Conformal group: R-matrix and star-triangle relations.

D. Chicherin ${ }^{2}$, A. P. Isaev ${ }^{1}$ and S. Derkachov ${ }^{3}$

${ }^{1}$ Bogoliubov Laboratory of Theoretical Physics,
JINR, Dubna, Russia
${ }^{2}$ Chebyshev Laboratory, St.-Petersburg State University, 14th Line, 29b, Saint-Petersburg, 199178 Russia
${ }^{3}$ St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Fontanka 27, 191023 St. Petersburg, Russia

$$
\begin{gathered}
\text { CALC - 2012 } \\
\text { July } 23 \text { - August 2, 2012, Dubna, Russia }
\end{gathered}
$$

Plan

(1) Introduction

- Star-triangle relations (STR) and multiloop calculations
- Definition of conformal algebra $\operatorname{conf}\left(\mathbb{R}^{p, q}\right)$
- Spinor representations of $\operatorname{conf}\left(\mathbb{R}^{p, q}\right)=s o(p+1, q+1)$
- Differential representation of $\operatorname{conf}\left(\mathbb{R}^{p, q}\right)=s o(p+1, q+1)$
(2) L-operators
- L-operators for $g \ell(N)$. Yangians $Y(g \ell(N))$.
- L-operators for $s o(p+1, q+1)$
(3) General R-operator
- The n-dimensional scalar case
- General R-operator in the case $s o(2,4)=s u(2,2)$

Star-triangle relation

Firstly considered in CFT and the "Method Of Uniqueness" (E.s.fradkin, M.Ya.Palchik, 1978; A.N.Vasilev,Yu.M.Pis'mak, Yu.R.Khonkonen, 1981; D.Kazakov, 1983)

$$
\int \frac{d^{D} z}{(x-z)^{2 \alpha^{\prime}} z^{2(\alpha+\beta)}(z-y)^{2 \beta^{\prime}}}=\frac{G(\alpha, \beta)}{(x)^{2 \beta}(x-y)^{2\left(\frac{D}{2}-\alpha-\beta\right)}(y)^{2 \alpha}}
$$

where $x, y, z \in \mathbb{R}^{D}, \alpha^{\prime}:=\frac{D}{2}-\alpha$,

$$
(x)^{2 \beta}=\left(x_{\mu} x^{\mu}\right)^{\beta}, \quad G(\alpha, \beta)=\frac{a(\alpha+\beta)}{a(\alpha) a(\beta)}, \quad a(\beta)=\frac{\Gamma\left(\beta^{\prime}\right)}{\pi^{D / 2} 2^{2 \beta} \Gamma(\beta)} .
$$

Graphic representation of STR (reconstruction of graphs):

$$
\begin{aligned}
& { }_{x} \stackrel{\alpha}{{ }_{y}}=\frac{1}{(x-y)^{2 \alpha}} \Rightarrow \\
& \overbrace{x}^{\alpha+\beta \underbrace{0}_{\beta^{\prime}}=G(\alpha, \beta) \cdot}
\end{aligned}
$$

Operator version of STR: (API, 2003)

$$
\hat{p}^{-2 \alpha} \cdot \hat{q}^{-2(\alpha+\beta)} \cdot \hat{p}^{-2 \beta}=\hat{q}^{-2 \beta} \cdot \hat{p}^{-2(\alpha+\beta)} \cdot \hat{q}^{-2 \alpha}
$$

where we have used Heisenberg algebra: $\left[\hat{q}_{\mu}, \hat{p}_{\mu}\right]=\delta_{\mu \nu}$.

Consider dimensionally regularized ($D=4-2 \epsilon$) massless integrals which correspond to the diagrams:

$$
D_{L}\left(x_{a}\right)=
$$

The operator version is:

$$
D_{L}\left(x_{a}\right) \sim\left\langle x_{1}\right| \hat{p}^{-2} \cdot\left(\hat{q}^{-2} \cdot\left(\hat{q}-x_{3}\right)^{-2} \cdot \hat{p}^{-2}\right)^{L}\left|x_{2}\right\rangle
$$

where we have introduced the states $\hat{q}\left|x_{2}\right\rangle=x_{2}\left|x_{2}\right\rangle$. The generating function for D_{L} (API, 2003,2007):

$$
D_{g}\left(x_{a}\right)=\sum_{L=0}^{\infty} g^{L} D_{L}\left(x_{a}\right) \sim \frac{1}{\left(x_{1}^{2} x_{2}^{2}\right)^{(D / 2-1)}}\langle u|\left(\hat{p}^{2}-\frac{g_{x}}{\hat{q}^{2}}\right)^{-1}|v\rangle
$$

where $g_{x}=g /\left(a(1)\left(x_{3}\right)^{2}\right)$ is a new coupling constant and $u_{i}=\frac{\left(x_{1}\right)_{i}}{\left(x_{1}\right)^{2}}-\frac{\left(x_{3}\right)_{i}}{\left(x_{3}\right)^{2}}=\frac{1}{x_{1}}-\frac{1}{x_{3}}, v_{i}=\frac{\left(x_{2}\right)_{i}}{\left(x_{2}\right)^{2}}-\frac{\left(x_{3}\right)_{i}}{\left(x_{3}\right)^{2}}=\frac{1}{x_{2}}-\frac{1}{x_{3}}$.

Conformal invariance gives the identity

$$
u^{2(D / 2-1)}\langle u|\left(\hat{p}^{2}-\frac{g}{\hat{q}^{2}}\right)^{-1}|v\rangle=\left(u^{\prime}\right)^{2(D / 2-1)}\left\langle u^{\prime}\right|\left(\hat{p}^{2}-\frac{g}{\hat{q}^{2}}\right)^{-1}\left|v^{\prime}\right\rangle
$$

where two new vectors $\left(u^{\prime}, v^{\prime}\right)$ are related to vectors (u, v) :

$$
\frac{v^{2}}{u^{2}}=\frac{\left(v^{\prime}\right)^{2}}{\left(u^{\prime}\right)^{2}}, \quad \frac{(u v)}{u^{2}}=\frac{\left(u^{\prime} v^{\prime}\right)}{\left(u^{\prime}\right)^{2}}
$$

One can choose $u^{\prime}=\frac{1}{x_{1}}-\frac{1}{x_{12}}, v^{\prime}=\frac{1}{x_{13}}-\frac{1}{x_{12}}$, where $x_{a b}=x_{a}-x_{b}$, $\left(\frac{1}{x}\right)_{\mu}=\frac{x_{\mu}}{x^{2}}$ and the expansion over g leads to the identities for ladder diagrams (API, 2007)
$x_{3}^{2\left(1+L-\frac{D}{2}\right)} \times$

This is main eq. which is needed for prooving of the magic identities for $D=4(\epsilon=0)$ J.Drummond, J. Henn, V.A.Smirnov and E.Sokatchev, 2006
$\mathbb{R}^{p, q}$ - pseudoeuclidean space with the metric

$$
g_{\mu \nu}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{p}, \underbrace{-1, \ldots,-1}_{q}) .
$$

$\operatorname{conf}\left(\mathbb{R}^{p, q}\right)$ - Lie algebra of the conformal group in $\mathbb{R}^{p, q}$ generated by $\left\{L_{\mu \nu}, P_{\mu}, K_{\mu}, D\right\}(\mu, \nu=0,1, \ldots, p+q-1):$

$$
\begin{gathered}
{\left[D, P_{\mu}\right]=i P_{\mu}, \quad\left[D, K_{\mu}\right]=-i K_{\mu}} \\
{\left[L_{\mu \nu}, L_{\rho \sigma}\right]=i\left(g_{\nu \rho} L_{\mu \sigma}+g_{\mu \sigma} L_{\nu \rho}-g_{\mu \rho} L_{\nu \sigma}-g_{\nu \sigma} L_{\mu \rho}\right)} \\
{\left[K_{\rho}, L_{\mu \nu}\right]=i\left(g_{\rho \mu} K_{\nu}-g_{\rho \nu} K_{\mu}\right), \quad\left[P_{\rho}, L_{\mu \nu}\right]=i\left(g_{\rho \mu} P_{\nu}-g_{\rho \nu} P_{\mu}\right),} \\
{\left[K_{\mu}, P_{\nu}\right]=2 i\left(g_{\mu \nu} D-L_{\mu \nu}\right), \quad\left[P_{\mu}, P_{\nu}\right]=0} \\
{\left[K_{\mu}, K_{\nu}\right]=0, \quad\left[L_{\mu \nu}, D\right]=0}
\end{gathered}
$$

$L_{\mu \nu}$ - generators for the rotation group $S O(p, q)$ in $\mathbb{R}^{p, q}$, P_{ν} - shift generators in $\mathbb{R}^{p, q}$,
D - dilatation operator, K_{ν} - conformal boost generators.

