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Outline of talk

J. M. Henn, IAS

• Introduction: cusped anomalous dimension
and physical motivation

• Part 3:  new scaling limit, Schrödinger problem
              solution to all orders

• Part 2:  Relation to Regge limit of massive scattering
              amplitudes
              full three-loop result

• Part 1:  Exact result at small angles
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J. M. Henn, IAS

Wilson loops:
required for gauge invariance of non-local objects

contain local operators
P: path ordering

gauge dynamics - Wilson loops of arbitrary shapes

 (x1)
WC [x1, x2] W

C

[x1, x2] = Pe

R
C dxµA

µ

⇠ 1 + �µ⌫Fµ⌫ + . . .

gauge group SU(N)Aµ =
N2�1X

a=1

Aµ
a t

a
ij

L =
1

4
Tr

Z
Fµ⌫F

µ⌫ , Fµ⌫ = @µA⌫ � @⌫Aµ + ig[Aµ, A⌫ ]
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Cusp anomalous dimension

J. M. Henn, IAS

governs ultraviolet (UV) divergences at cusp

�cusp(�,�, N)

hW i ⇠ e�| ln µUV
µIR

| �cusp

� = g2YMN

Wilson loop with cusp

�cusp

Polyakov; Brandt, Neri, Sato
Korchemsky & Radyushkin ’87

cos(�) =
p · qp
p2q2

This quantity B also determines the energy emitted by a moving quark

�E = 2⇡B � dt(v̇)2 (5)

in the small velocity limit. The result for any velocity can be obtained by performing a

boost and it is the same old formula that one has in electrodynamics, up to the replacement
2e

2

3

→ 2⇡B, see [11] for a discussion at strong coupling. Its appearance in (5) is what

prompted us to call it the Bremsstrahlung function.

� �

(a) (b)
S3

Figure 1: (a) A Wilson line that makes a turn by an angle �. (b) Under the plane to cylinder

map, the same line is mapped to a quark anti-quark configuration. The quark and antiquark

are sitting at two points on S3 at a relative angle of ⇡ − �. Of course, they are extended

along the time direction.

The cusp anomalous dimension is an interesting quantity that is related to a variety of

physical observables as particular cases.

Originally it was defined in [12] as the logarithmic divergence that arises for a Wilson

loop operator when there is a cusp in the contour. A cusp is a region where a straight line

makes a sudden turn by an angle �, see figure 1(a). In that case the Wilson loop develops a

logarithmic divergence of the form

�W � ∼ e−�cusp(�,�) log L
✏̃ (6)

where L is an IR cuto↵ and ✏̃ a UV cuto↵. One can also consider the continuation � = i' so

that now ' is a boost angle in Lorentzian signature.

�
cusp

is related to a variety of physical observables:

• It characterizes the IR divergences that arise when we scatter massive colored particles

in the planar limit. Here ' is the boost angle between two external massive particle

3

similar to anomalous dimensions of composite operators

Thursday, July 26, 12



Physical relevance of         

J. M. Henn, IAS

• similarly for massive form factors (e.g Isgur-Wise)

�cusp

• IR divergences of massive amplitudes

A ⇠ e�| log µIR|�cusp

resummation of soft divergences

�⇤

Korchemsky, Radyushkin;
...

Thursday, July 26, 12



A lot of important work on           in Dubna!

J. M. Henn, IAS

�cusp

Thursday, July 26, 12



• related to quark-antiquark potential

Limits and relations of

J. M. Henn, IAS

• vanishes at zero angle
   (straight line)

• anomalous dimensions 
  of large spin operators

lim
'!1

�cusp(i',�) ⇠ '�cusp(�)

�cusp(� = 0,�) = 0

known due to Beisert, 
Eden, Staudacher eq

integrability!

� = ⇡ � � � ⌧ 1

Korchemsky

Thursday, July 26, 12



J. M. Henn, IAS

Wilson loops in supersymmetric theories
Tr(Pe

R
dsA

µ
ẋµ+ds ni�

i

)

• path-dependent coupling

This quantity B also determines the energy emitted by a moving quark

�E = 2⇡B � dt(v̇)2 (5)

in the small velocity limit. The result for any velocity can be obtained by performing a

boost and it is the same old formula that one has in electrodynamics, up to the replacement
2e

2

3

→ 2⇡B, see [11] for a discussion at strong coupling. Its appearance in (5) is what

prompted us to call it the Bremsstrahlung function.

� �

(a) (b)
S3

Figure 1: (a) A Wilson line that makes a turn by an angle �. (b) Under the plane to cylinder

map, the same line is mapped to a quark anti-quark configuration. The quark and antiquark

are sitting at two points on S3 at a relative angle of ⇡ − �. Of course, they are extended

along the time direction.

The cusp anomalous dimension is an interesting quantity that is related to a variety of

physical observables as particular cases.

Originally it was defined in [12] as the logarithmic divergence that arises for a Wilson

loop operator when there is a cusp in the contour. A cusp is a region where a straight line

makes a sudden turn by an angle �, see figure 1(a). In that case the Wilson loop develops a

logarithmic divergence of the form

�W � ∼ e−�cusp(�,�) log L
✏̃ (6)

where L is an IR cuto↵ and ✏̃ a UV cuto↵. One can also consider the continuation � = i' so

that now ' is a boost angle in Lorentzian signature.

�
cusp

is related to a variety of physical observables:

• It characterizes the IR divergences that arise when we scatter massive colored particles

in the planar limit. Here ' is the boost angle between two external massive particle

3

cos(�) =
p · qp
p2q2

cos(✓) = n · n0 , n2
= n02

= 1

pµ
qµ

ni

n0
i

• loop couples to scalars
six scalars �i

e.g.

