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Outline  

 - Introduction & Motivation	

	

 - QCD-asymptotics at high energies: GLAPD and BFKL	

	

-  GLAPD- and BFKL- evolutions	

	

 - Collinear factorization and kT-factorization	

	

 - Search for BFKL-effects at HERA, LEP, Tevatron and LHC	

	

 - Summary	
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LHC physics: major goals   
 - Search for new physics beyond the SM!
!
 - Search for Higgs boson of the SM!
!
 - Precision measurements of SM parameters at new energy domain!
!
 - Search for new dynamics of SM at new energy domain  !
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High-energy QCD asymptotics:  
GLAPD and BFKL 

s=(p1+p2)2              	

t=(p1-p3)2                 Q2=-t	

Scattering in the Standard Model (QCD) at high energies:	

Large logarithms: aS log(s), aS log(Q2)	

	

Bjorken limit (large-angle scattering): 	

s ~ Q2 >> m2	

Q2/s = x ~ 1	

Gribov-Lipatov-Altarelli-Parisi-Dokshitzer (GLAPD): 	

 (aS log(Q2))n resummation	

Inclusive cross section ~ 1/Q4	

 	

Regge-Gribov limit (small-angle scattering): 	

s>>Q2 >> m2	

Q2/s = x a 0	

Balitsky-Fadin-Kuraev-Lipatov-(BFKL): 	

(aS log(s))n resummation	

Total cross section ~ s(aР-1)	


aР – Pomeron intercept              data fit: aР = 1.1	
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Introduction 

Bjorken limit (GLAPD): 	

s ~ Q2 >> m2	

Q2/s = x ~ 1	


Large-angle (large-x) scattering	

  	

 	


Regge-Gribov limit (BFKL): 
s>>Q2 >> m2	

Q2/s = x -> 0	


Small-angle (small-x) scattering	
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 Chronicles of GLAPD 

V.N. Gribov & L.N. Lipatov (1971-72) parton model in QED	

L.N. Lipatov (1974) evolution equation for parton model  	


G. Аltarelli  & G. Parisi (1976-77)  evolution for QCD	

Yu.L. Dokshitzer (1977)  evolution equation for QCD	


Leading order approximation (LO) GLAPD	

	

	


GLAPD equation  <-> RG equation 	

	

	


 Furmanski, Petronzio, Curci 	

Bardeen, Buras, Muta et el.	


Indurain, Lopez, et al.  	

(1977 - 1980s)	


 NLO: 	

anomalous dimensions	

coefficient functions 	
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 GLAPD at glance 

	

Example: e+e- -> q qbar g in perturbative QCD	


	


e+e– → q qbar	


“quark charge squared”	


Eg/Eg,max	
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 GLAPD at glance: collinear limit 

Uniiversal:	

	


GLAPD kernels	

Splitting functions:	
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 GLAPD at glance: resolvable partons 

Resolvable partons at higher scales:	

collinear parton pair <-> parton	


	


Resolvable emission:	

	

	

	

	

	

	


Virtual + unresolvable emmssion:	
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 GLAPD at glance: evolution equation 

Probability of emission between           and                                :	
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 Chronicles of BFKL 
V.S. Fadin, E.A. Kuraev & L.N. Lipatov, Phys. Lett. (1975) intercept: aР=1.5	


L.N. Lipatov, ЯФ (1976) vector boson reggezation 	

E.А. Kuraev, L.N. Lipatov, V.S. Fadin, ZhETP (1976-77) BFKL equation SU(2)	


I.I. Balitsky, L.N. Lipatov, Yad. Fiz. (1978) BFKL-Pomeron in QCD	

Leading order approximation (LO) BFKL	


Cross section: σ0 (S/S0) (aP-1)     aP = 1 + C aS ≈	 1.5 	

	

	


 L.V. Gribov, E.M. Levin & M. G. Ryskin, Phys. Rep. (1983) small-х physics:	

Rise of parton distribution functions and their saturation (unitarization) 	


	

L.N. Lipatov (1989) graviton reggezation	


	

 L.N. Lipatov (1986) Pomeron at t < 0 and 2D-symmetries	


 	

