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Introduction

The Standard Model (SM) belongs to the class of
renormalizable quantum field theories which means, in
particular, that a restricted number of input parameters
suffice for theoretical predictions of any process. The
concrete choice of input parameters defines a specific
renormalization scheme. The given set of independent
parameters has to be extracted from an appropriate set
of experimentally measured quantities. If we would be
able to perform perturbative calculations to all orders all
renormalization schemes would be equivalent. However,
in practice, only the first few coefficients are known, so
that predictions depend on the choice of the scheme.
Such dependence on the truncation of the perturbative
series is known as scheme dependence. In general, the
difference between two schemes is of next higher order in
the perturbation expansion. For higher order calculations
those schemes are preferable for which the uncalculated
higher order corrections are small. Of course, to find such a
preferred scheme requires to perform calculations in different
schemes. Another possibility is to find the scheme transition
relations by calculating the input parameters in one scheme
in terms of the input parameters of another scheme order by
order in perturbation theory. For electroweak calculations a
natural and generally accepted scheme is the so called on-
shell scheme [A. Sirlin,1980] where, in addition to the fine structure

constant (and/or the Fermi constant), the pole masses of particles serve

as input parameters.
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Introduction: 2

Quark masses require special consideration in this context, since on–

shell quark masses are not accessible experimentally. Fortunately, the

light quark masses in high energy processes often can be neglected

(effects O(m2
q/M2

Z)) and thus can be treated as massless in practical

calculations. The top quark is different. The large numerical value of

the top quark mass in conjunction with the violation of the Appelquist-

Carazzone theorem as a consequence of the Higgs mechanism of mass

generation, implies that a class of radiative corrections are proportional

to positive powers of the top-quark mass which gives rise to sizeable

effects. Moreover, the concept of a pole mass of a quark is intrinsically

ambiguous due to strong interaction renormalon contributions which

affect seriously the convergence of the perturbation expansion. This is

one of the main reasons why for quarks the MS-mass appears to be a

better input parameter.
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Pole mass of bosons.
Starting point of our consideration is the form of the renormalized

propagator in the on-shell scheme:

1

p2 + m2 − Π(p2, m2, · · ·) =
Z2

p2 + sP

,

where Π(p2, m2, · · ·) is the transversal part of the one-particle

irreducible self-energy, m2 is a bare or renormalized mass in the MS

scheme, Z2 is the on-shell wave-function renormalization constant and

sP is the position of the pole of the propagator of a massive boson

at which the inverse of the full propagator equals zero (we use the

Euclidean metric and on–shell condition is p2 = −m2). Standard

parametrization of the pole is

sP,a = M
2
a − iMaΓa ,

where Γa is the width of particle.

In perturbation theory the pole equation is to be solved order by order.
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Pole mass of bosons: 2
For this aim we expand the self–energy function Π̃(p2, m2, · · ·) about

the lowest order solution p2 = −m2:
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˛
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1−Π
′
−σΠ

′′
= Z

−1
2

M. Kalmykov 6



Pole mass of bosons: 3
Up to two-loop order the solution is

sP = m
2 − Π

(1) − Π
(2) − Π

(1)
Π

(1)′
˛

˛

˛

p2=−m2
,

Z−1
2 = 1 − Π(1)′ − Π(2)′ − Π(1)Π(1)′′ ,

where Π(L) is the bare or MS-renormalized L-loop contribution to Π

and the the prime denotes the derivative with respect to p2.

One of the remarkable properties of this equation that the pole mass M2

and the width Γ is defined via self-energy diagrams and its derivatives at

momentum equal to bare (or MS) masses which, by the construction,

are the real parameters.

However, these expressions are valid only when Π(p2, m2, · · ·) is

analytic functions, so that Taylor expansion can be performed.

B.A. Kniehl, C.P. Palisoc and A. Sirlin, Nucl. Phys. B591 (2000) 296;

B.A. Kniehl and A. Sirlin, Phys. Lett. B530 (2002) 129.
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Pole mass and γ-Z mixing.