• supersymmetry Zarembo

Maldacena; Rey

n = (1, 0, 0, 0, 0, 0) , n0
= (cos(✓), sin(✓), 0, 0, 0, 0)

�cusp(�, ✓,�, N)

�cusp(� = ±✓) = 0

⇠ =

cos ✓ � cos�

sin�•     dependence polynomial in✓
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•         in N=4 SYM to two loops   

•        known to two loops in QCD

J. M. Henn, IAS

QCD and supersymmetric Yang-Mills theories

�cusp Korchemsky, Radyushkin ’87;

Kidonakis 2009

Drukker, Forini 2011

Makeenko, Olesen, Semenoff 2006;�cusp

perturbative calculations very similar 
QCD result only slightly more complicated to SYM

• certain structures more apparent in SYM

• insights can help to organize calculation even if 
there is no supersymmetry

Thursday, July 26, 12



AdS/CFT correspondence

J. M. Henn, IAS

dual string theory 
description on AdS_5

N=4 SYM
SU(N) gauge theory

scalars+fermions
conformal

� = g2YMN

� ⌧ 1 � � 1

Gauge Theory - String Theory Dictionary of Observables

∆a(λ) spectrum of
scaling dimensions

⇔ E (λ) string excitation
spectrum

solved (?)

An({pi , hi , ai};λ) (⇔) open string amps

Wilson loop WC ⇔ minimal surface

[4/26]

Wilson loop

minimal surface

W [C]

Feynman diagrams
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Part 1: 
exact result at small angles

J. M. Henn, IAS
Thursday, July 26, 12



J. M. Henn, IAS

Correa, JMH, Maldacena, Sever

H(�,�) =
2�

1� �2

⇡2

B(�̃) , �̃ = �(1� �2

⇡2
)

 H obtained by relating it to Wilson loops on S^2 

• perturbatively, H is a polynomial in �,⇡

• strong coupling H =

p
�

2

�q
1� �2

⇡2

agrees with formula extracted from
Drukker, Forini

Comments:

�cusp = (�2 � ✓2)H(�,�, N) + . . .

First deviation from supersymmetric case
can be computed exactly:

:modified Bessel function

non-planar part also known

Drukker et al.
Pestun et al.

H = �

"✓
�

8⇡2

◆
(⇡2 � �2) +

1

3

✓
�

8⇡2

◆2

(⇡2 � �2)2 + . . .

#
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J. M. Henn, IAS

Exact result interpolating between 
weak and strong coupling!

0 5 10 15 20 25 30
0.00

0.02

0.04

0.06

0.08

0.10

Exact

�

16⇡

2 − �

2

384⇡

2 + �

3

6144⇡

2

�

16⇡

2 − �

2

384⇡

2

√
�

4⇡

2 − 3

8⇡

2

�

B(�)

Figure 2: Plot of the Bremsstrahlung function B in the planar limit (solid blue curve). At

weak coupling, the lower and upper dashed green curves denote the two- and three-loop

approximation, respectively. It is interesting to note that the radius of convergence of the

weak coupling expansion is given by the first zero of I
1

in (4), which is at � ∼ −14.7. As one
can see in the plot, the perturbative formulas become unreliable in that region. At the same

time, we see that the first two orders of the strong coupling result (red dotted curve) give a

qualitatively good approximation starting from that region.

We will show below that

H(�,�) = 2�

1 − �

2

⇡

2

B(�̃) , �̃ = �(1 − �2

⇡2

) (29)

where B is the same Bremsstrahlung function we had before in (2).

In order to derive this formula we need to consider a class of 1/8 BPS Wilson loops

discussed in [5–10,25]. These are Wilson loops where the contour lives in an S2 subspace of

R4 or S4. These are BPS if the coupling to the scalars is chosen as follows. We consider a six

dimensional vector of the form �n = ( �m,0,0,0) where �m is a three dimensional unit vector. If

we call �x the three dimensional unit vector parametrizing the S2, then we choose

�m = �x × �̇x , (�x)2 = (�̇x)2 = 1, �̇x = d�x
dt

(30)

As conjectured in [5–7], shown in [8], and further discussed in [9, 10, 25], the result for

a non-intersecting Wilson loop of this kind is given by the answer for the ordinary circular

9

Correa, JMH, Maldacena, Sever

(exact N dependence also known)

``Bremsstrahlung function’’ B(�) , � = g2YMN

for small angle �cusp = �

2
B(�) + o(�4) , ✓ = 0
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Part 2: 
Regge limit of 4-pt amplitudes

full 3-loop result 

J. M. Henn, IAS
Thursday, July 26, 12



Relation to Regge limit 
of massive amplitudes in N=4 SYM

J. M. Henn, IAS

Alday, JMH, Plefka, Schuster

N D3-branes

M D3-branes

z = 0

zi = 1/mi

(a)

p2 p3

p4p1

i2i2

i3

i3

i4i4

i1

i1

j k

(b)

Figure 1: (a) String theory description for the scattering of M gluons in the large N limit. Putting
the M D3-branes at different positions zi != 0 serves as a regulator and also allows us to exhibit dual
conformal symmetry. (b) Gauge theory analogue of (a): a generic scattering amplitude at large N (here:
a sample two-loop diagram).

moving M D3-branes away from the N parallel D3-branes and also separating these M distinct
branes from one another. One then has “light” gauge fields corresponding to strings stretching
between the M separated D3-branes, which are our external scattering states. Then there are
the “heavy” gauge fields corresponding to the strings stretching between the coincident N D3-
branes and one of the M branes. These are the massive particles running on the outer line of the
diagrams, see figure 1. In doing so, we argue that dual conformal symmetry, suitably extended to
act on the Higgs masses as well, is an exact, i.e. unbroken, symmetry of the scattering amplitudes.