We have the isomorphism:

$$
\begin{gathered}
\operatorname{conf}\left(\mathbb{R}^{p, q}\right)=\operatorname{so}(p+1, q+1) \\
L_{\mu \nu}=M_{\mu \nu}, \quad K_{\mu}=M_{n, \mu}-M_{n+1, \mu} \\
P_{\mu}=M_{n, \mu}+M_{n+1, \mu}, \quad D=-M_{n, n+1}, \quad(n=p+q)
\end{gathered}
$$

where $M_{a b}(a, b=0,1, \ldots, n+1)$ are generators of $s o(p+1, q+1)$:

$$
\begin{aligned}
{\left[M_{a b}, M_{d c}\right] } & =i\left(g_{b d} M_{a c}+g_{a c} M_{b d}-g_{a d} M_{b c}-g_{b c} M_{a d}\right), \\
g_{a b} & =\operatorname{diag}(\underbrace{1, \ldots, 1}_{p}, \underbrace{-1, \ldots,-1}_{q}, 1,-1)
\end{aligned}
$$

Quadratic Casimir operator

$$
C_{2}=\frac{1}{2} M_{a b} M^{a b}=\frac{1}{2}\left(L_{\mu \nu} L^{\mu \nu}+P_{\mu} K^{\mu}+K_{\mu} P^{\mu}\right)-D^{2} .
$$

Spinor reps of $\operatorname{conf}\left(\mathbb{R}^{p, q}\right)=s o(p+1, q+1)$

Let $n=p+q(=D)$ be even integer and $\gamma_{\mu}(\mu=0, \ldots, n-1)$ be $2^{\frac{n}{2} \text {-dimensional gamma-matrices in } \mathbb{R}^{p, q} \text { : }}$

$$
\begin{gathered}
\gamma_{\mu} \gamma_{\nu}+\gamma_{\nu} \gamma_{\mu}=2 g_{\mu \nu} l \\
\gamma_{n+1} \equiv \alpha \gamma_{0} \cdot \gamma_{1} \cdots \gamma_{n-1}, \quad \alpha^{2}=(-1)^{q+n(n-1) / 2}
\end{gathered}
$$

where α is such that $\gamma_{n+1}^{2}=I$. Using gamma-matrices γ_{μ} in $\mathbb{R}^{p, q}$ one can construct representation T_{1} of $\operatorname{conf}\left(\mathbb{R}^{p, q}\right)=s o(p+1, q+1)$

$$
\begin{array}{cc}
\hline T_{1}\left(L_{\mu \nu}\right)=\frac{i}{4}\left[\gamma_{\mu}, \gamma_{\nu}\right] \equiv \ell_{\mu \nu}, & T_{1}\left(K_{\mu}\right)=\gamma_{\mu} \frac{\left(1-\gamma_{n+1}\right)}{2} \equiv k_{\mu} \\
T_{1}\left(P_{\mu}\right)=\gamma_{\mu} \frac{\left(1+\gamma_{n+1}\right)}{2} \equiv p_{\mu}, & T_{1}(D)=-\frac{i}{2} \gamma_{n+1} \equiv d
\end{array}
$$

The common representation for γ_{μ} in $\mathbb{R}^{p, q}$ is:

$$
\gamma_{\mu}=\left(\begin{array}{cc}
\mathbf{0} & \boldsymbol{\sigma}_{\mu} \\
\bar{\sigma}_{\mu} & \mathbf{0}
\end{array}\right), \quad \gamma_{n+1}=\left(\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & -\mathbf{1}
\end{array}\right),
$$

where $\sigma_{\mu} \bar{\sigma}_{\nu}+\sigma_{\nu} \bar{\sigma}_{\mu}=2 g_{\mu \nu} \mathbf{1}, \quad \bar{\sigma}_{\mu} \sigma_{\nu}+\bar{\sigma}_{\nu} \sigma_{\mu}=2 g_{\mu \nu} \mathbf{1}$.
The representation T_{1} of $\operatorname{conf}\left(\mathbb{R}^{p, q}\right)$ is

$$
\begin{gathered}
\ell_{\mu \nu}=\left(\begin{array}{cc}
\frac{i}{4}\left(\boldsymbol{\sigma}_{\mu} \bar{\sigma}_{\nu}-\boldsymbol{\sigma}_{\nu} \overline{\boldsymbol{\sigma}}_{\mu}\right) & \mathbf{0} \\
\mathbf{0} & \frac{i}{4}\left(\bar{\sigma}_{\mu} \sigma_{\nu}-\overline{\boldsymbol{\sigma}}_{\nu} \boldsymbol{\sigma}_{\mu}\right)
\end{array}\right)=\left(\begin{array}{cc}
\boldsymbol{\sigma}_{\mu \nu} & \mathbf{0} \\
\mathbf{0} & \overline{\boldsymbol{\sigma}}_{\mu \nu}
\end{array}\right), \\
p^{\mu}=\left(\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{\sigma}^{\mu} & \mathbf{0}
\end{array}\right), \quad k^{\mu}=\left(\begin{array}{cc}
\mathbf{0} & \boldsymbol{\sigma}^{\mu} \\
\mathbf{0} & \mathbf{0}
\end{array}\right), \quad d=-\frac{i}{2}\left(\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & -\mathbf{1}
\end{array}\right) .
\end{gathered}
$$

Recall that

$$
\sigma_{\mu \nu}=\left\|\left(\sigma_{\mu \nu}\right)_{\alpha}{ }^{\beta}\right\|, \quad \bar{\sigma}_{\mu \nu}=\left\|\left(\bar{\sigma}_{\mu \nu}\right)_{\dot{\beta}}^{\dot{\alpha}}\right\|,
$$

are inequivalent spinor representations of $\operatorname{so}(p, q)=\operatorname{spin}(p, q)$.

Any element of $\operatorname{conf}\left(\mathbb{R}^{p, q}\right)$ in the representation T_{1} is

$$
\begin{gathered}
A=i\left(\omega^{\mu \nu} \ell_{\mu \nu}+a^{\mu} p_{\mu}+b^{\mu} k_{\mu}+\beta d\right)= \\
=\left(\begin{array}{cc}
\frac{\beta}{2} \mathbf{1}+i \omega^{\mu \nu} \boldsymbol{\sigma}_{\mu \nu} & i b^{\mu} \boldsymbol{\sigma}_{\mu} \\
i a^{\mu} \overline{\boldsymbol{\sigma}}_{\mu} & -\frac{\beta}{2} \mathbf{1}+i \omega^{\mu \nu} \overline{\boldsymbol{\sigma}}_{\mu \nu}
\end{array}\right) \equiv\left(\begin{array}{ll}
\varepsilon_{11} & \varepsilon_{12} \\
\varepsilon_{21} & \varepsilon_{22}
\end{array}\right) .
\end{gathered}
$$

It can be considered as the matrix of parameters $\omega^{\mu \nu}, a^{\mu}, b^{\mu}, \beta \in \mathbb{R}$.