L.N. Lipatov (93), L.D. Faddeev & G.P. Korchemsky (94)  	


QCD at high energies and large Nc: 2D-integrable system	

	


L. McLerran, R. Venugopalan,  	

A.  Kovner, A. Leonidov,  J. Maria, H. Weigenert (1996-99)	


Strong color charge: nonperturbative version of BFKL (A>>1: x<<1)	

color glass condensate	
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Chronicles of BFKL: our time 

V.S. Fadin & L.N. Lipatov (89-98) 	

C.Camici & M. Ciafaloni (96-98) 	


next-to-leading order approximation  (NLO) BFKL 	

MS-renormalization scheme: large corrections	


	

 S.J. Brodsky, V.S. Fadin, VK, L.N. Lipatov, G.B. Pivovarov (98-99)	


D. Colferai, M. Ciafaloni, & G. Salam (99)	

NLO BFKL: resummation of running coupling aS	


Pomeron intercept: aР=1.2 - 1.3	

Cross section: σ0 (S/S0) (aP-1)     aP = 1 + C aS 	


	

	


L.N. Lipatov, А.V. Кotikov et al. (2001-06)	

SUSY N=4  BFKL-Pomeron	


Anamalous dimensions: test of AdS/CFT-conjecture	
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Interesting BFKL features  	

- BFKL equation: quantization of renormalization group	

        Euler-Lagrange equation   n GLAPD (RG) equation	


 Schroedinger equation  n BFKL equation	

L. Lipatov (86)	


	

Effective action with Reggeons: L. Lipatov (94-97)	


	

Effective Feynman Rules: 	


L. Lipatov, E. Kuraev, I. Cherednikov, E.Antonov (2004)	

	


Effective Feynman rules for x-sections(!):	

VK & G.Pivovarov (96)	


	

- Duality: BFKL Pomeron   n gravition	


	

	


- All Standard Model particles:  	

BFKL QCD asymptotics for high-energy cross sections!	
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Asymptotics of QED cross sections 

V.N. Gribov, L.N. Lipatov, G.V. Frolov & V.G. Gorshkov (69-71) 	

H. Cheng & T.T. Wu (69-70)	


Cross section (at s -> ∞):  ~ (aQED) 4 (S/S0) 
(aP-1)    	


 aP =1+ C (aQED)2  ≈	 1.002   	


σ ~ (aQED)2 log(s)/s  	
 σ ~ (aQED)4 log2(s) 	
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Asymptotics of QCD cross sections: γγ  

LO BFKL 	

	


Cross section (at s -> ∞):  ~ (aQED) 2 (aS) 2 (S/S0) 
(aP-1)    	


 	


aP =1+ C (aS)  ≈	 1.5   LO BFKL S. Brodsky & F. Hautmann (96) 	


aP =1+ C (aS)  ≈	 1.2   NLO BFKL S.Brodsky, V Fadin, VK,	

                                                    L. Lipatov, G. Pivovarov (2001-02) 	


σ ~ (aQED)2 log(s)/s  	
 σ ~ (aQED)2 (aS)2 log2(s) 	
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Asymptotics of QED cross sections 

V.N. Gribov, L.N. Lipatov, G.V. Frolov & V.G. Gorshkov (69-71) 	

Cheng & T.T. Wu (69-71)	


Asymptotics of QCD cross sections 

 NLO BFKL	

 S.J. Brodsky, VK, L.N. Lipatov, V.S. Fadin & G.B. Pivovarov (2001-02) 	


 	

full NLO BFKL:	


I. Balitsky, J.Chirolli, J. Bartels et al.	
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Highly virtual photon scattering at LEP-2  

S.J Brodsky, VK, L.N. Lipatov, V.S. Fadin & G.B. Pivovarov (2002) NLO BFKL	
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Search for manisfestions of BFKL 

- Rise of PDFs at small х:  ~1/x(aР-1)	


ep  HERA: aР = 1.2 - 1.3	

	


- Highly virtual photon cross sections	

LEP2: aР = 1.2	


 	

- Heavy quark cross sections	


HERA, Tevatron, LHC (7 TeV) aР = 1.2 - 1.3	

	