This exact symmetry has very profound consequences. It was already noticed in [18] that
the integrals contributing to loop amplitudes in N = 4 SYM have very special properties under
dual conformal transformations, but this observation was somewhat obscured by the infrared
regulator. With our infrared regularisation, the dual conformal symmetry is exact and hence so
is the symmetry of the integrals. Therefore, the loop integrals appearing in our regularisation will
have an exact dual conformal symmetry. This observation severely restricts the class of integrals
allowed to appear in an amplitude. As a simple application, triangle sub-graphs are immediately
excluded.

The alert reader might wonder whether computing a scattering amplitude with several, dis-
tinct Higgs masses might not be hopelessly complicated. In fact, this is not the case. The
different masses are crucial for the exact dual conformal symmetry to work. However, once we
have used this symmetry in order to restrict the number of basis loop integrals, we can set all
Higgs masses equal and think about the common mass as a regulator. As we will show in several
examples, computing the small mass expansion in this regulator is particularly simple. In fact,

4

gauge theory string theory

• massive scattering amplitudes in N=4 SYM

Higgs mechanism
� �! h�i+ '
U(N +M) �! U(N)⇥ U(M)

�! U(N)⇥ U(1)M

• dual conformal symmetry (planar) 

p2i = �(mi �mi+1)
2

p

µ
i = x

µ
i � x

µ
i+1

isometries of AdS_5 space
Poincare coordinates
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J. M. Henn, IAS

JMH, Naculich, Spradlin, Schnitzer

• dual conformal symmetry

• relates two different physical pictures

Alday, JMH, Plefka, Schuster

Regge limit

(a) (b)

m

m

M

0

M−m

M M

M

M−m

M−m

M−m
m

m

m

m

m

m

0

00

0 0

Figure 2: Sample two-loop diagram contributing to the four-particle amplitude. Solid and

wavy lines denote massive and (almost) massless particles, respectively. The precise masses

are given by the labels. Dual conformal symmetry implies that the same function M(u, v)
describes two di↵erent physical situations: The Regge limit s→∞ of (a) is equivalent to the

Bhabha-type scattering (b), where the outer wavy lines have a small mass that regulates the

soft divergences.

In particular, it can be extracted from massive amplitudes on the Coulomb branch ofN = 4 SYM [5]. These amplitudes are obtained by giving a vacuum expectation value to

some of the scalars of N = 4 SYM. The string theory dual of this setup [18] suggests that

the amplitudes defined in this way have an exact dual conformal symmetry [4]. Consider

the four-scalar amplitude M with on-shell conditions p2
i

= −(h
i

− h
i+1)2, where h

i+4 ≡ h
i

.

Here h
i

are four nonzero eigenvalues of the Higgs fields, which we take to all point in the
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)2. 1 A priori
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The amplitude will be real for s and t both positive.
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• examples at integrand level

• planar integrand of 4-pt amplitude known 

generalize to massive case Alday, JMH, Plefka, Schuster

Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka;   Bourjaily, DiRe, Shaikh, Volovich;  Eden, Heslop, Sokatchev, Korchemsky

JMH, Naculich, Spradlin, Schnitzer

Figure 3: Relation between integrals of the four-point amplitude (first line) and Wilson line
integrals (second line) at one and two loops.

Figure 4: Relation between integrals of the four-point amplitude (first and third line) and Wilson
line integrals (second and fourth line) at three loops. Arrows denote internal numerator factors
(pµ + qµ)2, where pµ and qµ are the momenta flowing along the lines with arrows.
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one loop:

two loops:

three loops:

4-pt integrand 3-5 loops: Bern, Rozowsky, Yan + Dixon, Carrasco, Johansson
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What functions are needed for         ?

J. M. Henn, IAS

• logarithms, polylogarithms

Li

n

(x) =

Z
x

0

dy

y

Li

n�1(y) , Li1(x) = � log(1� x)

kernels

x = e

i�

�cusp

• useful variable:

log(x) =

Z
x

1

dy

y

• harmonic polylogarithms (HPLs) Gehrmann, Remiddi

• (for intermediate steps: Goncharov polylogarithms)

Note that a corollary of equations (3.13) and (3.14) is that the symbol [24, 25] of η is

constructed from a five-letter alphabet consisting of x, 1±x,w+x,w+1/x. Similarly, the

symbol of Ω0 is constructed from the three-letter alphabet x, 1 ± x. Of course, knowing

the full differential provides us with much more information than just the symbol.

In order to prove the above statements, let us point out a relation of the H!b(w, x) to

a known, albeit more general class of functions, the Goncharov polylogarithms [26],

G(a1, . . . an; z) =

∫ z

0

dt

t− a1
G(a2, . . . , an; t) , (3.18)

with

G(a1; z) =

∫ z

0

dt

t− a1
. (3.19)

In our case, the ai are taken from {0,−x,−1/x} and z = w. For example, we have

HV (w, x) =G(−1/x;w) −G(−x;w) , (3.20)

H0,V (w, x) =G(0,−1/x;w) −G(0,−x;w) , (3.21)

HV,0,V (w, x) =G(−1/x, 0,−1/x;w) −G(−1/x, 0,−x;w)

+G(−x, 0,−x;w) −G(−x, 0,−1/x;w) , (3.22)

and so on. The total differential of a general Goncharov polylogarithm is

dG(a1, . . . an; z) = G(â1, a2, . . . an; z) d log
z − a1
a1 − a2

+G(a1, â2, a3, . . . , an; z) d log
a1 − a2
a2 − a3

+ . . .+

+G(a1, . . . , an−1, ân; z) d log
an−1 − an

an
, (3.23)

where â means that this element is omitted.

