=\mu$)

Representation of β and γ through renormalized Green functions.
RG-equations at normalization point
It is enough to choose the following set of Green functions:

$$
\begin{gather*}
\bar{\Gamma}_{1}=-\left.\left(\frac{\Gamma_{2}-\left.\Gamma_{2}\right|_{m=0}}{m^{2}}\right)\right|_{p=0}, \bar{\Gamma}_{2}=-\left.\partial_{p^{2}} \Gamma_{2}\right|_{p=0}, \bar{\Gamma}_{4}=\frac{\left.\Gamma_{4}\right|_{p=0}}{-g \mu^{2 \varepsilon}} \tag{10}\\
\left.R \bar{\Gamma}_{i}\right|_{m=\mu}=1, \quad \bar{\Gamma}_{i}(m, \mu) \equiv \bar{\Gamma}_{i}(\tau), \quad \tau \equiv \frac{m^{2}}{\mu^{2}}, i=1,2,4
\end{gather*}
$$

RG-equations have the following form:

$$
\begin{equation*}
\left(\beta \partial_{g}-\left(2+\gamma_{m^{2}}\right) \tau \partial_{\tau}-\gamma_{i}\right) \bar{\Gamma}_{i}^{R}=0, \quad i=1,2,4 \tag{11}
\end{equation*}
$$

At normalization point $(\tau=1)$:

$$
\begin{gather*}
\left(2+\gamma_{m^{2}}\right) F_{i}=\gamma_{i}, \quad F_{i} \equiv \hat{\partial}_{\tau} \bar{\Gamma}_{i}^{R}, \quad i=1,2,4, \tag{12}\\
\hat{\partial}_{\tau} \ldots \equiv-\left.\partial_{\tau} \cdots\right|_{\tau=1} .
\end{gather*}
$$

Representation of β and γ through renormalized Green functions.

$$
\left(2+\gamma_{m^{2}}\right) F_{i}=\gamma_{i}, \quad F_{i} \equiv \hat{\partial}_{\tau} \bar{\Gamma}_{i}^{R}, \quad i=1,2,4
$$

Solving this system:

$$
\begin{equation*}
\gamma_{i}=\frac{2 F_{i}}{1+F_{2}-F_{1}}, \quad i=1,2,4 \tag{13}
\end{equation*}
$$

F_{i} are finite quantities, but they are not suitable for calculations due to complicated subtraction operation.
$K \Gamma_{2}=\left.\Gamma_{2}\right|_{p=0, m=0}+\frac{m^{2}}{\mu^{2}}\left(\left.\Gamma_{2}\right|_{p=0, m=\mu}-\left.\Gamma_{2}\right|_{p=0, m=0}\right)+\left.p^{2} \cdot\left(\partial_{p^{2}} \Gamma_{2}\right)\right|_{p=0, m=\mu}$
Thus we can't use representation
$R \chi=\prod_{i} \frac{1}{n_{i}!} \int_{0}^{1} d a_{i}\left(1-a_{i}\right)^{n_{i}} \partial_{a_{i}}^{n_{i}+1} \chi(\{a\})$,

More suitable quantities are $f_{i}=\left.R\left(-m^{2} \partial_{m^{2}} \bar{\Gamma}_{i}\right)\right|_{m=\mu}$, for which subtraction has the simple form:

$$
\begin{equation*}
\left.\left(K \Gamma_{2}\right)\right|_{m=\mu}=\left.\Gamma_{2}\right|_{p=0, m=\mu}+\left.p^{2} \cdot\left(\partial_{p^{2}} \Gamma_{2}\right)\right|_{p=0, m=\mu}, \tag{14}
\end{equation*}
$$

and representation $R \chi=\prod_{i} \frac{1}{n_{i}!} \int_{0}^{1} d a_{i}\left(1-a_{i}\right)^{n_{i}} \partial_{a_{i}}^{n_{i}+1} \chi(\{a\})$, is possible

Representation of β and γ through renormalized Green functions.