- Dijet azimuthal angle decorrelations 	

Tevatron & LHC: 	


	

- Dijet  “К-factor” 	


	

	


- Standard Model particle cross section  	

-  BFKL asymptotics!	
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БФКЛ: dijet processes  

A. Mueller & H. Navelet, Nucl. Phys.  (87) 	

Most forward/backward (Mueller-Navelet) dijets: x-section ~ exp(y)   	


	

V.T. Kim & G.B. Pivovarov, Phys. Rev.  (96) 	


Inclusive dijets	

	


Е.М.Levin, M.G.Ryskin, Yu.М.Shabelsky, А.G.Shuvaev (91)	

J.C. Collins, R.K. Ellis (91), S. Catani et al (91)	


kT-factorization	

 	


Jet production	

	

GLAPD: ordering on кТ	

               у – no ordering	

	

BFKL: ordering on y 	

            кТ – no ordering	
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CMS @LHC 7 ТeV 

Dijet “К-factor” = inclusive dijets/ “exclusive” dijets	

	


CMS Coll. (2012) “Measurement of inclusive to exclusive dijet 
production ratios at large rapidity intervals at √s = 7 TeV” 
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          BFKL at the LHC 

First stage of LHC: first stage (parameter tuning): 	

	


- tuned LO GLAPD MC generators describe dijet “K-factor”	

	


- Available BFKL generators require NLO-corrections	

	


-  2012-13: additional observables: 	

-  Dijet azimuthal decorrelations, К-factor with veto, etc. 	


	

	


Second stage of LHC at larger energy (6.5 x 6.5 TeV):	

Observation of BFKL-effects (or stringent limit?)	


Search for asymptotic QCD effects at high-energies 
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          Introduction into GLAPD- and BFKL- 
evolutions in perturbative QCD - II 

GLAPD-evolution: selected topics	
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GLAPD: factorization of hard procees  
	

	

	


Two milestones of perturbative QCD for hard processes:	

-  Asymptotic freedom 	


-  Factorization of hard processes	


Factorization theorem: 	

Inclusive cross section factorizes into	


parton subprocess and parton distribution functions	

Amati, Petronzio & Veneziano (77)	


Efremov & Radyushkin (78-80)	

Collins, Soper & Sterman (86)	


Independence on separation boundary 
between hard subrpocess and soft part 

governs by RG (GLAPD) equation	
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 Sudakov resummation 
Probability of emission between           and                                :	


	

	


Parton Shower MCs 1 Mike Seymour

Sudakov form factor

Probability(emission between      and                 )

Define probability(no emission between       and    ) to be

       .  Gives evolution equation

c.f. radioactive decay

atom has probability    per unit time to decay.

Probability(no decay after time T) =

Parton Shower MCs 1 Mike Seymour

Sudakov form factor

Probability(emission between      and                 )

Define probability(no emission between       and    ) to be

       .  Gives evolution equation

c.f. radioactive decay

atom has probability    per unit time to decay.

Probability(no decay after time T) =
Parton Shower MCs 1 Mike Seymour

Sudakov form factor

Probability(emission between      and                 )

Define probability(no emission between       and    ) to be

       .  Gives evolution equation

c.f. radioactive decay

atom has probability    per unit time to decay.

Probability(no decay after time T) =

Define probability of NO emission between           and        :	


Parton Shower MCs 1 Mike Seymour

Sudakov form factor

Probability(emission between      and                 )

Define probability(no emission between       and    ) to be

       .  Gives evolution equation

    Sudakov form factor

=Probability(emitting no resolvable radiation)
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 Sudakov resummation 
Probability of no gluon emission  by quark	


(Sudakov form factor):	

	

	


Unitarity (probability):	


Parton Shower MCs 1 Mike Seymour

Sudakov form factor

Probability(emission between      and                 )

Define probability(no emission between       and    ) to be

       .  Gives evolution equation

    Sudakov form factor

=Probability(emitting no resolvable radiation)

[resolvable emission] + [virtual + unresolvable emmssion] = 1	

	

	


->  MC event generators	
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 MC event generators: parton shower  
	

	


Soft limit:  universal in amplitude level	

->  spoils independent evolution?	