Diff. representation of $\operatorname{conf}\left(\mathbb{R}^{p, q}\right)=s o(p+1, q+1)$

The standard differential representation ρ of $\operatorname{conf}\left(\mathbb{R}^{p, q}\right)$ can be obtained by the method of induced representations (G. Mack and A. Salam (1969))

$$
\rho\left(P_{\mu}\right)=-i \partial_{x_{\mu}} \equiv \hat{p}_{\mu}, \quad \rho(D)=x^{\mu} \hat{p}_{\mu}-i \Delta
$$

$$
\begin{aligned}
& \rho\left(L_{\mu \nu}\right)=\hat{\ell}_{\mu \nu}+S_{\mu \nu}, \quad \rho\left(K_{\mu}\right)=2 x^{\nu}\left(\hat{\ell}_{\nu \mu}+S_{\nu \mu}\right)+\left(x^{\nu} x_{\nu}\right) \hat{p}_{\mu}-2 i \Delta x_{\mu} \\
& \hat{\ell}_{\mu \nu} \equiv\left(x_{\nu} \hat{p}_{\mu}-x_{\mu} \hat{p}_{\nu}\right)
\end{aligned}
$$

where $x_{\mu} \equiv \hat{q}_{\mu}$ are coordinates in $\mathbb{R}^{p, q}, \Delta \in \mathbb{R}$ - conformal parameter, $S_{\mu \nu}=-S_{\nu \mu}$ are spin generators with commutation relations as for $\hat{\ell}_{\mu \nu}$ and $\left[S_{\mu \nu}, x_{\rho}\right]=0=\left[S_{\mu \nu}, \hat{p}_{\rho}\right]$. For the quadratic Casimir operator we have:

$$
\rho\left(C_{2}\right)=\frac{1}{2}\left(S_{\mu \nu} S^{\mu \nu}-\hat{\ell}_{\mu \nu} \hat{\ell}^{\mu \nu}\right)+\Delta(\Delta-n) .
$$

The representations ρ_{Δ} and $\rho_{n-\Delta}$ are contragradient to each other and in particular we have $\rho_{\Delta}\left(C_{2}\right)=\rho_{n-\Delta}\left(C_{2}\right)$.

In the representation ρ elements of $\operatorname{conf}\left(\mathbb{R}^{p, q}\right)$ act on the fields $\Phi(\mathbf{x})$:

$$
\begin{aligned}
& \rho\left(\omega^{\mu \nu} L_{\mu \nu}+a^{\mu} P_{\mu}+b^{\mu} K_{\mu}+\beta D\right) \Phi(\mathbf{x})= \\
= & \operatorname{Tr}\left[\left(\begin{array}{ll}
\varepsilon_{11} & \varepsilon_{12} \\
\varepsilon_{21} & \varepsilon_{22}
\end{array}\right)\left(T_{1}\left(M^{a b}\right) \cdot \rho\left(M_{a b}\right)\right)\right] \Phi(\mathbf{x}) .
\end{aligned}
$$

where $\left(\begin{array}{ll}\varepsilon_{11} & \varepsilon_{12} \\ \varepsilon_{21} & \varepsilon_{22}\end{array}\right)$ is the matrix of parameters,

$$
\begin{gathered}
\frac{1}{2} T_{1}\left(M^{a b}\right) \cdot \rho\left(M_{a b}\right)=\left(T_{1} \otimes \rho\right)\left(\frac{1}{2} M^{a b} \otimes M_{a b}\right)= \\
=\left(\begin{array}{cc}
\frac{\Delta-n}{2} \cdot \mathbf{1}+\mathbf{S}-\mathbf{p} \cdot \mathbf{x}, & \mathbf{p} \\
\mathbf{x} \cdot \mathbf{S}-\overline{\mathbf{S}} \cdot \mathbf{x}-\mathbf{x} \cdot \mathbf{p} \cdot \mathbf{x}+\left(\Delta-\frac{n}{2}\right) \cdot \mathbf{x}, & -\frac{\Delta}{2} \cdot \mathbf{1}+\overline{\mathbf{S}}+\mathbf{x} \cdot \mathbf{p}
\end{array}\right),
\end{gathered}
$$

Here we introduced

$$
\begin{gathered}
\mathbf{p}=\frac{1}{2} \boldsymbol{\sigma}^{\mu} \hat{\mathbf{p}}_{\mu}=-\frac{i}{2} \boldsymbol{\sigma}^{\mu} \partial_{x_{\mu}}, \quad \mathbf{x}=-i \overline{\boldsymbol{\sigma}}^{\mu} x_{\mu}, \\
\overline{\mathbf{S}}=\frac{1}{2} \overline{\boldsymbol{\sigma}}^{\mu \nu} S_{\mu \nu}, \quad \mathbf{S}=\frac{1}{2} \boldsymbol{\sigma}^{\mu \nu} S_{\mu \nu}
\end{gathered}
$$

The action of spin generators $S_{\mu \nu}$ on tensor fields of the type $(\ell, \dot{\ell})$ is

$$
\begin{aligned}
& {\left[S_{\mu \nu} \Phi\right]_{\alpha_{1} \cdots \alpha_{2 \ell}}^{\dot{\alpha}_{1} \cdots \dot{\alpha}_{2} i}=\left(\sigma_{\mu \nu}\right)_{\alpha_{1}}{ }^{\alpha} \Phi_{\alpha \alpha_{2} \cdots \alpha_{2 \ell}}^{\dot{\alpha}_{1} \cdots \dot{\alpha}_{2}}+\cdots+\left(\sigma_{\mu \nu}\right)_{\alpha_{2 \ell}}{ }^{\alpha} \phi_{\alpha_{1} \cdots \alpha_{2 \ell-1} \alpha}^{\dot{\alpha}_{1} \cdots \dot{\alpha}_{2 i}}+} \\
& +\left(\bar{\sigma}_{\mu \nu}\right)_{\dot{\alpha}}^{\dot{\alpha}_{1}} \phi_{\alpha_{1} \cdots \alpha_{2 \ell}}^{\dot{\alpha} \dot{\alpha}_{2} \cdots \dot{\alpha}_{2 i}}+\cdots+\left(\bar{\sigma}_{\mu \nu}\right)_{\dot{\alpha}_{\alpha}}^{\dot{\alpha}_{2 \ell}} \Phi_{\alpha_{1} \cdots \alpha_{2 \ell}}^{\dot{\alpha}_{1} \cdots \dot{\alpha}_{2 \ell}+\dot{\alpha}} .
\end{aligned}
$$

For symmetric representations it is convenient to work with the generating functions

$$
\Phi(x, \lambda, \tilde{\lambda})=\Phi_{\alpha_{1} \cdots \alpha_{2 \ell}}^{\dot{\alpha}_{1} \cdots \dot{\alpha}_{2 i}}(x) \lambda^{\alpha_{1}} \cdots \lambda^{\alpha_{22}} \tilde{\lambda}_{\dot{\alpha}_{1}} \cdots \tilde{\lambda}_{\dot{\alpha}_{2 \ell}}
$$

where λ and $\tilde{\lambda}$ are auxiliary spinors and the action of $S_{\mu \nu}$ is

$$
\left[S_{\mu \nu} \Phi\right](x, \lambda, \tilde{\lambda})=\left[\lambda \sigma_{\mu \nu} \partial_{\lambda}+\tilde{\lambda} \bar{\sigma}_{\mu \nu} \partial_{\tilde{\lambda}}\right] \Phi(x, \lambda, \tilde{\lambda}),
$$

where $\lambda \sigma_{\mu \nu} \partial_{\lambda}=\lambda_{\alpha}\left(\sigma_{\mu \nu}\right)^{\alpha}{ }_{\beta} \partial_{\lambda_{\beta}}, \tilde{\lambda} \bar{\sigma}_{\mu \nu} \partial_{\tilde{\lambda}}=\tilde{\lambda}^{\dot{\alpha}}\left(\bar{\sigma}_{\mu \nu}\right)_{\dot{\alpha}}^{\dot{\beta}} \partial_{\tilde{\lambda}^{\dot{\beta}}}$. The generators $S_{\mu \nu}$ are represented as differential operators over spinors

$$
S_{\mu \nu}=\lambda \sigma_{\mu \nu} \partial_{\lambda}+\tilde{\lambda} \bar{\sigma}_{\mu \nu} \partial_{\tilde{\lambda}} .
$$