The simple relation between the full propagator and the irreducible

self-energy only holds if there is no mixing, like for the W -boson or

Higgs. In the neutral sector, because of mixing two neutral bosons Z

and γ form a 2 × 2 matrix propagator

D−1(p2) =

0

@

p2 − Πγγ(p
2) ΠγZ(p2)

ΠZγ(p
2) p2 − m2

Z − Πγγ(p
2)

1

A

The equation for the pole is now modified

p2 + m2
Z − ΠZZ(p2, m2

Z, · · ·) −
Π2

γZ(p2, m2
Z, · · ·)

p2 + Πγγ(p2)
= 0.

♣ Mixing term Π2
γZ starts contributing at two-loop

♠ Photon term Πγγ only contributes beyond the two-loop

Solution (up to 2-loops):

sP,Z = m
2
Z−Π

(1)
ZZ−Π

(2)
ZZ−Π

(1)
ZZΠ

(1)
ZZ

′
+

Π
(1)2
γZ

m2
Z

.
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Figure 1: One- and two-loop contributions to the massive
boson self-energies.
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Pole mass of fermion

Starting point of fermion consideration is the tensor decomposition of

the self–energy of a massive fermion Σ̃(p, m, . . .) which, within the

SM in the limit of diagonal CKM matrix, has the form

Σ̃(p, m, . . .) = ip̂
h

Ã(p2, m, . . .)−γ5C̃(p2, m, . . .)
i

+mB̃(p2, m, . . .) ,

where Ã, B̃, C̃ are Lorentz scalar functions depending on all parameters

of the SM.

In this case, the position of the pole −M̃ is defined as the formal

(independently for the left- and right- handed fermions) solution for ip̂

at which the inverse of the connected full propagator equals zero:

S−1
F = ip̂+m0−Σ̃(p, m0, . . .)=

ip̂+M̃

ZL

+
ip̂+M̃

ZR

To two loops we then have the solution

M̃

m0

= 1+A1+B1+A2+B2

+(A1+B1)
“

A1−2m2
0(Ȧ1+Ḃ1)

”

+
1

2
C2

1 ,

where X and Ẋ denote the value of function X̃(p2, m2 . . .) and

its derivative with respect to p2 with following putting p2 = −m2

and AL(BL) is the bare (m = m0) or MS–renormalized (m the

MS–mass) L-loop contribution to the amplitudes.
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The fermion pole mass (continuation)
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=
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Figure 2: One- and two-loop contributions to the massive
fermion self-energies.
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Definition of MS mass in SM

For calculations of electroweak corrections in the SM two

renormalization schemes are commonly accepted: the on-shell and

the MS scheme. It is well understood, that in the on-shell scheme all

momentum independent diagrams, in particular the tadpoles, can be

omitted.

Let us first express the pole mass in terms of the bare amplitude in a

manifestly gauge invariant manner. This requires to include the Higgs

tadpole contribution

[J. Fleischer and F. Jegerlehner, Phys. Rev. D23 (1981) 2001. ]

Only this complete gauge invariant bare amplitude should be utilized as

a starting point to set up MS renormalization.
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Definition of MS mass in SM: 2

At the two-loop level MS renormalization can be written as

sP = m
2
0−Π

(1)
0 −Π

(2)
0 −Π

(1)
0 Π

(1)
0

′

−

2

4

X

j

(δm
2
j,0)

(1) ∂

∂m2
j,0

+
X

j

(δgj,0)
(1) ∂

∂gj,0

3

5Π
(1)
0

= m
2
a−
n

Π
(1)
a

o

MS
−
n

Π
(2)
a +Π

(1)
a Π

(1)
a

′
o

MS

where the sum runs over all species of particles, gj = α, gs, (δgj,0)
(1)

and (δm2
j,0)

(1) are the one-loop counterterms for the charges and

physical masses in the MS-scheme and after differentiation we put

all parameters equal to their on-shell values. The derivatives in this

equation correspond to the subtraction of sub-divergencies. The genuine

two-loop mass counterterm comes from the shift of the m2
0 term. The

relation between bare- and MS-masses has the form

m2
a,0 = m2

a(µ) (1 +
X

k=1

Z(k)
a ε−k) .