It is possible to express quantities f_{i} in terms of F_{i}

$$
\begin{equation*}
f_{i}=\frac{F_{i}}{1-F_{1}}, \quad i=2,4, \tag{15}
\end{equation*}
$$

and obtain representation:

$$
\begin{equation*}
\gamma_{i}=\frac{2 f_{i}}{1+f_{2}}, \quad f_{i}=\left.R\left(-m^{2} \partial_{m^{2}} \bar{\tau}_{i}\right)\right|_{m=\mu}, \quad i=2,4 . \tag{16}
\end{equation*}
$$

this is desired representation of anomalous dimensions that satisfies our requirements.
Although relation (15) looks very simple, it took much effort to prove it.
Thus,

- anomalous dimensions are calculated directly from diagrams of 1-irreducible functions
- the contribution of each diagram is presented in a form of UV-finite integral

Current results

We've calculated ${ }^{9}$ 5-loop corrections for index η and ω (compared to exact results ${ }^{10}$):

$$
\begin{gathered}
\eta=0.0256566 \epsilon^{5}-0.00832874 \epsilon^{4}+0.018689988 \epsilon^{3}+0.0(185) \epsilon^{2} \\
\eta_{\text {exact }}=0.025656451 \epsilon^{5}-0.008328770 \epsilon^{4}+0.0186899862 \epsilon^{3}+0.0(185) \epsilon^{2} \\
\omega=20.741 \epsilon^{5}-5.23517 \epsilon^{4}+1.618219 \epsilon^{3}-0 .(629) \epsilon^{2}+\epsilon \\
\omega_{\text {exact }}=20.74984 \epsilon^{5}-5.2351359 \epsilon^{4}+1.61822067 \epsilon^{3}-0 .(629) \epsilon^{2}+\epsilon
\end{gathered}
$$

${ }^{9}$ about 80 hours on 64 -core cluster
${ }^{10}$ Chetyrkin K.G, Kataev A.L., Tkachev F.V., Phys.Lett., B99, 147 (1981); B101,457(E) (1981)
Kleinert H., Neu J., Shulte-Frohlinde V., Chetyrkin K.G., Larin S.A., Phys.Lett., B272,39 (1991); Erratum: B319, 545 (1993)

Technical part

Fast Sector Decomposition for diagrams at zero external momenta

Fast Sector Decomposition

Why we don't use FIESTA?

- in our approach integrand has the following form:

$$
\int_{0}^{1} d a_{1} \ldots d a_{n} \int_{0}^{1} d u_{1} \ldots d u_{m} \delta\left(1-\sum_{i=1}^{m} u_{i}\right) f\left(u_{1}, \ldots, u_{m}, a_{1}, \ldots, a_{n}\right)
$$

which doesn't suites good to any known decomposition strategy

- we don't need to extract poles on ϵ
- we'd like to take into account graph symmetries

Fast Sector Decomposition

Main idea:
analyse graph not integrand

- no symbolic calculations (symbolic calculations are very slow) we construct sector decomposition for diagramm analysing it as graph (not as expression).
(graph analysis can be written in a very efficient way)
- do not calculate equal sectors
graph analisys easily allows one to find nontrivial equal sectors using graph symmetries
less sectors \Rightarrow faster calculations \Rightarrow higher accuracy

Fast Sector Decomposition

To construct Feynman representation for graph we use "conservation laws"

$$
\gamma=\frac{m^{-3 \varepsilon}}{8} \Gamma(3 \varepsilon / 2) \Gamma^{3}(2-\varepsilon / 2) \int_{0}^{1} d u_{1} \ldots \int_{0}^{1} d u_{6} \frac{\delta\left(1-\sum_{i=1}^{6} u_{i}\right)}{\mathcal{D}^{2-\varepsilon / 2}}
$$