	

NO: angular ordering! 	


Outside hard angle ordered gluons: soft gluons sum coherently	

One can see the color charge of whole jet only	


Parton Shower MCs 1 Mike Seymour

Soft limit

Also universal.  But at amplitude level…

soft gluon comes from everywhere in event.

Quantum interference.

Spoils independent evolution picture?

Parton Shower MCs 1 Mike Seymour

Angular ordering

NO:

outside angular ordered cones, soft gluons sum coherently:

only see colour charge of whole jet.

Soft gluon effects fully incorporated by using     as evolution

variable: angular ordering

First gluon not necessarily hardest!
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 GLAPD MC event generators: parton shower  
	

	

	

 	


Exact matrix elements vs 	

independent branching in MC parton shower:	


	

where is quantum interference?	


	

	

	


kT (or/and angle) ordering!	
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          Introduction into GLAPD- and BFKL- 
evolutions in perturbative QCD - III 

BFKL: selected topics	

	


- kT-factorization	

- NLO BFKL: Pomeron intercept	
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          BFKL: kT-factorization?  

Unintegrated on kT parton distribution function (uPDF) 	

	


J. Collins & R.K. Ellis (91)	

M. Ciafaloni, S. Catani, F. Hautmann, G. Marchesini (91)	


E.M. Levin, M.G. Ryskin, Yu.M. Shabelsky & A.G. Shuvaev (91)	
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          NLO BFKL: Pomeron intercept 

NLO BFKL in MSbar-scheme: negative eigen value  
-> a huge problem: falling down cross sections 

 
 

Solution: 
NLO BFKL in physical renormalization schemes with 

resummed large running coupling terms 
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          LO BFKL 

LO BFKL:  
Pomeron intercept is too large   

multi-Regge kinematics 
non-running coupling  
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          BFKL:  
      effective field theory for LO (and partly NLO)  

Effective action  
 L.N. Lipatov (1994-97) 

  
Effective Feynman rules: 

I. Cherdnikov E. Kuraev & E. Antonov, L. Lipatov (2004) 
  
 

Regge-behaviour for MHV amplitudes: 
L.N. Lipatov, J. Bartels, A. Prygarin (2010-2011) 
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          LO BFKL: effective theory for x-sections 

VK & G.B. Pivovarov (1996) 
 

Conformal symmetries:   
2 gluon -> n-gluon x-section for multi-Regge kinematics 
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          LO BFKL: equation solution 
V.S. Fadin, E.A. Kuraev & L.N. Lipatov  (1975-77) 

 

FA @17# of the hadron A . Another variable on which FA ,B
depend is the factorization scale m1,2 ~one can take
m1,25m;min

$

ki'%

). dV2 is the differential volume of the
phase space of the two jets ~all jets but the most forward of
the set f 12) while xi and ki' are their longitudinal and
transverse momenta, respectively. The most remarkable ob-
jects in the rhs are f BFKL. They describe correlations between
transverse momenta of t-channel Reggeized gluons @1# emit-
ted from a pair of tagged jets nearest in rapidity space, and
depend on the rapidity intervals

y1~x1 ,k1'!

5ln
~

x1k1'/x2k2'!

, y5ln
~

x2x3s/k2'k3'!

~3!

spanned by the jet pairs ~in the above formulas it is supposed
that the middle jet 2 is in the forward direction; s is the
squared total energy of the collision!. The superscript BFKL
is to recall that fBFKL is the solution of the Balitskii-Fadin-
Kuraev-Lipatov equation @1#. The fBFKL depending on y1 is
called in Ref. @14# the adjacent ~to the hadron A) Pomeron,
while that depending on y is the inner Pomeron ~it is devel-
oped between the tagged jets!. The solution for the BFKL
equation has the integral representation @1#

fBFKL
~

k1' ,k2' ,y !

5
(

n52`

` E
2`

`

dnxn ,n~

k1'!

eyv

~

n ,n
!

xn ,n* ~

k2'!

, ~4!

where the asterisk means complex conjugation,

xn ,n~

k'!

5
~

k'
2

!

21/21ineinw/2p ~5!

are Lipatov’s eigenfunctions, and

v

~

n ,n
!