To renormalize the pole mass at the two-loop level requires to calculate

the one-loop renormalization constants for all physical parameters

(charge and masses), and the two-loop renormalization constant only

for the mass itself. Not needed are the wave-function renormalization

or ghost (unphysical) sector renormalization.
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MS mass in terms of on-shell mass.

After UV-renormalization the pole is represented in terms of finite

amplitudes. Now, expression connects the pole sP with the MS

parameters: masses and charges. This expression can be inverted and

solved iteratively. The solution to two-loop reads

m
2
a =M

2
a +Re

n

Π
(1)
a

o

MS
+Re

n

Π
(2)
a +Π

(1)
a Π

(1)
a

′
o

MS

+

2

4(∆e)
(1) ∂

∂e
+
X

j

(∆m
2
j)

(1) ∂

∂m2
j

3

5Re
n

Π
(1)
a

o

MS

where the sum runs over all species of particles j = Z, W, H, t,

(∆m2
j)

(1) = Re {Πj}MS , and the transition from the MSto the

on-shell scheme for the electric charge is also included. The mass on

the l.h.s. of this expression we call the MS-mass of particle.

It should be noted, that in this definition the tadpole contribution does

not cancel, so that higher powers of the Higgs and the top-quark mass

show up at higher orders. In particular, at two-loops, the purely bosonic

diagrams generate m4
H/m4

V terms and the third fermion family gives

rise to the appearance of m6
t/(m2

Hm4
V ) power corrections.
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Renormalization Group relations

For the MS-masses, defined in this way, the following properties are

valid:

1. The UV counter-terms satisfy relations connecting the higher order

poles with the lower order ones:

„

γa+
X

j

βgj

∂

∂gj

+
X

i

γim
2
i

∂

∂m2
i

«

Z(n)
a

=
1

2

X

j

gj

∂

∂gj

Z(n+1)
a ,

where we adopt the following definitions for the RG functions: for

all dimensionless coupling constants, like g, g′, gs, e, λ, yt, the β-

function is given by µ2 ∂
∂µ2g = βg and for all mass parameters (a

mass or the Higgs v.e.v. v) the anomalous dimension γm2 is given by

µ2 ∂
∂µ2 ln m2 = γm2.

2. Using the fact that sP is RG-invariant: µ2 d
dµ2sP ≡0, we are able to

calculate the anomalous dimension of the masses from our finite results

or from the UV counterterms

γa =
X

j

1

2
gj

∂

∂gj

Z
(1)
a , (j = g, gs).
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Renormalization Group relations

3. All tree level relations between masses of any particles and parameters

of the unbroken Lagrangian are RG invariant. This means, in particular,

that the RG equation for the vacuum expectation value v is given by

γv2 ≡ γm2 − βλ/λ ,

where m2 and λ are the parameters of the symmetric scalar potential.

This fact allow to get anomalous dimension of the masses via the

relations

γW = γm2 − βλ

λ
+ 2

βg

g
,

γZ = γm2−
βλ

λ
+2

„

cW

βg

g
+sW

βg′

g′

«

,

γt = γm2 − βλ

λ
+

βyt

yt

, γH = γm2 ,

where sW(cW ) are the sin (cos) of the weak mixing angle and the 2-

loop RG functions βg, βg′, βλ, γm2, βyt are calculated in the unbroken

phase. Thus the RG equations for the MSmasses in the broken theory

can be written as

m2
W (µ2) =

1

4

g2(µ2)

λ(µ2)
m2(µ2) ,

m
2
Z(µ

2
) =

1

4

g2(µ2) + g′(µ2)