Conservation laws: $(1,2,3),(1,4,6),(2,4,5),(3,5,6)$

$$
\begin{aligned}
\mathcal{D} & =u_{1} u_{2} u_{3}+u_{1} u_{2} u_{4}+u_{1} u_{2} u_{5}+u_{1} u_{2} u_{6}+u_{1} u_{3} u_{4}+u_{1} u_{3} u_{5}+u_{1} u_{3} u_{6} \\
& +u_{1} u_{4} u_{5}+u_{1} u_{4} u_{6}+u_{1} u_{5} u_{6}+u_{2} u_{3} u_{4}+u_{2} u_{3} u_{5}+u_{2} u_{3} u_{6} \\
& +u_{2} u_{4} u_{5}+u_{2} u_{4} u_{6}+u_{2} u_{5} u_{6}+u_{3} u_{4} u_{5}+u_{3} u_{4} u_{6}+u_{3} u_{5} u_{6}+u_{4} u_{5} u_{6}
\end{aligned}
$$

Fast Sector Decomposition

To construct Feynman representation for graph we use "conservation laws"

$$
\gamma=\frac{m^{-3 \varepsilon}}{8} \Gamma(3 \varepsilon / 2) \Gamma^{3}(2-\varepsilon / 2) \int_{0}^{1} d u_{1} \ldots \int_{0}^{1} d u_{6} \frac{\delta\left(1-\sum_{i=1}^{6} u_{i}\right)}{\mathcal{D}^{2-\varepsilon / 2}}
$$

Conservation laws: $(1,2,3),(1,4,6),(2,4,5),(3,5,6)$

$$
\begin{array}{rcc}
\mathcal{D}= & u_{1} u_{2} u_{4}+u_{1} u_{2} u_{5}+u_{1} u_{2} u_{6}+u_{1} u_{3} u_{4}+u_{1} u_{3} u_{5}+u_{1} u_{3} u_{6} \\
& +u_{1} u_{4} u_{5} & +u_{1} u_{5} u_{6}+u_{2} u_{3} u_{4}+u_{2} u_{3} u_{5}+u_{2} u_{3} u_{6} \\
& +u_{2} u_{4} u_{6}+u_{2} u_{5} u_{6}+u_{3} u_{4} u_{5}+u_{3} u_{4} u_{6} & +u_{4} u_{5} u_{6}
\end{array}
$$

Completly equivalent to 1- and 2- tree approach (but more intuitive)

Fast Sector Decomposition

Main task of Sector Decomposition is to remove integrable divergences like

$$
\int_{0}^{1} d x \int_{0}^{1} d y \frac{1}{x+y}
$$

splitting on sectors ($x<y$ and $x>y$) and transforming expression to

$$
\begin{aligned}
& \int_{0}^{1} d x \int_{0}^{x} d y \frac{1}{x+y}+\int_{0}^{1} d y \int_{0}^{y} d x \frac{1}{x+y}= \\
& =\int_{0}^{1} d \tilde{x} \int_{0}^{1} d y \frac{1}{1+\tilde{x}}+\int_{0}^{1} d x \int_{0}^{1} d \tilde{y} \frac{1}{1+\tilde{y}}
\end{aligned}
$$

Fast Sector Decomposition

Conservation laws: $(1,2,3),(1,4,6),(2,4,5),(3,5,6)$

Fast Sector Decomposition

Conservation laws: $(1,2,3),(1,4,6),(2,4,5),(3,5,6)$

Total: 96 sectors, only 4 unique sectors ${ }^{11}$ $(1,2,4),(1,2,5),(1,2,6),(1,5,2)$
${ }^{11}$ can be easily found using Nickel index
Nikel B., Meiron D. Baker G. Compilation of 2-pt. and 4-pt. graphs for continous spin models. - University of Guelf Report,1977

Fast Sector Decomposition

Conservation laws: $(1,2,3),(1,4,6),(2,4,5),(3,5,6)$

Using symmetries we are able to calculate this diagramm $24 x$ faster.