5
2aSCA

p

Fc~

1
!

2RecS unu11
2 1in D G

are Lipatov’s eigenvalues. Here c is the logarithmic deriva-
tive of the Euler G function. The summation in Eq. ~4! runs
over conformal spin indices n and the integration is over
conformal dimension d5122in . Combinations h51
1n/22in , h 512n/22in are known as conformal
weights.
Here we should comment on the present status of our

basic formulas in Eqs. ~1! and ~2!. They are similar to one of
the formulas of the naive parton model prior to the proofs of
the QCD factorization theorems ~see for review Ref. @18#!.
The recent phenomenological estimations of the applicability
of the formulas such as Eqs. ~1! and ~2! see, e.g., Ref. @19#,
and the attempt to prove the relevant factorization in Ref.
@20#.
From now on we start to restructure ds f 12 from Eq. ~2!.

First, one can integrate out the transverse momentum q' of
the t-channel Reggeized gluon. To this end, the following
formula may be used:

E d2q'

q'
2 xn ,n* ~

q'!

xm ,l~

q'1k'!

5pxn ,n* ~

k'!

xm ,l~

k'!

3
i um2nu2umu1unu

um2nu
2 2i

~

l2n1ie
!

GS um2nu
2 112i

~

l2n

! D
GS um2nu

2 111i
~

l2n

! D
GS umu11

2 1il D
GS umu11

2 2il D
GS unu11

2 2in D
GS unu11

2 1in D , ~6!

where ie takes care of the singularity at m2n5l2n50.
The result of this transverse momentum integration is an
integral representation for ds f 12 . Next, we rewrite it in new
variables for jet momenta and momenta of incoming hadrons
A and B . To parametrize the light-cone components of had-
ron momenta pA

1 ,pB
2 ,s5pA

1pB
2 we take

x0
15ln

~

pA
1/m

!

, x4
252ln

~

pB
2/m

!

, ~7!

and to parametrize jet four-momenta ki , i51,2,3,

xi
15ln

~

ki
1/m

!

,

xi
252ln

~

ki
2/m

!

, ~8!

where ki65ki06ki3 are the light-cone components of ki
(i51 corresponds to the most forward jet above!. A virtue of

these variables is that the cross section is invariant under
translations xi

1!xi
11a , xi

2!xi
21a:

sds3

p

4
)

i51

3

dxi
1dxi

2
dw i

2p

5S aSCA

2p

2 D 3
(

n
(

m
E dnE dl

@

GA~

x0
12x1

1 ;m
!

3G
~

x1
12x2

1 ;2n ,2n

!

G
~

x2
12x3

1 ;2m ,2l

!

#

3
@

U
w1

~

x1
12x1

2 ;n ,n
!

R
w2

~

m2n ,l2n

!

3D
w3

~

x3
12x3

2 ;2m ,2l

!

#

G
~

x1
22x2

2 ;n ,n
!

3G
~

x2
22x3

2 ;m ,l
!

GB~

x3
22x4

2 ;m
!

], ~9!
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LO BFKL equation solution: 
2 gluon - -> 2 gluon in all orders of perturbative 

theory in multi-Regge kinematics 

FA @17# of the hadron A . Another variable on which FA ,B
depend is the factorization scale m1,2 ~one can take
m1,25m;min

$

ki'%

). dV2 is the differential volume of the
phase space of the two jets ~all jets but the most forward of
the set f 12) while xi and ki' are their longitudinal and
transverse momenta, respectively. The most remarkable ob-
jects in the rhs are f BFKL. They describe correlations between
transverse momenta of t-channel Reggeized gluons @1# emit-
ted from a pair of tagged jets nearest in rapidity space, and
depend on the rapidity intervals

y1~x1 ,k1'!

5ln
~

x1k1'/x2k2'!

, y5ln
~

x2x3s/k2'k3'!

~3!

spanned by the jet pairs ~in the above formulas it is supposed
that the middle jet 2 is in the forward direction; s is the
squared total energy of the collision!. The superscript BFKL
is to recall that fBFKL is the solution of the Balitskii-Fadin-
Kuraev-Lipatov equation @1#. The fBFKL depending on y1 is
called in Ref. @14# the adjacent ~to the hadron A) Pomeron,
while that depending on y is the inner Pomeron ~it is devel-
oped between the tagged jets!. The solution for the BFKL
equation has the integral representation @1#

fBFKL
~

k1' ,k2' ,y !