Given the possible values of the ai in our case, it is straightforward to verify eq. (3.13).

3.4 Rewriting the expressions for Ω0 in terms of HPLs

We have proven that Ω0 can be written in terms of HPLs. Let us now explain how to find

explicit results in terms of HPLs. We will begin by a simple example, and then outline an

algorithm for doing so in general.

We observed that eq. (3.23), when applied to any functionH!b(w = 1, x) gives a result of

the form (3.14). Iterating this procedure for the lower degree functions gi in that equation,

together with the fact that at any order we have a boundary condition at w = 1, gives us

the complete information for that function, in a form that makes contact with the definition

of HPLs, see eq. (3.15).

As an example, let us write H0,V (1, x) in terms of HPLs. According to eq. (3.21), we

need to rewrite G(0,−x; 1) and G(0,−1/x; 1) in terms of HPLs. Specializing (3.23) to the
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H
a1,a2,...an(x) =

Z
x

0
f
a1(y)Ha2,...,an(y)dy

f1(y) =
1

1� y
, f0(y) =

1

y
, f�1(y) =

1

1 + y

and so on. Using eq. (3.3) we find

Ω(1)
0 =− 2HV , (3.10)

Ω(2)
0 =− 2HV H0,V − 2HV,0,V , (3.11)

Ω(3)
0 =− 2HV H

2
0,V − 4H2

V H0,0,V − 2H0,V HV,0,V

− 2HV H0,V,0,V − 4HV HV,0,0,V − 2HV,0,V,0,V , (3.12)

etc. These last relations are understood at w = 1.

In principle, eqs. (3.10), (3.11), (3.12), and their higher-order analogues, together with

Γ = −Ω0, provide formulas for Γ. However, this representation is clearly not an optimal

one. In the following, we will simplify it by converting it to a more appropriate and simpler

class of iterated integrals. This will also allow us to make further observations regarding

the structure of the result.

3.3 Structure of the perturbative result

Here, we first show certain properties of η and Ω0, and then outline an algorithm for

expressing Ω0 in terms of harmonic polylogarithms.

As we show presently, the total differential of η at any loop order is of the form

dη(L) =f1 d log x+ f2 d log(1 + x) + f3 d log(1− x)

+ f4 d log(w + x) + f5 d log(w + 1/x) , (3.13)

with the fi being functions of the same type as η(L), but of degree (i.e. number of iterated

integrals) lowered by one. From equations (3.13) and (3.3) it immediately follows that

dΩ(L) = g1 d log x+ g2 d log(1 + x) + g3 d log(1− x) , (3.14)

with gi being functions of degree lowered by one, and satisfying the same property. This,

implies that at any loop order L, Ω(L) can be expressed in terms of harmonic polylogarithms

(HPLs) of degree (2L− 1).

The latter are defined iteratively by

Ha1,a2,...,an(x) =

∫ x

0
fa1(t)Ha2,...,an(t) dt , (3.15)

where the integration kernels are

f1(x) =
1

1− x
, f0(x) =

1

x
, f−1(x) =

1

1 + x
. (3.16)

The degree-one functions needed to start the recursion are defined as

H1(x) = − log(1− x) , H0(x) = log(x) , H−1(x) = log(1 + x) . (3.17)

The subscript of H is called the weight vector. A common abbreviation is to replace

occurrences ofm zeros to the left of ±1 by±(m+1). For example, H0,0,1,0,−1(x) = H3,−2(x).

– 8 –
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⇠ =

cos ✓ � cos�

sin�

• uniform degree of integrals

�cusp = � ⇠ �

+ �2
⇥
⇠ �(⇡2 � �2) + ⇠2

�
Li3(e

2i�) + . . .
�⇤

+ �3
⇥
⇠�(⇡2 � �2)2 + ⇠2

�
Li5(e

2i�) + . . .
�
+ ⇠3

�
HPL(e2i�) + . . .

�⇤

• full 3-loop result (schematically):

• linear in     -  exactly known⇠

• highest term         from new limit

cf. QCD/N=4 SYM
transcendentality principle (KLOV)

�L⇠L

x = e

i�• useful variable

As an example, at one loop, we have.

I
1,1

= ⇠ 2 logx , (23)

I
1,0

= ⇠ �−⇡2 − 4H
1,0

(x) − 4H−1,0(x)� . (24)

Here we introduced the useful abbreviation ⇠ = (1 − x)�(1 + x). The formulas are valid for

0 < x < 1 and can be analytically continued to other regions, as we describe below.

The results for the two- and three-loop integrals are given in Appendix B. We now proceed

to present the result for �
cusp

.

2.3 Analytic three-loop result for �cusp

The perturbative expansion of the cusp anomalous dimension is

�
cusp

(�,') = �
L≥1
� �

8⇡2

�L �(L)
cusp

(') , , � = g2
YM

N , (25)

where g
YM

is the Yang-Mills coupling, and N the number of colors. As was already men-

tioned, the result up to two-loop results was known.

As explained above, we compute �(3)
cusp

(') by evaluating the (Euclidean) Regge limit of

the four-particle amplitude, thanks to eq. (6). The Regge limit of all integrals contributing

to eq. (12) can be found in Appendix B.