Fast Sector Decomposition

$\gamma=\frac{m^{-3 \varepsilon}}{8} \Gamma(3 \varepsilon / 2) \Gamma^{3}(2-\varepsilon / 2) \int_{0}^{1} d u_{1} \ldots \int_{0}^{1} d u_{5} \frac{u_{1} \delta\left(1-\sum_{i=1}^{5} u_{i}\right)}{\mathcal{D}^{2-\varepsilon / 2}}$.

Conservation laws: $(1,2,3),(1,4,5),(2,3,4,5)$

$$
\begin{aligned}
\mathcal{D} & =u_{1} u_{2} u_{3}+u_{1} u_{2} u_{4}+u_{1} u_{2} u_{5}+u_{1} u_{3} u_{4}+u_{1} u_{3} u_{5} \\
& +u_{1} u_{4} u_{5}+u_{2} u_{3} u_{4}+u_{2} u_{3} u_{5}+u_{2} u_{4} u_{5}+u_{3} u_{4} u_{5}
\end{aligned}
$$

Fast Sector Decomposition

$\gamma=\frac{m^{-3 \varepsilon}}{8} \Gamma(3 \varepsilon / 2) \Gamma^{3}(2-\varepsilon / 2) \int_{0}^{1} d u_{1} \ldots \int_{0}^{1} d u_{5} \frac{u_{1} \delta\left(1-\sum_{i=1}^{5} u_{i}\right)}{\mathcal{D}^{2-\varepsilon / 2}}$.

Conservation laws: $(1,2,3),(1,4,5),(2,3,4,5)$

$$
\begin{aligned}
\mathcal{D}= & +u_{1} u_{2} u_{4}+u_{1} u_{2} u_{5}+u_{1} u_{3} u_{4}+u_{1} u_{3} u_{5} \\
& +u_{2} u_{3} u_{4}+u_{2} u_{3} u_{5}+u_{2} u_{4} u_{5}+u_{3} u_{4} u_{5}
\end{aligned}
$$

Fast Sector Decomposition

Conservation laws: $(1,2,3),(1,4,5),(2,3,4,5)$

Fast Sector Decomposition

Conservation laws: $(1,2,3),(1,4,5),(2,3,4,5)$

Total: 48 sectors, only 6 unique sectors
$(1,2,4),(2,1,4),(2,3,4),(2,4,1),(2,4,3),(2,4,5)$

Fast Sector Decomposition

Conservation laws: $(1,2,3),(1,4,5),(2,3,4,5)$

Using symmetries we are able to calculate this diagramm $8 x$ faster.

6 loop?

Decomposition time: 2 hours
Evaluation with accuracy 0.01% : 2 days on 48 core cluster

To calculate 6 loop corrections we need

- either to use realy huge cluster
- or to use combined calculation scheme (evaluate as much diagramms as possible analiticaly using master integrals and rest integrals evaluate using normalization point scheme)

Thank you

[^0]: ${ }^{1}$ see A.N.Vasil'ev The Field Theoretic Renormalization Group in Critical Behaviour Theory and Stochastic Dynamics
 ${ }^{2}$ by A.N.Vasil'ev, S.E.Derkachov and J.Honkonen.

[^1]: ${ }^{3}$ Chetyrkin K. G, Kataev A.L., Tkachev F.V.,
 Phys.Lett., B99, 147 (1981); B101,457(E) (1981)
 ${ }^{4}$ Kleinert H., Neu J., Shulte-Frohlinde V., Chetyrkin K.G., Larin S.A., Phys.Lett., B272,39 (1991); Erratum: B319, 545 (1993),

[^2]: ${ }^{5}$ O.I.Zav'yalov, Renormalized Quantum Field Theory, 1979,1990
 ${ }^{6} i$ enumerates subgraphs and diagram χ as a whole
 ${ }^{7} a_{i}$ - a parameters that strech moments flowing into subgraph χ_{i}
 ${ }^{8} n_{i}$ - subgraph dimension