5
(

n52`

` E
2`

`

dnxn ,n~

k1'!

eyv

~

n ,n
!

xn ,n* ~

k2'!

, ~4!

where the asterisk means complex conjugation,

xn ,n~

k'!

5
~

k'
2

!

21/21ineinw/2p ~5!

are Lipatov’s eigenfunctions, and

v

~

n ,n
!

5
2aSCA

p

Fc~

1
!

2RecS unu11
2 1in D G

are Lipatov’s eigenvalues. Here c is the logarithmic deriva-
tive of the Euler G function. The summation in Eq. ~4! runs
over conformal spin indices n and the integration is over
conformal dimension d5122in . Combinations h51
1n/22in , h 512n/22in are known as conformal
weights.
Here we should comment on the present status of our

basic formulas in Eqs. ~1! and ~2!. They are similar to one of
the formulas of the naive parton model prior to the proofs of
the QCD factorization theorems ~see for review Ref. @18#!.
The recent phenomenological estimations of the applicability
of the formulas such as Eqs. ~1! and ~2! see, e.g., Ref. @19#,
and the attempt to prove the relevant factorization in Ref.
@20#.
From now on we start to restructure ds f 12 from Eq. ~2!.

First, one can integrate out the transverse momentum q' of
the t-channel Reggeized gluon. To this end, the following
formula may be used:
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where ie takes care of the singularity at m2n5l2n50.
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where ki65ki06ki3 are the light-cone components of ki
(i51 corresponds to the most forward jet above!. A virtue of

these variables is that the cross section is invariant under
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FA @17# of the hadron A . Another variable on which FA ,B
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and the attempt to prove the relevant factorization in Ref.
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LO BFKL eigen functions 

LO BFKL eigen value 
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          LO BFKL: effective theory for x-sections 

VK & G.B. Pivovarov (1996) 
  

2 gluon -> n-gluon x-section for multi-Regge kinematics  
 

where ds3 stands for ds f12 of Eq. ~2!, w i is the azimuthal
angle of the ith jet, and an explicit form of the ‘‘propaga-
tors’’ GA ,B , G , U , R , and D is
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Note the role of u functions from Eq. ~10! in Eq. ~9!: they
provide the right ordering of the components of the hadron
and jet momenta (xA ,i

1 and xB ,i
2 decrease with an increment in

i , and transverse momenta of the most forward or backward
jets are larger than the factorization scale m); the same or-
dering is seen in the limits of integration over x1 and k1'
from Eq. ~2!.
We now consider the rhs of Eq. ~9! as corresponding to a

graph of Fig. 1. Namely, the first factor (aSCA /2p

2)3 may
be redistributed among the vertices of the graph; summations
over n ,m and integrations over n ,l correspond to an inte-
gration over loop momenta. Each momentum has a discrete
(n or m) and a continuous (n or l) component; the first
expression in square brackets corresponds to the left-hand
side vertical line of the graph and the last to the right one.
Factors U and D of the middle square bracket correspond to
the up and down border rungs of the ladder graph respec-
tively and R to the middle rung. Note also that the lines of
the graph are oriented and the sign of ‘‘momentum’’ vari-
ables of the propagators depend on the direction of the mo-
mentum flow.

The next step is to note that one obtains a more symmetric
representation for the Feynman-like rhs of Eq. ~9! if one
replaces loop momentum integrations by equivalent integra-
tions over additional x and w variables per vertex. To this
end, one multiplies the propagators of Eq. ~10! by exponen-
tials of products of the additional variables and momenta in
such a way that the additional integrations provide momen-
tum conservation at the vertices. The momentum integrations
may then be performed independently for each ‘‘propaga-
tor’’; this will define the propagators in the ‘‘coordinate’’
representation. In this way one arrives at diagrams whose
vertices are parametrized by two x variables and an azi-
muthal angle. One may equally look at the resulting Feyn-
man rules in the momentum representation. Each momentum
will consist of a discrete variable and two continuous vari-
ables.
We now describe the Feynman-like rules in the momen-