For 4-dimensional case $\mathbb{R}^{p, q}=\mathbb{R}^{1,3}$ we have 2-component Weyl spinors $\lambda, \tilde{\lambda}$ and tensor fields $\Phi_{\alpha_{1} \cdots \alpha_{2 \ell}}^{\dot{\alpha}_{1} \cdots \dot{\alpha}_{2 i}}(x)$ are automatically symmetric under permutations of dotted and undotted indices separately.
Then for $n=4$ we have

$$
\boldsymbol{\sigma}_{\mu}=\left(\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right), \quad \overline{\boldsymbol{\sigma}}_{\mu}=\left(\sigma_{0},-\sigma_{1},-\sigma_{2},-\sigma_{3}\right)
$$

where $\sigma_{0}=\mathrm{I}_{2}$ and $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are standard Pauli matrices.
Consequently we obtain for the self-dual components of $S_{\mu \nu}$

$$
\mathbf{S}=\frac{1}{2} \boldsymbol{\sigma}^{\mu \nu} S_{\mu \nu}=\left(\begin{array}{cc}
\frac{1}{2} \lambda_{1} \partial_{\lambda_{1}}-\frac{1}{2} \lambda_{2} \partial_{\lambda_{2}} & \lambda_{2} \partial_{\lambda_{1}} \\
\lambda_{1} \partial_{\lambda_{2}} & -\frac{1}{2} \lambda_{1} \partial_{\lambda_{1}}+\frac{1}{2} \lambda_{2} \partial_{\lambda_{2}}
\end{array}\right)
$$

and for anti-self-dual components of $S_{\mu \nu}$

$$
\overline{\mathbf{S}}=\frac{1}{2} \bar{\sigma}^{\mu \nu} S_{\mu \nu}=\left(\begin{array}{cc}
\frac{1}{2} \tilde{\lambda}^{\dot{1}} \partial_{\tilde{\lambda}^{i}}-\frac{1}{2} \tilde{\lambda}^{\dot{2}} \partial_{\tilde{\lambda}^{\dot{2}}} & \tilde{\lambda}^{\dot{2}} \partial_{\tilde{\lambda}^{i}} \\
\tilde{\lambda}^{\dot{1}} \partial_{\tilde{\lambda}^{\dot{2}}} & -\frac{1}{2} \tilde{\lambda}^{\dot{1}} \partial_{\tilde{\lambda}^{i}}+\frac{1}{2} \tilde{\lambda}^{\dot{2}} \partial_{\tilde{\lambda}^{\dot{2}}}
\end{array}\right)
$$

In fact, the operator \mathbf{S} is restricted to the space of homogeneous polynomials in components of the spinor λ of degree 2ℓ so that one can choose new variables $\chi_{1}=-\frac{\lambda_{1}}{\lambda_{2}}, t=-\lambda_{2}$ and obtain that \mathbf{S} coincides with the following matrix $\mathbf{S}^{(\ell)}$ which contains parameter ℓ (the eigenvalue of the operator $\frac{1}{2} t \partial_{t}$):

$$
\mathbf{S}^{(\ell)}=\left(\begin{array}{cc}
\chi_{1} \partial_{\chi_{1}}-\ell, & -\partial_{\chi_{1}} \\
\chi_{1}^{2} \partial_{\chi_{1}}-2 \ell \chi_{1}, & -\chi_{1} \partial_{\chi_{1}}+\ell
\end{array}\right) \equiv\left(\begin{array}{cc}
S_{3} & S_{-} \\
S_{+} & -S_{3}
\end{array}\right),
$$

Similarly the operator $\overline{\mathbf{S}}$ is restricted to the space of homogeneous polynomials in components of the spinor $\tilde{\lambda}$ of degree $2 \dot{\ell}$ so that for the the choice $\chi_{2}=-\frac{\tilde{\lambda}^{i}}{\tilde{\lambda}^{2}}$ one obtains $\overline{\mathbf{S}}=\overline{\mathbf{S}}^{(\dot{\ell})}$, where

$$
\overline{\mathbf{S}}^{(\dot{\ell})}=\left(\begin{array}{cc}
\chi_{2} \partial_{\chi_{2}}-\dot{\ell}, & -\partial_{\chi_{2}} \\
\chi_{2}^{2} \partial_{\chi_{2}}-2 \dot{\ell} \chi_{2}, & -\chi_{2} \partial_{\chi_{2}}+\dot{\ell}
\end{array}\right) \equiv\left(\begin{array}{cc}
\bar{S}_{3} & \bar{S}_{-} \\
\bar{S}_{+} & -\bar{S}_{3}
\end{array}\right) .
$$

L-operators

Let V be a vector space and I is the identity operator in V. Consider an operator $\mathrm{R}(u) \in \operatorname{End}(V \otimes V)$ which is a function of spectral parameter u and satisfies Yang-Baxter equation in the braid form

$$
R_{j_{1} j_{2}}^{i_{1} i_{2}}(u-v) R_{\ell_{2} k_{3}}^{j_{2} i_{3}}(u) R_{k_{1} k_{2}}^{j_{1} \ell_{2}}(v)=R_{j_{2} j_{3}}^{i_{2} i_{3}}(v) R_{j_{1} \ell_{2}}^{i_{1} j_{2}}(u) R_{k_{1} k_{2}}^{j_{1} \ell_{2}}(u-v),
$$

$\mathrm{R}_{12}(u-v) \mathrm{R}_{23}(u) \mathrm{R}_{12}(v)=\mathrm{R}_{23}(v) \mathrm{R}_{12}(u) \mathrm{R}_{23}(u-v) \in \operatorname{End}(V \otimes V \otimes V)$.
Here we use standard matrix notations: $\mathrm{R}_{12}(u)=\mathrm{R}(u) \otimes I$, etc. Let V^{\prime} be another vector space and I^{\prime} is the identity operator in V^{\prime}. We call operator $\mathrm{L}(u) \in \operatorname{End}\left(V \otimes V^{\prime}\right)$ the L-operator in the spaces V and V^{\prime} if
$\mathrm{R}_{12}(u-v) \mathrm{L}_{13}(u) \mathrm{L}_{23}(v)=\mathrm{L}_{13}(v) \mathrm{L}_{23}(u) \mathrm{R}_{12}(u-v) \in \operatorname{End}\left(V \otimes V \otimes V^{\prime}\right)$.
Here $\mathrm{L}_{23}(v)=I \otimes \mathrm{~L}(v), \mathrm{R}_{12}(u)=\mathrm{R}(u) \otimes I^{\prime}$, etc.

L-operators for $g \ell(N)$

Consider Lie algebra $g \ell(N, \mathbb{C})$ with generators $E_{i j}(i, j=1, \ldots, N)$:

$$
\left[E_{i j}, E_{k \ell}\right]=\delta_{j k} E_{i \ell}-\delta_{i \ell} E_{k j}
$$

Defining repr. T is: $T\left(E_{i j}\right)=e_{i j}$, where $e_{i j}$ are matrix units. Introduce permutation matrix P :

$$
P=\sum_{i j} e_{i j} \otimes e_{j i} \Rightarrow P w_{1} \otimes w_{2}=w_{2} \otimes w_{1} \quad\left(\forall w_{1}, w_{2} \in \mathbb{C}^{N}\right)
$$

E.g. the commutativity $v^{i} v^{j}=v^{j} v^{i}$ is written as

$$
v \otimes v-P v \otimes v=0 \Leftrightarrow\left(\delta_{k}^{i} \delta_{r}^{j}-\delta_{r}^{i} \delta_{k}^{j}\right) v^{k} v^{r}=0
$$

Define Yang R-matrix (which satisfies Yang-Baxter equation)

$$
\mathrm{R}_{12}(u):=I_{N} \otimes I_{N}+u P \Rightarrow \mathrm{R}_{k r}^{i j}(u):=\delta_{k}^{i} \delta_{r}^{j}+u \delta_{r}^{i} \delta_{k}^{j}
$$

Consider the matrix || $\mathrm{L}_{j}^{k}(u) \|$ with operator coefficients

$$
\mathrm{L}_{j}^{k}(u)=\delta_{j}^{k} \mathbf{1}+\frac{1}{u}\left(E_{j k}^{(0)}+\frac{1}{u} E_{j k}^{(1)}+\frac{1}{u^{2}} E_{j k}^{(2)}+\ldots\right)
$$

which satisfies RLL relations with Yang R-matrix

$$
\mathrm{R}_{k_{1} k_{2}}^{i_{1} i_{2}}(u-v) \mathrm{L}_{j_{1}}^{k_{1}}(u) \mathrm{L}_{j_{2}}^{k_{2}}(v)=\mathrm{L}_{k_{1}}^{i_{1}}(v) \mathrm{L}_{k_{2}}^{i_{2}}(u) \mathrm{R}_{j_{1} j_{2}}^{k_{1} k_{2}}(u-v) .
$$

Substitute here $\left\|L_{j}^{k}(u)\right\|$ and expand over $1 / u$ and $1 / v$:

$$
\begin{gathered}
{\left[E_{i j}^{(0)}, E_{k \ell}^{(0)}\right]=\delta_{j k} E_{i \ell}^{(0)}-\delta_{i \ell} E_{k j}^{(0)},} \\
{\left[E_{i j}^{(0)}, E_{k \ell}^{(1)}\right]=\delta_{i \ell} E_{k j}^{(1)}-\delta_{j k} E_{i \ell}^{(1)},} \\
{\left[E_{i j}^{(1)}, E_{k \ell}^{(1)}\right]=\left[E_{i j}^{(2)}, E_{k \ell}^{(0)}\right]+E_{i j}^{(0)} \cdot E_{k \ell}^{(1)}-E_{i j}^{(1)} \cdot E_{k \ell}^{(0)}, \ldots .}
\end{gathered}
$$

The infinite dim. algebra generated by elements $E_{k j}^{(\alpha)}$ is called Yangian $Y(g \ell(N, \mathbb{C}))$.
There is the evaluation homomorphism: $Y(g \ell(N, \mathbb{C})) \rightarrow g \ell(N, \mathbb{C})$

$$
E_{i j}^{(0)} \rightarrow E_{i j}, \quad E_{i j}^{(k)} \rightarrow 0, \quad k \geq 1
$$

It gives L-operator

$$
L(u) \rightarrow \mathrm{L}_{j}^{k}(u)=u \delta_{j}^{k} \mathbf{1}+\rho\left(E_{j k}\right)
$$

which is related to $s \ell(N, \mathbb{C})$-type spin chains with spins in repr. ρ.