We find the following results to three loops, valid in the Euclidean region x > 0,
�(1)
cusp
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• highest term         from new limit�L⇠L ✓ ! i✓ , ✓ ! 1
limit selects ladders

 Bethe-Salpeter equation

•        from ground-state energy of Schrödinger problem�cusp

�̂ ⇠ � ⇠

• exactly solvable for zero angle (Pöschl-Teller)

• iterative solution in coupling, or angle
• numerical solution

convenience. Note that F also depends on the angle φ defined by cosφ = p · q. Then F

satisfies the Bethe-Salpeter equation

F (S, T ) = 1 +

∫ S

0
ds

∫ T

0
dt F (s, t)P (s, t) , (2.3)

where

P (s, t) =
λ̂

4π2

1

s2 + t2 + 2st cosφ
(2.4)

is the propagator corresponding to a scalar exchange. Changing variables according to

s = eσ , t = eτ , this becomes

F (σ, τ) = 1 +

∫ σ

−∞
dσ1

∫ τ

−∞
dτ1 F (σ1, τ1)P (σ1, τ1) , (2.5)

where

P (τ,σ) =
λ̂

8π2

1

cosh(τ − σ) + cosφ
. (2.6)

Differentiating eq. (2.5), we obtain,

∂τ∂σF (σ, τ) = F (σ, τ)P (σ, τ) . (2.7)

Let us change variables y1 = τ − σ and y2 = (τ + σ)/2. We can extract Γcusp from the

large y2 behaviour of F , due to the equivalence of IR and UV divergences, see eq. (2.2).

For large y2, we can make an ansatz

F =
∑

n

e−Ωny2Ψn(y1) . (2.8)

We are interested in the leading term, corresponding to the lowest eigen-energy Ω0. Using

the ansatz (2.8), one finds [10]

[

−∂2
y1 −

λ̂

8π2

1

(cosh y1 + cosφ)
+

Ω2(φ)

4

]

Ψ(y1,φ) = 0 . (2.9)

This is a one-dimensional Schrödinger problem. The ground state energy Ω0 is related to

the cusp anomalous dimension in the scaling limit through Γcusp = −Ω0.

In summary, the Bethe-Salpeter equation has allowed us to conveniently sum an infinite

class of diagrams. As a result, extracting the remaining overall logarithmic divergence could

be done in a simple way, and the remaining calculation does not require any regulator.

Moreover, the structure of the equation allowed us to rewrite the problem in terms of a

linear differential equation.

We will now solve this equation in perturbation theory. In section 4, we will discuss

the effects of the two new features that appear at NLO.
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We are interested in the leading term, corresponding to the lowest eigen-energy Ω0. Using
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+

Ω2(φ)
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]

Ψ(y1,φ) = 0 . (2.9)

This is a one-dimensional Schrödinger problem. The ground state energy Ω0 is related to

the cusp anomalous dimension in the scaling limit through Γcusp = −Ω0.

In summary, the Bethe-Salpeter equation has allowed us to conveniently sum an infinite

class of diagrams. As a result, extracting the remaining overall logarithmic divergence could

be done in a simple way, and the remaining calculation does not require any regulator.

Moreover, the structure of the equation allowed us to rewrite the problem in terms of a

linear differential equation.

We will now solve this equation in perturbation theory. In section 4, we will discuss

the effects of the two new features that appear at NLO.
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3. Solution to the scaling limit at leading order

3.1 Setup

To obtain the perturbative solution of (2.9), we follow [10] and perform the change of

variables

Ψ(y1) = η(y1)e
−Ω0y1/2 (3.1)

The exponential factor gives the correct solution as y1 → ∞, and we can normalize η(y1 =

∞) = 1. We can determine Ω0 from η thanks to the boundary condition

∂y1Ψ(y1)|y1=0 = 0 , (3.2)

which follows from the y1 → −y1 symmetry of the problem. Defining a new variable

w = e−y1 , and x = eiφ, the boundary condition (3.2) becomes

Ω0(x) = −2w∂w log η(w, x)|w=1 , (3.3)

and the Schrödinger equation (2.9) reads

∂ww∂wη = −Ω0(x)∂wη + κ̂

[

1

w + x−1
− 1

w + x

]

η , κ̂ =
λ̂x

4π2(1− x2)
(3.4)

The wavefunction η can be obtained by integrating the Schrödinger equation iteratively in

the coupling, Ω0 = κ̂Ω(1)
0 + κ̂2Ω(2)

0 + . . ., and η = 1 + κ̂η(1) + . . .. Let us now analyze in

detail the perturbative solution for η and Ω.

3.2 Iterative solution

It is convenient to introduce an abbreviation for the nested integrals that one encounters

in this problem. In analogy to two-dimensional harmonic polylogarithms (2dHPLs), we

are going to use the self-explanatory notation

HV (w, x) =

∫ 1

0
dw′

[

1

w′ + 1/(wx)
− 1

w′ + x/w

]

, (3.5)

and

HV,"b(w, x) =

∫ 1

0
dw′

[

1

w′ + 1/(wx)
− 1

w′ + x/w

]

H"b(w
′w, x) , (3.6)

H0,"b(w, x) =

∫ 1

0

dw′

w′ H"b(w
′w, x) . (3.7)

In the following we will sometimes drop the arguments (w, x) for brevity. So in general we

will have H"b, where the weight vector &b has entries V and 0, with 0 not appearing in the

last entry.

It is straightforward to write the perturbative answer for η in terms of these integrals.