λ(µ2)
m

2
(µ

2
) ,

m
2
H(µ

2
) = 2m

2
(µ

2
) ,

m2
t(µ

2) =
1

2

y2
t (µ

2)

λ(µ2)
m2(µ2) ,

where yt is the top-quark Yukawa coupling.
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RG equation for Fermi constant

Let us write now the RG equation for the effective Fermi constant

GF . GF is usually defined as a low energy constant in one-to-one

correspondence with the muon lifetime. However, if we consider physics

at higher energies a parametrization in terms of low energy constants

may lead to large radiative corrections. Much in the same way as the

fine structure constant α often is replaced by the effective running

fine structure constant α(µ) we expect that GF should be replaced

by an effective version of it at higher energies. Unlike in the case

of α, however, because of the smallness of the light fermion Yukawa

couplings, GF starts to run effectively only at scales beyond the W –pair

production threshold

In the broken phase, we define MS Fermi constant as

GF (µ2) ≡
√

2 e2(µ2)

8m2
W (µ2) sin2 θW(µ2)

=
1√

2v2(µ2)

It satisfies the following RG equation

µ2 ∂

∂µ2
ln GF (µ2) =

βλ

λ
− γm2 .

The equation is written in MS scheme. As usual in this scheme, in

solving the renormalization group equation the decoupling of the heavy

particles has to be performed “by hand”. This means that below the

W mass, the effective Fermi constant does practically not change with

scale. Obviously, the running of GF only starts at about µ ∼ mZ,

when the scale of a process exceeds the masses of the bosons.

Our RG equations for the v.e.v. v and the particle masses m are

different from the ones obtained in the effective potential approach. A

comparison of predictions based on these two approaches have been

recently performed
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P. Kielanowski and S. R. Juarez W., hep-ph/0310122.
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Figure 3: Running of the vacuum expectation value of the Higgs field

v(t). Figure (a) corresponds to the case of the effective potential and

figure (b) to the tree-level relation for the Higgs mass. The function

v(t) depends on the initial Higgs mass. The numbers at the ends of

some plots correspond to the initial Higgs mass in GeV. In case (a)

for the Higgs masses mH < 174 GeV the v(t) has a singularity at

the UV cut off energy. For the Higgs masses mH > 190 GeV the

function v(t) for large values of t is decreasing and at the UV cut off

it vanishes. In case (b) for the Higgs masses mH < 164 GeV the

v(t) has a singularity at the UV cut off energy. For the Higgs masses

mH > 178 GeV the function v(t) for large values of t is decreasing

and at the UV cut off it vanishes. The behavior of v(t) in both cases

is significantly different.
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Running sin2 θMS
W

We can analyze the Higgs mass dependence of sin2 θW . The relation

between the MS weak mixing parameter and its version in terms of the

pole masses reads

sin
2
θW = 1 − m2

W

m2
Z

=
g′2

g2 + g′2

= 1 − M2
W

M2
Z

 

1 + δ
(1)
W + δ

(2)
W

1 + δ
(1)
Z + δ

(2)
Z

!

=

 

1−M2
W

M2
Z

!

−M2
W

M2
Z

h

(δ
(1)
W −δ

(1)
Z )(1−δ

(1)
Z )+δ

(2)
W − δ

(2)
Z

i

where we adopted the notation, m2
V /M2

V = 1 + δ
(1)
V + δ

(2)
V

Unphysical terms, proportional to m4
H and m6

t drop out in sin2 θW

Figure 4: One- and two-loop corrections to

δsin2 Θ = sin2 θMS
W / sin2 θOS

W − 1 as a function of the Higgs
mass mH (µ = MZ).
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Pole masses I

Crucial point of our definition of the MS-mass is the gauge invariant

construction for the pole in terms of the unrenormalized, bare diagrams.

It can be done only after inclusion of the Higgs tadpole contribution.

[J. Fleischer and F. Jegerlehner, Phys. Rev. D23 (1981) 2001. ]

Another important ingredient are the Ward identities.