Now we consider so $(p+1, q+1)$-type operator:
$\mathrm{L}^{(\rho)}(u)=u \mathrm{I}+\frac{1}{2} T_{1}\left(M^{a b}\right) \otimes \rho\left(M_{a b}\right)=$

$$
=\left(\begin{array}{cc}
u_{+} \cdot \mathbf{1}+\mathbf{S}-\mathbf{p} \cdot \mathbf{x}, & \mathbf{p} \\
\mathbf{x} \cdot \mathbf{S}-\overline{\mathbf{S}} \cdot \mathbf{x}-\mathbf{x} \cdot \mathbf{p} \cdot \mathbf{x}+\left(\Delta-\frac{n}{2}\right) \cdot \mathbf{x}, & u_{-} \cdot \mathbf{1}+\overline{\mathbf{S}}+\mathbf{x} \cdot \mathbf{p}
\end{array}\right)
$$

where T_{1} is the spinor representation and ρ is the differential representation of the conformal algebra so $(p+1, q+1)$;

$$
u_{+}=u+\frac{\Delta-n}{2}, \quad u_{-}=u-\frac{\Delta}{2}, \quad n=p+q
$$

We have used the expression for the polarized Casimir operator $\frac{1}{2} T_{1}\left(M^{a b}\right) \otimes \rho\left(M_{a b}\right)$ which was appeared in the discussion of the differential representation of the conformal algebra.
Our aim is to prove the RLL relation

$$
\mathrm{R}_{12}(u-v) \mathrm{L}_{1}^{(\rho)}(u) \mathrm{L}_{2}^{(\rho)}(v)=\mathrm{L}_{1}^{(\rho)}(v) \mathrm{L}_{2}^{(\rho)}(u) \mathrm{R}_{12}(u-v)
$$

L-operators for $s o(p+1, q+1)$

Let $\Gamma_{a}(a=0, \ldots, n+1)$ be $2^{\frac{n}{2}+1}$-dim. gamma-matrices in $\mathbb{R}^{p+1, q+1}$ $(n=p+q)$ which generate the Clifford algebra with the basis
$\Gamma_{a_{1} \ldots a_{k}}=\frac{1}{k!} \sum_{s \in \mathcal{S}_{k}}(-1)^{\mathrm{p}(s)} \Gamma_{s\left(a_{1}\right)} \cdots \Gamma_{s\left(a_{k}\right)}(k \leq n+2), \quad \Gamma_{A_{k}}=0(k>n+2)$
where $\mathrm{p}(s)$ denote the parity of s.
The $S O(p+1, q+1)$-invariant R-matrix is

$$
\mathrm{R}(u)=\sum_{k=0}^{n+2} \frac{\mathrm{R}_{k}(u)}{k!} \cdot \Gamma_{a_{1} \ldots a_{k}} \otimes \Gamma^{a_{1} \ldots a_{k}} \in \operatorname{End}(V \otimes V)
$$

where V is the $2^{\frac{n}{2}+1}$-dimensional space of spinor representation T of $S O(p+1, q+1)$. This R-matrix satisfies Yang-Baxter equation for special choice of $\mathrm{R}_{k}(u)$.

Functions $\mathrm{R}_{k}(u)$ have to obey the recurrent relation (R.Shankar and E.Witten (1978), M.Karowsky and H.Thun (1981))

$$
\mathrm{R}_{k+2}(u)=-\frac{u+k}{u+n-k} \mathrm{R}_{k}(u)
$$

We itemize some cases of ρ when the condition is fulfilled

- The differential representation ρ :

$$
\begin{equation*}
M_{a b} \rightarrow \rho\left(M_{a b}\right)=i\left(y_{a} \partial_{b}-y_{b} \partial_{a}\right), \tag{1}
\end{equation*}
$$

where $\partial_{a}=\frac{\partial}{\partial y^{a}}$ and y_{a} are coordinates in the space $\mathbb{R}^{p+1, q+1}$.

- Fundamental (defining) $(n+2)$-dimensional representation ρ :
(R.Shankar and E.Witten (1978), M.Karowsky and H.Thun (1981))

$$
\begin{equation*}
M_{a b} \rightarrow \rho\left(M_{a b}\right)=i g\left(e_{a b}-e_{b a}\right) \tag{2}
\end{equation*}
$$

where $e_{a b}$ are matrix units and $g=\left\|g_{a b}\right\|$.

- The differential representation ρ for $S_{\mu \nu}=0$ and arbitrary Δ :

$$
\begin{equation*}
M_{a b} \rightarrow \rho\left(M_{a b}\right), \quad S_{\mu \nu}=0 \tag{3}
\end{equation*}
$$

One can check that (2) and (3) can be extracted from the differential representation (1).

General R-operator

Now we construct R-operator as solution of the defining RLL-equation

$$
\mathcal{R}_{12}(u-v) \mathrm{L}_{1}(u) \mathrm{L}_{2}(v)=\mathrm{L}_{1}(v) \mathrm{L}_{2}(u) \mathcal{R}_{12}(u-v)
$$

with conformal L-operator. Here indices 1,2 correspond to two infinite-dimensional spaces of differential representation ρ of $\operatorname{conf}\left(\mathbb{R}^{p, q}\right)$ and we consider two cases:

- Dimension $n=p+q$ of the space $\mathbb{R}^{p, q}$ is arbitrary and representation of the conformal group is special and corresponds to the scalars: $\mathbf{S}=0$ and $\overline{\mathbf{S}}=0$.
- Dimension $n=p+q$ of the space $\mathbb{R}^{p, q}$ is fixed by $n=4$ and representation of the conformal group is arbitrary: $\mathbf{S} \neq 0$ and $\overline{\mathbf{S}} \neq 0$.

The n-dimensional scalar case

in this case the defining RLL-equation has the form

$$
\begin{equation*}
\mathcal{R}_{12}(u-v) \mathrm{L}_{1}\left(u_{+}, u_{-}\right) \mathrm{L}_{2}\left(v_{+}, v_{-}\right)=\mathrm{L}_{1}\left(v_{+}, v_{-}\right) \mathrm{L}_{2}\left(u_{+}, u_{-}\right) \mathcal{R}_{12}(u-v), \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{L}_{1}\left(u_{+}, u_{-}\right)=\left(\begin{array}{ll}
\mathbf{1} & \mathbf{0} \\
\mathbf{x}_{1} & \mathbf{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
u_{+} \cdot \mathbf{1} & \mathbf{p}_{1} \\
\mathbf{0} & u_{-} \cdot \mathbf{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
-\mathbf{x}_{1} & 1
\end{array}\right), \\
& \mathrm{L}_{2}\left(v_{+}, v_{-}\right)=\left(\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\mathbf{x}_{2} & \mathbf{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
v_{+} \cdot \mathbf{1} & \mathbf{p}_{2} \\
\mathbf{0} & v_{-} \cdot \mathbf{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
-\mathbf{x}_{2} & \mathbf{1}
\end{array}\right),
\end{aligned}
$$

and $u_{+}=u+\frac{\Delta_{1}-n}{2}, u_{-}=u-\frac{\Delta_{1}}{2}, v_{+}=v+\frac{\Delta_{2}-n}{2}, v_{-}=v-\frac{\Delta_{2}}{2}$.
The \mathcal{R}-operator in (4) interchanges a pair of parameters $\left(u_{+}, u_{-}\right)$in the
first L-operator with a pair $\left(v_{+}, v_{-}\right)$from the second L-operator. It seems to be reasonable to consider also operators which perform the other interchanges of four parameters. In order to carry out it systematically we joint them in the set $\mathbf{u}=\left(v_{+}, v_{-}, u_{+}, u_{-}\right)$. Then \mathcal{R}-operator represents the permutation s such that

$$
\begin{equation*}
s \mapsto \mathcal{R}(u-v) ; s \mathbf{u}=\left(\underline{u_{+}}, u_{-}, \underline{v_{+}}, v_{-}\right) . \tag{5}
\end{equation*}
$$