We find

η(1) =H0,V (3.8)

η(2) =H0,V,0,V −H0,0,V Ω
(1)
0 , (3.9)
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∂y1Ψ(y1)|y1=0 = 0 , (3.2)

which follows from the y1 → −y1 symmetry of the problem. Defining a new variable

w = e−y1 , and x = eiφ, the boundary condition (3.2) becomes

Ω0(x) = −2w∂w log η(w, x)|w=1 , (3.3)

and the Schrödinger equation (2.9) reads

∂ww∂wη = −Ω0(x)∂wη + κ̂

[

1

w + x−1
− 1

w + x

]

η , κ̂ =
λ̂x

4π2(1− x2)
(3.4)

The wavefunction η can be obtained by integrating the Schrödinger equation iteratively in

the coupling, Ω0 = κ̂Ω(1)
0 + κ̂2Ω(2)

0 + . . ., and η = 1 + κ̂η(1) + . . .. Let us now analyze in

detail the perturbative solution for η and Ω.

3.2 Iterative solution

It is convenient to introduce an abbreviation for the nested integrals that one encounters

in this problem. In analogy to two-dimensional harmonic polylogarithms (2dHPLs), we

are going to use the self-explanatory notation

HV (w, x) =

∫ 1

0
dw′

[

1

w′ + 1/(wx)
− 1

w′ + x/w

]

, (3.5)

and

HV,"b(w, x) =

∫ 1

0
dw′

[

1

w′ + 1/(wx)
− 1

w′ + x/w

]

H"b(w
′w, x) , (3.6)

H0,"b(w, x) =

∫ 1

0

dw′

w′ H"b(w
′w, x) . (3.7)

In the following we will sometimes drop the arguments (w, x) for brevity. So in general we

will have H"b, where the weight vector &b has entries V and 0, with 0 not appearing in the

last entry.

It is straightforward to write the perturbative answer for η in terms of these integrals.

We find

η(1) =H0,V (3.8)

η(2) =H0,V,0,V −H0,0,V Ω
(1)
0 , (3.9)

– 7 –
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⌘(w, x)

here

G(ai; z)

ai 2 {0,�x,�1/x} , z = w

• compute differential

and so on. Using eq. (3.3) we find

Ω(1)
0 =− 2HV , (3.10)

Ω(2)
0 =− 2HV H0,V − 2HV,0,V , (3.11)

Ω(3)
0 =− 2HV H

2
0,V − 4H2

V H0,0,V − 2H0,V HV,0,V

− 2HV H0,V,0,V − 4HV HV,0,0,V − 2HV,0,V,0,V , (3.12)

etc. These last relations are understood at w = 1.

In principle, eqs. (3.10), (3.11), (3.12), and their higher-order analogues, together with

Γ = −Ω0, provide formulas for Γ. However, this representation is clearly not an optimal

one. In the following, we will simplify it by converting it to a more appropriate and simpler

class of iterated integrals. This will also allow us to make further observations regarding

the structure of the result.

3.3 Structure of the perturbative result

Here, we first show certain properties of η and Ω0, and then outline an algorithm for

expressing Ω0 in terms of harmonic polylogarithms.

As we show presently, the total differential of η at any loop order is of the form

dη(L) =f1 d log x+ f2 d log(1 + x) + f3 d log(1− x)

+ f4 d log(w + x) + f5 d log(w + 1/x) , (3.13)

with the fi being functions of the same type as η(L), but of degree (i.e. number of iterated

integrals) lowered by one. From equations (3.13) and (3.3) it immediately follows that

dΩ(L) = g1 d log x+ g2 d log(1 + x) + g3 d log(1− x) , (3.14)

with gi being functions of degree lowered by one, and satisfying the same property. This,

implies that at any loop order L, Ω(L) can be expressed in terms of harmonic polylogarithms

(HPLs) of degree (2L− 1).

The latter are defined iteratively by

Ha1,a2,...,an(x) =

∫ x

0
fa1(t)Ha2,...,an(t) dt , (3.15)

where the integration kernels are

f1(x) =
1

1− x
, f0(x) =

1

x
, f−1(x) =

1

1 + x
. (3.16)

The degree-one functions needed to start the recursion are defined as

H1(x) = − log(1− x) , H0(x) = log(x) , H−1(x) = log(1 + x) . (3.17)

The subscript of H is called the weight vector. A common abbreviation is to replace

occurrences ofm zeros to the left of ±1 by±(m+1). For example, H0,0,1,0,−1(x) = H3,−2(x).

– 8 –

and so on. Using eq. (3.3) we find

Ω(1)
0 =− 2HV , (3.10)

Ω(2)
0 =− 2HV H0,V − 2HV,0,V , (3.11)

Ω(3)
0 =− 2HV H

2
0,V − 4H2

V H0,0,V − 2H0,V HV,0,V

− 2HV H0,V,0,V − 4HV HV,0,0,V − 2HV,0,V,0,V , (3.12)

etc. These last relations are understood at w = 1.

In principle, eqs. (3.10), (3.11), (3.12), and their higher-order analogues, together with

Γ = −Ω0, provide formulas for Γ. However, this representation is clearly not an optimal

one. In the following, we will simplify it by converting it to a more appropriate and simpler

class of iterated integrals. This will also allow us to make further observations regarding

the structure of the result.

3.3 Structure of the perturbative result

Here, we first show certain properties of η and Ω0, and then outline an algorithm for

expressing Ω0 in terms of harmonic polylogarithms.