A. The inclusion of the tadpoles is necessary to ensure, that the physical

Higgs field has zero vacuum expectation value in each order of the loop

expansion.

B. It is well know, that in order to preserve the Ward identities for

the longitudinal part of the gauge boson propagator it is necessary to

add the tadpole contribution, which is equal to the propagator of the

would-be-Goldstone bosons at zero momentum transfer. In particular,

at the two-loop level, the photon would acquire a mass if the tadpole

contribution would be omitted.
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Pole masses II

By an explicit 2-loop calculation we have shown that (to this order):

1. The position of the complex pole sp of a the gauge-boson (Z, W )

propagator is a gauge invariant quantity after inclusion of the Higgs

tadpole contributions.

Stuart ’91, Sirlin’91, · · · Kniehl & Sirlin ’98

2. The renormalized on-shell self-energies are infrared finite. This derives

from the fact that within dimensional regularization, which allows to

regularize UV and IR singularities by the same ε (ε = (4−d)/2 → 0)

parameter, the singular 1/ε terms are absent after UV renormalization.

Gambino & Grassi ’00

3. The inclusion of the tadpoles is important for the renormalization

group invariance and for the gauge invariance of the parameter

renormalization.

4. By our calculation we have proven that the MS renormalization

scheme is self consistent and works properly in case of unstable particles.
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Pole masses (Properties of MS-masses)

1. The UV counter-terms satisfy relations connecting the higher order

poles with the lower order ones:

„

γa+
X

j

βgj

∂

∂gj

+
X

i

γim
2
i

∂

∂m2
i

«

Z(n)
a =

1

2

X

j

gj

∂

∂gj

Z(n+1)
a ,

where we adopt the following definitions for the RG functions: for

all dimensionless coupling constants, like g, g′, gs, e, λ, yt, the β-

function is given by µ2 ∂
∂µ2g = βg and for all mass parameters (a

mass or the Higgs v.e.v. v) the anomalous dimension γm2 is given by

µ2 ∂
∂µ2 ln m2 = γm2.

2. All tree level relations between masses of any particles and parameters

of the unbroken Lagrangian are RG invariant. This means, in particular,

that the RG equation for the vacuum expectation value v is given by

γv2 ≡ γm2 − βλ/λ ,

where m2 and λ are the parameters of the symmetric scalar potential.

M. Kalmykov 22



top-Yukawa and Higgs-boson couplings:

The relation between top-Yukawa (Higgs) coupling and Fermi constant

GF is defined in terms of inverse of the renormalized constants (follows

from structure of RG equations)

hSirlin(µ
2)

√
2GFM2

H

=
m2

H(µ2)

M2
H

GF (µ2)

GF

,

y2
t (µ

2)

2
√

2GFM2
t

=
m2

t(µ
2)

M2
t

GF (µ2)

GF

,

where in r.h.s. all masses and coupling constants are taken in the

MS-renormalized scheme.

mt(µ
2)

Mt

= 1 + σα + σαs + σα2
s
+ σα3

s
+ σααs + · · · ,

M
2
H = m

2
H + ∆m2

H
,α + ∆m2

H
,ααs

,

GF√
2

=
GF (µ2)√

2
(1 + ∆GF ,α(µ

2
) + ∆GF ,ααs(µ

2
) + · · ·) .

and

γGF
≡ µ

2 ∂

∂µ2
ln GF (µ

2
) =

βλ

λ
− γm2 = 2

βg

g
− γW .