An arbitrary permutation can be builded from elementary transpositions $\mathrm{s}_{1}, \mathrm{~s}_{2}$ and s_{3}

$$
s_{1} \mathbf{u}=\left(\underline{v_{-}}, \underline{v_{+}}, u_{+}, u_{-}\right) ; s_{2} \mathbf{u}=\left(v_{+}, \underline{u_{+}}, \underline{v_{-}}, u_{-}\right) ; s_{3} \mathbf{u}=\left(v_{+}, v_{-}, \underline{u_{-}}, \underline{u_{+}}\right) .
$$

In particular: $s=s_{2} s_{1} s_{3} s_{2}$. Thus we reduce the problem to construction of operators $S_{i}(\mathbf{u})(i=1,2,3)$ which represent elementary transpositions

$$
\begin{gather*}
\left(\underline{v_{+}, v_{-}}, u_{+}, u_{-}\right): \mathrm{S}_{1}(\mathbf{u}) \mathrm{L}_{2}\left(v_{+}, v_{-}\right)=\mathrm{L}_{2}\left(v_{-}, v_{+}\right) \mathrm{S}_{1}(\mathbf{u}) \tag{6}\\
\left(v_{+}, \underline{v_{-}, u_{+}}, u_{-}\right): \tag{7}\\
\mathrm{S}_{2}(\mathbf{u}) \mathrm{L}_{1}\left(u_{+}, u_{-}\right) \mathrm{L}_{2}\left(v_{+}, v_{-}\right)=\mathrm{L}_{1}\left(v_{-}, u_{-}\right) \mathrm{L}_{2}\left(v_{+}, u_{+}\right) \mathrm{S}_{2}(\mathbf{u}) \\
\left(v_{+}, v_{-}, \underline{u_{+}, u_{-}}\right): \mathrm{S}_{3}(\mathbf{u}) \mathrm{L}_{1}\left(u_{+}, u_{-}\right)=\mathrm{L}_{1}\left(u_{-}, u_{+}\right) \mathrm{S}_{3}(\mathbf{u}) \tag{8}
\end{gather*}
$$

Then \mathcal{R}-operator can be constructed form these building blocks:

$$
\begin{equation*}
\mathcal{R}(\mathbf{u})=\mathrm{S}_{2}\left(s_{1} s_{3} s_{2} \mathbf{u}\right) \mathrm{S}_{1}\left(s_{3} s_{2} \mathbf{u}\right) \mathrm{S}_{3}\left(s_{2} \mathbf{u}\right) \mathrm{S}_{2}(\mathbf{u}) \tag{9}
\end{equation*}
$$

The Yang-Baxter relation for this \mathcal{R}-operator is the direct consequence of the Coxeter relations for the building blocks $S_{i}(\mathbf{u})$.

We are going to the construct $S_{i}(\mathbf{u})$ and at the first stage we consider operators S_{1} and S_{3} which are examples of the operator S :

$$
\begin{equation*}
\mathrm{SL}\left(u_{+}, u_{-}\right)=\mathrm{L}\left(u_{-}, u_{+}\right) \mathrm{S} \tag{10}
\end{equation*}
$$

For the scalar case the differential representation $\rho^{(\Delta)}$ of the conformal algebra is parameterized only by conf. dimension $-\Delta$. Taking in mind the definition of u_{+}and u_{-}we see that their transposition corresponds to $\Delta \rightarrow n-\Delta$ which preserve the Casimir operator C_{2}. Thus, S intertwines equivalent representations: $\rho^{(\Delta)} \sim \rho^{(n-\Delta)}$. From (10) we obtain the following equations:

- translation: $\left[\hat{p}_{\mu}, \mathrm{S}\right]=0$,
- Lorentz rotation: $\left[\left(x_{\mu} \hat{p}_{\nu}-x_{\nu} \hat{p}_{\mu}\right), \mathrm{S}\right]=0$,
- dilatation: $\left[x_{\mu} \hat{p}^{\mu}, \mathrm{S}\right]=i(n-2 \Delta) \mathrm{S}$,
- conformal boost

$$
\left[\left(2 x_{\mu}(x \cdot \hat{p})-x^{2} \hat{p}_{\mu}\right), S\right]=2 i(n-\Delta) x_{\mu} S-2 i \Delta \mathrm{~S} x_{\mu}
$$

Note that in the scalar case $S_{\mu \nu}=0$ the conformal boost equation is dispensable since it can be derived from first three equations.

Thus, we deduce

$$
S=\hat{p}^{2\left(\frac{n}{2}-\Delta\right)}
$$

and explicit expressions for S_{1} and S_{3} are the following

$$
\mathrm{S}_{1}\left(v_{-}-v_{+}\right)=\hat{p}_{2}^{2\left(v_{-}-v_{+}\right)} ; \mathrm{S}_{3}\left(u_{-}-u_{+}\right)=\hat{p}_{1}^{2\left(u_{-}-u_{+}\right)}
$$

It remains to construct the last building block for \mathcal{R}-operator - operator S_{2}. It happens that it can be produced directly from the operator S by using some kind of duality transformation

$$
p \rightarrow x_{2}-x_{1} \equiv x_{21} ; u_{+} \rightarrow v_{-} ; u_{-} \rightarrow u_{+}
$$

so that S_{2} is the operator of multiplication by the function

$$
\mathrm{S}_{2}\left(u_{+}-v_{-}\right)=x_{12}^{2\left(u_{+}-v_{-}\right)}
$$

Coxeter relations are evident and have the following explicit forms
$\hat{p}_{2}^{2 a} x_{12}^{2(a+b)} \hat{p}_{2}^{2 b}=x_{12}^{2 b} \hat{p}_{2}^{2(a+b)} x_{12}^{2 b} ; \hat{p}_{1}^{2 a} x_{12}^{2(a+b)} \hat{p}_{1}^{2 b}=x_{12}^{2 b} \hat{p}_{1}^{2(a+b)} x_{12}^{2 a}$,
and are both equivalent to the operator identity (A.P.Isaev (2003))

$$
\begin{equation*}
\hat{p}^{2 a} x^{2(a+b)} \hat{p}^{2 b}=x^{2 b} \hat{p}^{2(a+b)} x^{2 a} \tag{12}
\end{equation*}
$$

which can be rewritten in the form of well-known star-triangle relation

$$
\begin{equation*}
\int \frac{\mathrm{d}^{n} w}{(x-w)^{2 \alpha}(y-w)^{2 \beta}(z-w)^{2 \gamma}}=\frac{\mathrm{V}(\alpha, \beta, \gamma)}{(y-z)^{2 \alpha^{\prime}}(x-z)^{2 \beta^{\prime}}(x-y)^{2 \gamma^{\prime}}} \tag{13}
\end{equation*}
$$

where $\alpha+\beta+\gamma=n$ and
$\mathrm{V}(\alpha, \beta, \gamma)=\pi^{\frac{n}{2}} \frac{\Gamma\left(\alpha^{\prime}\right) \Gamma\left(\beta^{\prime}\right) \Gamma\left(\gamma^{\prime}\right)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\gamma)} ; \alpha^{\prime}=\frac{n}{2}-\alpha, \beta^{\prime}=\frac{n}{2}-\beta, \gamma^{\prime}=\frac{n}{2}-\gamma$