As we show presently, the total differential of η at any loop order is of the form

dη(L) =f1 d log x+ f2 d log(1 + x) + f3 d log(1− x)

+ f4 d log(w + x) + f5 d log(w + 1/x) , (3.13)

with the fi being functions of the same type as η(L), but of degree (i.e. number of iterated

integrals) lowered by one. From equations (3.13) and (3.3) it immediately follows that

dΩ(L) = g1 d log x+ g2 d log(1 + x) + g3 d log(1− x) , (3.14)

with gi being functions of degree lowered by one, and satisfying the same property. This,

implies that at any loop order L, Ω(L) can be expressed in terms of harmonic polylogarithms

(HPLs) of degree (2L− 1).

The latter are defined iteratively by

Ha1,a2,...,an(x) =

∫ x

0
fa1(t)Ha2,...,an(t) dt , (3.15)

where the integration kernels are

f1(x) =
1

1− x
, f0(x) =

1

x
, f−1(x) =

1

1 + x
. (3.16)

The degree-one functions needed to start the recursion are defined as

H1(x) = − log(1− x) , H0(x) = log(x) , H−1(x) = log(1 + x) . (3.17)

The subscript of H is called the weight vector. A common abbreviation is to replace

occurrences ofm zeros to the left of ±1 by±(m+1). For example, H0,0,1,0,−1(x) = H3,−2(x).

– 8 –

and hence, at w = 1

⌦(L)•             is given by HPLs of weight (2L-1)

• can be found algorithmically in principle at any loop order

all-loop solution in terms of HPLs
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• for example, to three loops (argument x^2 is implicit)

H0,V,0,V (1, x) =
19π4

360
− 14H−4(x)− π2H−2(x) +

2

3
π2H2(x) + 8H−3,−1(x)− 4H−3,0(x)

+ 12H−2,−2(x) +
1

6
π2H0,0(x)− 8H2,−2(x)− 6H−2,0,0(x)

+ 4H2,0,0(x) +H0,0,0,0(x) + 2H0(x)ζ3 , (3.32)

HV,0,V,0,V (1, x) =40H−5(x)−
2π2

3
H−3(x) +

19π4

360
H0(x) +

4π2

3
H3(x) + 24H−4,−1(x)

− 38H−4,0(x)− 16H−3,−2(x)− 24H−2,−3(x)− π2H−2,0(x) + 32H2,−3(x)

+
4π2

3
H2,0(x) + 32H3,−2(x) + 52H4,0(x) + 8H−3,−1,0(x)− 4H−3,0,0(x)

− 16H−3,1,0(x) + 12H−2,−2,0(x)− 24H−2,2,0(x) +
π2

6
H0,0,0(x)

− 16H2,−2,0(x) + 32H2,2,0(x)− 16H3,−1,0(x) + 8H3,0,0(x) + 32H3,1,0(x)

− 6H−2,0,0,0(x) + 8H2,0,0,0(x) +H0,0,0,0,0(x) +
π2ζ3
3

− 12ζ3H−2(x)

+ 16ζ3H2(x) + 2ζ3H0,0(x) + 6ζ5 . (3.33)

Plugging these formulas into eq. (3.12), we find perfect agreement with the three-loop

result of ref. [10].

In the next section, we show explicit new results that we obtained using this algorithm.

3.5 Explicit new results, and further surprises

Using the method described in the previous section, we explicitly determined Ω(1)
0 (x) –

Ω(5)
0 (x) in terms of HPLs. We will show these formulas below.

When analyzing the resulting formulas, in fact we found a further simplification, that

was already noticed in [10] up to the three-loop level. Although results for individual

integrals contain in general HPLs with all possible indices 0,±1, we observe that, at least

up to five loops, it is possible to write the final result in terms of HPLs having indices 0, 1

only, provided that we use x2 as argument instead of x. That property is manifest in the

following formulas. For completeness, we give all functions through to five-loop accuracy.

Up to three loops, one finds

Ω(1)
0 (x) = −H0 , (3.34)

Ω(2)
0 (x) = 4 ζ3 + 2 ζ2 H0 + 2H2,0 +H0,0,0 , (3.35)

Ω(3)
0 (x) = − 8 ζ2 ζ3 − 12 ζ5 − 12 ζ4 H0 − 16 ζ3 H2 − 8 ζ2 H3 − 4 ζ3 H0,0 − 8 ζ2 H2,0

− 8H4,0 − 8 ζ2 H0,0,0 − 8H2,2,0 − 4H3,0,0 − 8H3,1,0 − 4H2,0,0,0 − 6H0,0,0,0,0 .

(3.36)

Our result at four loops reads

Ω(4)
0 (x) = 48 ζ3 ζ4 + 24 ζ2 ζ5 + 36 ζ7 + 8 ζ23 H0 + 51 ζ6 H0 + 48 ζ2 ζ3H2 + 72 ζ5 H2

+ 96 ζ4 H3 + 88 ζ3 H4 + 80 ζ2 H5 + 32 ζ2 ζ3H0,0 + 20 ζ5 H0,0 + 72 ζ4 H2,0

+ 96 ζ3 H2,2 + 48 ζ2 H2,3 + 32 ζ3 H3,0 + 128 ζ3 H3,1 + 64 ζ2 H3,2 + 80 ζ2 H4,0
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− 8H4,0 − 8 ζ2 H0,0,0 − 8H2,2,0 − 4H3,0,0 − 8H3,1,0 − 4H2,0,0,0 − 6H0,0,0,0,0 .
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Our result at four loops reads