M. Kalmykov 23



top-Yukawa coupling:

The O(ααs) solution for the top-Yukawa coupling reads

s

y2
t (µ

2)

2
√

2GFM2
t

− 1 = (1+σα+σαs+σααs)

×

0

@1−∆GF ,α−∆GF ,ααs−
X

f

h

m
2
f−M

2
f

i

αs

∂

∂m2
f

∆GF ,α

1

A

1
2

˛

˛

˛

˛

˛

˛

˛

˛

m2
j
=M

−1

=

„

σα−
1

2
∆GF ,α+σαs

«˛

˛

˛

˛

m2
j
=M2

J
.e2=e2

OS

+

0

@σααs −
1

2
∆GF ,ααs − 1

2
σαs∆GF ,α

−1

2

X

f

h

m
2
f−M

2
f

i

αs

∂

∂m2
f

∆GF ,α(m
2
t)

1

A

˛

˛

˛

˛

˛

˛

m2
j
=M2

J
.e2=e2

OS
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Higgs coupling:

The O(ααs) solution for the Higgs coupling is

hSirlin(µ
2)

√
2GFM2

H

− 1 = +

 

−∆GF ,α −
∆m2

H
,α

M2
H

!˛

˛

˛

˛

˛

m2
j
=M2

J
.e2=e2

OS

+

0

@−∆GF ,ααs −
∆m2

H
,ααs

M2
H

−
h

m
2
t −M

2
t

i

αs

∂

∂m2
t

"

∆GF ,α +
∆m2

H
,α

M2
H

#

1

A

˛

˛

˛

˛

˛

˛

m2
j
=M2

J
.e2=e2

OS

,

where

h

m2
f−M2

f

i

αs
= −2M2

f Cf

g2
s

16π2

 

4 − 3 ln
M2

f

µ2

!

,

and the sum runs over all quarks.
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QCD 2-loop

QCD 3-loop

QCD 3-loop+OHΑL

QCD 3-loop+OHΑL+OHΑΑSL
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Figure 5: Contribution to the top-Yukawa constant from
QCD up to 2 loops, up to 3 loops, QCD and 1 loop EW
corrections O(α) and QCD with O(α)+O(ααs) corrections.
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Figure 6: Contribution to the top-Yukawa constant from
QCD up to 2 loops, up to 3 loops, QCD and 1 loop EW
corrections O(α) and QCD with O(α)+O(ααs) corrections.
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Figure 7: Contribution to the top-Yukawa constant from
QCD up to 2 loops, up to 3 loops, QCD and 1 loop EW
corrections O(α) and QCD with O(α)+O(ααs) corrections.
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OHΑL correction

OHΑL+OHΑΑSL correction
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Figure 8: Contribution to the Higgs self-coupling constant
of order O(α) and QCD with O(α)+O(ααs).
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Figure 9: Contribution to the Higgs self-coupling constant
of order O(α) and QCD with O(α)+O(ααs).
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Figure 10: Contribution to the Higgs self-coupling constant
of order O(α) and QCD with O(α)+O(ααs).
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The stability bound [arXiv:1205.2893]:

by Fedor Bezrukov & Mikhail Shaposhnikov analysis

From the conditions

λ(µ0) = 0, βλ(λ(µ0)) = 0,

Mmin =

»

128.95 +
Mt − 172.9GeV
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Figure 11: The dependence of the reference Higgs
boson mass Mmin on the matching scale µ0 (the MS
constants are obtained by matching formulas at scale µ0

and then used for the solution of the equations (??)).
The solid line corresponds to the full matching formulas
λ ∼ O(α,ααs), yt ∼ O(α3

s, α, ααs); the dashed and dotted
lines correspond to using matching formulas of lower order.
Here Mt = 172.9GeV and αs = 0.1184.
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Conclusion

In perfect agreement with a new experimental results:

MH = 125.3 ± 0.4(stat) ± 0.5(syst)Gev

In full agreement with analysis of two another groups:

“Higgs mass and vacuum stability in the Standard Model at NNLO”

Giuseppe Degrassi, Stefano Di Vita, Joan Elias-Miro, Jose R. Espinosa,

Gian F. Giudice, Gino Isidori, Alessandro Strumia [arXiv:1205.6497]

“The top quark and Higgs boson masses and the stability of the

electroweak vacuum”,

S. Alekhin, A. Djouadi, S. Moch. [arXiv:1207.0980]
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