Finally we find explicit expression for \mathcal{R}-operator

$$
\begin{equation*}
\mathcal{R}_{12}(u-v)=x_{12}^{2\left(u_{--} v_{+}\right)} \hat{p}_{2}^{2\left(u_{+}-v_{+}\right)} \hat{p}_{1}^{2\left(u_{-}-v_{-}\right)} x_{12}^{2\left(u_{+}-v_{-}\right)}, \tag{14}
\end{equation*}
$$

which satisfies the YB equation. For $\Delta_{1}=\Delta_{2}=\Delta$ the \mathcal{R}_{12} is

$$
\begin{gathered}
R_{a b}(\alpha ; \xi):=\left(\hat{q}_{(a b)}\right)^{2(\alpha+\xi)}\left(\hat{p}_{(a)}\right)^{2 \alpha}\left(\hat{p}_{(b)}\right)^{2 \alpha}\left(\hat{q}_{(a b)}\right)^{2(\alpha-\xi)}= \\
=1+\alpha h_{(a b)}(\xi)+\alpha^{2} \ldots,
\end{gathered}
$$

where $\alpha=u-v, \xi=\frac{n}{2}-\Delta$ and Hamiltonian densities $h_{(a b)}(x)$ are

$$
\begin{aligned}
& h_{(a b)}(\xi)=2 \ln \left(\hat{q}_{(a b)}\right)^{2}+\left(\hat{q}_{(a b)}\right)^{2 \xi} \ln \left(\hat{p}_{(a)}^{2} \hat{p}_{(b)}^{2}\right)\left(\hat{q}_{(a b)}\right)^{-2 \xi}= \\
& =\hat{p}_{(a)}^{-2 \xi} \ln \left(\hat{q}_{(a b)}\right)^{2} \hat{p}_{(a)}^{2 \xi}+\hat{p}_{(b)}^{-2 \xi} \ln \left(\hat{q}_{(a b)}\right)^{2} \hat{p}_{(b)}^{2 \xi}+\ln \left(\hat{p}_{(a)}^{2} \hat{p}_{(b)}^{2}\right) .
\end{aligned}
$$

Using the standard procedure one can construct an integrable system with Hamiltonian $H(\xi)=\sum_{a=1}^{N-1} h_{(a, a+1)}(\xi)$. For $n=p+q=1$ and $\xi=1 / 2$ this Hamiltonian reproduces the Hamiltonian for the Lipatov's integrable model.

General R-operator in the case so $(2,4)=s u(2,2)$

The differential representation ρ is characterized by three parameters scaling dimension Δ and two spins $\ell, \dot{\ell}$ and now the operator $\mathrm{L}(u)$ contains four parameters u and $\Delta, \ell, \dot{\ell}$. These parameters are combined in a pairs \mathbf{u}_{+}and \mathbf{u}_{-}which are analogs of u_{+}and u_{-}

$$
\mathbf{u}_{+} \equiv\left(u_{+}, \ell\right)=\left(u+\frac{\Delta-n}{2}, \ell\right) \quad ; \quad \mathbf{u}_{-} \equiv\left(u_{-}, \dot{\ell}\right)=\left(u-\frac{\Delta}{2}, \dot{\ell}\right) .
$$

We have the following expression for the operator $\mathrm{L}(u)$
$\mathrm{L}\left(\mathbf{u}_{+}, \mathbf{u}_{-}\right)=\left(\begin{array}{ll}\mathbf{1} & \mathbf{0} \\ \mathbf{x} & \mathbf{1}\end{array}\right) \cdot\left(\begin{array}{cc}u_{+} \cdot \mathbf{1}+\mathbf{S}^{(\ell)} & \mathbf{p} \\ \mathbf{0} & u_{-} \cdot \mathbf{1}+\overline{\mathbf{S}}^{(\ell)}\end{array}\right) \cdot\left(\begin{array}{cc}\mathbf{1} & \mathbf{0} \\ -\mathbf{x} & \mathbf{1}\end{array}\right)$,
and the defining RLL-relation has the form

$$
\mathcal{R}_{12}(u-v) \mathrm{L}_{1}\left(\mathbf{u}_{+}, \mathbf{u}_{-}\right) \mathrm{L}_{2}\left(\mathbf{v}_{+}, \mathbf{v}_{-}\right)=\mathrm{L}_{1}\left(\mathbf{v}_{+}, \mathbf{v}_{-}\right) \mathrm{L}_{2}\left(\mathbf{u}_{+}, \mathbf{u}_{-}\right) \mathcal{R}_{12}(u-v)
$$

We start with construction of operators S_{1} and S_{3} which are two copies of the operator S defined by the equation

$$
\begin{equation*}
\mathrm{S} \cdot \mathrm{~L}\left(\mathbf{u}_{+}, \mathbf{u}_{-}\right)=\mathrm{L}\left(\mathbf{u}_{-}, \mathbf{u}_{+}\right) \cdot \mathrm{S} \tag{16}
\end{equation*}
$$

The exchange $\mathbf{u}_{+} \leftrightarrow \mathbf{u}_{-}$is equivalent to $u_{+} \leftrightarrow u_{-}$and $\ell \leftrightarrow \dot{\ell}$, i.e.
$\Delta \leftrightarrow 4-\Delta$ and $\ell \leftrightarrow \dot{\ell}$. Differential representation of the conformal algebra $\operatorname{conf}\left(\mathbb{R}^{1,3}\right)$ is parameterized by three numbers $\Delta, \ell, \dot{\ell}$ and we denote it by $\rho^{\Delta, \ell, \ell}$. Thus operator S intertwines equivalent representations $\rho^{\Delta, \ell, \dot{\ell}} \sim \rho^{4-\Delta, \dot{\ell}, \ell}$. As in the previous case the operator S has transparent representation theory meaning.

In this situation it is convenient to work with the generating functions

$$
\Phi(x, \lambda, \tilde{\lambda})=\Phi_{\alpha_{1} \cdots \alpha_{2 \ell}}^{\dot{\alpha}_{1} \cdots \dot{\alpha}_{2 i}}(x) \lambda^{\alpha_{1}} \cdots \lambda^{\alpha_{2 \ell}} \tilde{\lambda}_{\dot{\alpha}_{1}} \cdots \tilde{\lambda}_{\dot{\alpha}_{2 \ell}}
$$

where λ and $\tilde{\lambda}$ are auxiliary spinors. Let us introduce the convolution

$$
\mathrm{F}(\lambda, \tilde{\lambda}) * \mathrm{G}(\lambda, \tilde{\lambda})=\left.\mathrm{F}\left(\partial_{\lambda}, \partial_{\tilde{\lambda}}\right) \mathrm{G}(\lambda, \tilde{\lambda})\right|_{\lambda=0, \tilde{\lambda}=0}
$$

and use it to represent the intertwining operator as an integral operator acting on generating functions

$$
[\mathrm{S} \Phi](X)=\int \mathrm{d}^{4} y \mathrm{~S}(X, Y) * \Phi(Y)
$$

where we combine space-time coordinates and two spinors in one compact notation $X=(x, \lambda, \tilde{\lambda}), Y=(y, \eta, \tilde{\eta})$ and denote generating function by $\Phi(X)$.

The set of equations (Translation, Lorentz rotations, Dilatations, Conformal boosts) for the kernel of S coincides with the set of equations for a Green function for two fields of the types $(\ell, \dot{\ell})$ and $(\dot{\ell}, \ell)$ in conformal field theory and the solution is well known (V.K. Dobrev, G.
Mack, V.B. Petkova, S.G. Petrova, I.T. Todorov, G.M. Sotkov, R.P. Zaikov, $(1977,1978)$)

$$
\mathrm{S}(X, Y)=\frac{1}{(2 \ell)!} \frac{1}{(2 \dot{\ell})!} \frac{(\tilde{\lambda}(\overline{\mathbf{x}-\mathbf{y}}) \eta)^{2 \ell}(\lambda(\mathbf{x}-\mathbf{y}) \tilde{\eta})^{2 \dot{\ell}}}{(x-y)^{2(4-\Delta)}}
$$

where we use compact notation

$$
\begin{equation*}
\mathbf{x}=\sigma_{\mu} \frac{x^{\mu}}{|x|} ; \overline{\mathbf{x}}=\bar{\sigma}_{\mu} \frac{x^{\mu}}{|x|} \tag{17}
\end{equation*}
$$

Formula for the kernel $\mathrm{S}(X, Y)$ leads to the following explicit expression for the action of operator S on the generating function

$$
[S \Phi](X)=\int \frac{\mathrm{d}^{4} y \Phi(y, \tilde{\lambda} \overline{(\mathbf{x}-\mathbf{y})}, \lambda(\mathbf{x}-\mathbf{y}))}{(x-y)^{2(4-\Delta)}}
$$