tum representation for the graph of Fig. 2 and then define
dsN in terms of the analytic expression corresponding
to the graph. Each vertex of the graph of Fig. 2 gives a
factor A

aSCA /2p

2. Each momentum comprises two
continuous and one discrete variables @for example,
kA ,i5(k1

A ,i ,k2
A ,i ,nA ,i)#. Momenta flowing along the arrows

are calculated with momentum conservation at the vertices
as linear combinations of the external and the loop momenta.
There are lines of six types: GA , GB , G , U , D , and R . Each
line gives the following factor depending on its momentum
and, for the ladder rungs, on the azimuthal angles w i of the
corresponding jets:
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FIG. 1. Diagrammatic representation of 3-jet cross section s3 .

FIG. 2. Graph corresponding to the N-jet cross section sN .
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2 gluon -> 3-gluon                2 gluon -> n-gluon            	
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          NLO BFKL in MSbar-scheme  

Eigen value   
V.S. Fadin & L.Lipatov (98) C.Camici & M.Ciafaloni (98) 

where 	


LO eigen functions 

ν - conformal weight parameter 	


Q1, Q2 – virtualities of Reggeized gluons	
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          NLO BFKL: conformal and beta-dependent part   
Eigen value in MSbar-scheme  

S.J. Brodsky, V.S. Fadin, VK, L.N. Lipatov, G.B. Pivovarov  
[BFKLP] (1998) 

where 	
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          NLO BFKL with resummed running coupling  
Eigen value in MSbar-scheme  

S.J. Brodsky, V.S. Fadin, VK, L.N. Lipatov, G.B. Pivovarov  
[BFKLP] (1998) 

Non-physical negative value of NLO BFKL eigen 
value in MSbar-scheme 

 
 

What about NLO BFKL in physical renormalization 
schemes? 
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          NLO BFKL with resummed running coupling  
Eigen value in MSbar-scheme  

S.J. Brodsky, V.S. Fadin, VK, L.N. Lipatov, G.B. Pivovarov  
[BFKLP] (1998) 

physical schemes: MOM (ggg-vertex), Υ-scheme 
 

transition to an another scheme 
-> finite renormalization	
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          NLO BFKL in MOM-scheme  
Eigen value in MOM-scheme  

S.J. Brodsky, V.S. Fadin, VK, L.N. Lipatov, G.B. Pivovarov  
[BFKLP] (1998) 

No scheme dependence:  
values of r(0) is similar to MSbar-scheme 

 
Conformal part of r(0) is small for  

non-Abelian physical renormalization schemes 
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          NLO BFKL with resummed coupling  
  

S.J. Brodsky, V.S. Fadin, VK, L.N. Lipatov, G.B. Pivovarov  
[BFKLP] (1998) 

Beta-dependent part of r(ν) defines BLM scale: 
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NLO BFKL Eigen Value 

	

     Eigen value vs conformal weight parameter ν 
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NLO BFKL Eigen Value 

	

Eigen value vs Q2 
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NLO BFKL Pomeron intercept 

	

NLO BFKL Pomeron  intercept vs Q2 
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NLO BFKL Pomeron intercept 
with resummed running coupling terms 

	

NLO BFKL Pomeron intercept  
in non-Abelian schemes with the BLM scale setting 
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NLO BFKL:  
scattering of highly virtual photons 

	

Photon LO impact factors  
NLO impact factors I. Balitsky & J. Chirilli (2010) 
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Highly virtual photon scattering at LEP-2  

S.J Brodsky, V.S. Fadin, VK, L.N. Lipatov & G.B. Pivovarov (2002) 	

Full NLO BFKL will be soon	
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          Summary: GLAPD- and BFKL- evolutions 

- GLAPD-evolution is a main ingredient of modern high-
energy physics phenomenology for precision measurements  	


	

-  BFKL is an important theoretical tool 	


for high-energy limit  	


- NLO BFKL phenomenology is developing	

	


- NLO BFKL MC generators	

	


- BFKL searches at the LHC	