The operators S_{1} and S_{3} act on the function $\Phi\left(X_{1} ; X_{2}\right)$ in a similar manner $\left(\hat{p}_{2}=i \partial_{x_{2}}, \hat{p}_{1}=i \partial_{x_{1}}\right)$

$$
\begin{gather*}
{\left[\mathrm{S}_{1}\left(v_{-}-v_{+}\right) \Phi\right]\left(X_{1} ; X_{2}\right)=\int \frac{\mathrm{d}^{4} y e^{i y \hat{p}_{2}}}{y^{2\left(v_{-}-v_{+}+2\right)}} \Phi\left(X_{1} ; x_{2}, \tilde{\lambda}_{2} \overline{\mathbf{y}}, \lambda_{2} \mathbf{y}\right)} \\
{\left[\mathrm{S}_{3}\left(u_{-}-u_{+}\right) \Phi\right]\left(X_{1} ; X_{2}\right)=\int \frac{\mathrm{d}^{4} y e^{i y \hat{p}_{1}}}{y^{2\left(u_{-}-u_{+}+2\right)}} \Phi\left(x_{1}, \tilde{\lambda}_{1} \overline{\mathbf{y}}, \lambda_{1} \mathbf{y} ; X_{2}\right)} \tag{18}
\end{gather*}
$$

In order to construct operator S_{2} we take into account the same observation as in a scalar case: it can be produced directly from the operator S using duality transformation

$$
y \rightarrow p ; p \rightarrow x_{2}-x_{1} \equiv x_{21} ; \mathbf{u}_{+} \rightarrow \mathbf{v}_{-} ; \mathbf{u}_{-} \rightarrow \mathbf{u}_{+}
$$

The change $\mathbf{u}_{+} \rightarrow \mathbf{v}_{-} ; \mathbf{u}_{-} \rightarrow \mathbf{u}_{+}$implies the corresponding change of spinors so that the expression for the action of operator S_{2} on the generating function $\Phi\left(X_{1} ; X_{2}\right)$ is

$$
\begin{equation*}
\left[\mathrm{S}_{2}\left(u_{+}-v_{-}\right) \Phi\right]\left(X_{1} ; X_{2}\right)=\int \frac{\mathrm{d}^{4} p e^{i p x_{21}}}{p^{2\left(u_{+}-v_{-}+2\right)}} \Phi\left(x_{1}, \tilde{\lambda}_{2} \overline{\mathbf{p}}, \tilde{\lambda}_{1} ; x_{2}, \lambda_{2}, \lambda_{1} \mathbf{p}\right) \tag{19}
\end{equation*}
$$

The corresponding Coxeter relations have the more complicated form than in the scalar case. The first triple relation

$$
\mathrm{S}_{1}(a) \mathrm{S}_{2}(a+b) \mathrm{S}_{1}(b)=\mathrm{S}_{2}(b) \mathrm{S}_{1}(a+b) \mathrm{S}_{2}(a)
$$

in explicit form looks as follows

$$
\begin{align*}
& \int \frac{\mathrm{d}^{4} z \mathrm{~d}^{4} k \mathrm{~d}^{4} y e^{i z \hat{p}_{2}} e^{i k x_{21}} e^{i y \hat{p}_{2}}}{z^{2(a+2)} k^{2(a+b+2)} y^{2(b+2)}} \cdot \Phi\left(x_{1}, \lambda_{2} \mathbf{z} \overline{\mathbf{k}}, \tilde{\lambda}_{1} ; x_{2}, \lambda_{1} \mathbf{k} \overline{\mathbf{y}}, \tilde{\lambda}_{2} \overline{\mathbf{z}} \mathbf{y}\right)= \\
& =\int \frac{\mathrm{d}^{4} q \mathrm{~d}^{4} y \mathrm{~d}^{4} k e^{i q x_{2} 1} e^{i y \hat{p}_{2}} e^{i k x_{21}}}{q^{2(b+2)} y^{2(a+b+2)} k^{2(a+2)}} \cdot \Phi\left(x_{1}, \lambda_{2} \mathbf{y} \overline{\mathbf{k}}, \tilde{\lambda}_{1} ; x_{2}, \lambda_{1} \mathbf{q} \overline{\mathbf{y}}, \tilde{\lambda}_{2} \overline{\mathbf{q}} \mathbf{k}\right), \tag{20}
\end{align*}
$$

and the second triple relation

$$
\mathrm{S}_{3}(a) \mathrm{S}_{2}(a+b) \mathrm{S}_{3}(b)=\mathrm{S}_{2}(b) \mathrm{S}_{3}(a+b) \mathrm{S}_{2}(a)
$$

is equivalent to the similar integral relation

$$
\begin{align*}
& \int \frac{\mathrm{d}^{4} z \mathrm{~d}^{4} k \mathrm{~d}^{4} y e^{i z \hat{p}_{1}} e^{i k x_{21}} e^{i y \hat{p}_{1}}}{z^{2(a+2)} k^{2(a+b+2)} y^{2(b+2)}} \Phi\left(x_{1}, \lambda_{1} \mathbf{z} \overline{\mathbf{y}}, \tilde{\lambda}_{2} \overline{\mathbf{k}} \mathbf{y} ; x_{2}, \lambda_{2}, \tilde{\lambda}_{1} \overline{\mathbf{z}} \mathbf{k}\right)= \\
& =\int \frac{\mathrm{d}^{4} q \mathrm{~d}^{4} y \mathrm{~d}^{4} k e^{i q x_{21}} e^{i y \hat{p}_{1}} e^{i k x_{21}}}{q^{2(b+2)} y^{2(a+b+2)} k^{2(a+2)}} \Phi\left(x_{1}, \lambda_{1} \mathbf{q} \overline{\mathbf{k}}, \tilde{\lambda}_{2} \overline{\mathbf{q}} \mathbf{y} ; x_{2}, \lambda_{2}, \tilde{\lambda}_{1} \overline{\mathbf{y}} \mathbf{k}\right) \tag{21}
\end{align*}
$$

These relations are equivalent to the following generalization of the scalar star-triangle relation

$$
\begin{aligned}
& \frac{\hat{p}^{\mu_{1}} \cdots \hat{p}^{\mu_{m}}}{\hat{p}^{2(a+m)}} \frac{\mathrm{A}_{\mu_{1} \nu_{1}} \cdots \mathrm{~A}_{\mu_{m} \nu_{m}}}{x^{2(a+b+m)}} \frac{\hat{p}^{\nu_{1}} \cdots \hat{p}^{\nu_{m}}}{\hat{p}^{2(b+m)}}= \\
& =\frac{x^{\mu_{1}} \cdots x^{\mu_{m}}}{x^{2(b+m)}} \frac{\mathrm{A}_{\mu_{1} \nu_{1}} \cdots \mathrm{~A}_{\mu_{m} \nu_{m}}}{\hat{p}^{2(a+b+m)}} \frac{x^{\nu_{1}} \cdots x^{\nu_{m}}}{x^{2(a+m)}}
\end{aligned}
$$

The Yang-Baxter R-matrix is

$$
\begin{gather*}
{\left[\mathcal{R}_{12} \Phi\right]\left(X_{1} ; X_{2}\right)=\int \frac{\mathrm{d}^{4} q \mathrm{~d}^{4} k \mathrm{~d}^{4} y \mathrm{~d}^{4} z e^{i(q+k) x_{21}} e^{i k(y-z)}}{q^{2\left(u_{-}-v_{+}+2\right)} z^{2\left(u_{+}-v_{+}+2\right)} y^{2\left(u_{--} v_{-}+2\right)} k^{2\left(u_{+}-v_{-}+2\right)}}} \\
. \Phi\left(x_{1}-y, \lambda_{2} \mathbf{z} \overline{\mathbf{k}}, \tilde{\lambda}_{2} \overline{\mathbf{q}} \mathbf{y} ; x_{2}-z, \lambda_{1} \mathbf{q} \overline{\mathbf{z}}, \tilde{\lambda}_{1} \overline{\mathbf{y}} \mathbf{k}\right) \tag{22}
\end{gather*}
$$

It seems that the integrable model of the type (Zamolodchikov's "Fishnet" diagram Integrable System) related to this spinorial R-matrix and spinorial star-triangle relation is not known.