Ω(4)
0 (x) = 48 ζ3 ζ4 + 24 ζ2 ζ5 + 36 ζ7 + 8 ζ23 H0 + 51 ζ6 H0 + 48 ζ2 ζ3H2 + 72 ζ5 H2
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+ 48 ζ2 H4,1 + 92H6,0 + 114 ζ4 H0,0,0 + 24 ζ3 H2,0,0 + 48 ζ2 H2,2,0 + 48H2,4,0

+ 64 ζ2 H3,0,0 + 64 ζ2 H3,1,0 + 64H3,3,0 + 80H4,2,0 + 80H5,0,0 + 80H5,1,0

+ 24 ζ3 H0,0,0,0 + 48 ζ2 H2,0,0,0 + 48H2,2,2,0 + 24H2,3,0,0 + 48H2,3,1,0 + 64H3,1,2,0

+ 32H3,2,0,0 + 64H3,2,1,0 + 64H4,0,0,0 + 24H4,1,0,0 + 48H4,1,1,0 + 92 ζ2 H0,0,0,0,0

+ 24H2,2,0,0,0 + 48H3,0,0,0,0 + 32H3,1,0,0,0 + 36H2,0,0,0,0,0 + 92H0,0,0,0,0,0,0 .

(3.37)

Finally, at five loops we obtain

Ω(5)
0 (x) = − 32

3
ζ33 − 144 ζ4 ζ5 − 204 ζ3 ζ6 − 72 ζ2 ζ7 −

340

3
ζ9 − 64 ζ2 ζ

2
3 H0 − 80 ζ3 ζ5 H0

− 620

3
ζ8H0 − 384 ζ3 ζ4H2 − 192 ζ2 ζ5 H2 − 288 ζ7 H2 − 96 ζ23 H3 − 612 ζ6 H3

− 576 ζ2 ζ3H4 − 528 ζ5 H4 − 1776 ζ4 H5 − 1216 ζ3 H6 − 1568 ζ2 H7 − 456 ζ3 ζ4H0,0

− 144 ζ2 ζ5H0,0 − 84 ζ7 H0,0 − 64 ζ23 H2,0 − 408 ζ6 H2,0 − 384 ζ2 ζ3H2,2 − 576 ζ5 H2,2

− 768 ζ4 H2,3 − 704 ζ3 H2,4 − 640 ζ2 H2,5 − 384 ζ2 ζ3H3,0 − 240 ζ5 H3,0 − 576 ζ2 ζ3H3,1

− 864 ζ5 H3,1 − 1152 ζ4 H3,2 − 1056 ζ3 H3,3 − 960 ζ2 H3,4 − 1656 ζ4 H4,0 − 1152 ζ4 H4,1

− 1440 ζ3 H4,2 − 1152 ζ2 H4,3 − 704 ζ3 H5,0 − 1856 ζ3 H5,1 − 1216 ζ2 H5,2 − 1808 ζ2 H6,0

− 960 ζ2 H6,1 − 2144H8,0 − 48 ζ23 H0,0,0 − 948 ζ6 H0,0,0 − 256 ζ2 ζ3H2,0,0 − 160 ζ5 H2,0,0

− 576 ζ4 H2,2,0 − 768 ζ3 H2,2,2 − 384 ζ2 H2,2,3 − 256 ζ3 H2,3,0 − 1024 ζ3 H2,3,1

− 512 ζ2 H2,3,2 − 640 ζ2 H2,4,0 − 384 ζ2 H2,4,1 − 736H2,6,0 − 1368 ζ4 H3,0,0

− 864 ζ4 H3,1,0 − 1152 ζ3 H3,1,2 − 576 ζ2 H3,1,3 − 384 ζ3 H3,2,0 − 1536 ζ3 H3,2,1

− 768 ζ2 H3,2,2 − 960 ζ2 H3,3,0 − 576 ζ2 H3,3,1 − 1104H3,5,0 − 448 ζ3 H4,0,0

− 384 ζ3 H4,1,0 − 1536 ζ3 H4,1,1 − 768 ζ2 H4,1,2 − 1152 ζ2 H4,2,0 − 576 ζ2 H4,2,1

− 1392H4,4,0 − 1648 ζ2 H5,0,0 − 1216 ζ2 H5,1,0 − 384 ζ2 H5,1,1 − 1648H5,3,0

− 1808H6,2,0 − 2352H7,0,0 − 1568H7,1,0 − 368 ζ2 ζ3H0,0,0,0 − 152 ζ5 H0,0,0,0

− 912 ζ4 H2,0,0,0 − 192 ζ3 H2,2,0,0 − 384 ζ2 H2,2,2,0 − 384H2,2,4,0 − 512 ζ2 H2,3,0,0

− 512 ζ2 H2,3,1,0 − 512H2,3,3,0 − 640H2,4,2,0 − 640H2,5,0,0 − 640H2,5,1,0

− 288 ζ3 H3,0,0,0 − 288 ζ3 H3,1,0,0 − 576 ζ2 H3,1,2,0 − 576H3,1,4,0 − 768 ζ2 H3,2,0,0

− 768 ζ2 H3,2,1,0 − 768H3,2,3,0 − 960H3,3,2,0 − 960H3,4,0,0 − 960H3,4,1,0

− 1392 ζ2 H4,0,0,0 − 768 ζ2 H4,1,0,0 − 768 ζ2 H4,1,1,0 − 768H4,1,3,0 − 1152H4,2,2,0

− 1184H4,3,0,0 − 1152H4,3,1,0 − 1216H5,1,2,0 − 1376H5,2,0,0 − 1216H5,2,1,0

− 2080H6,0,0,0 − 1440H6,1,0,0 − 960H6,1,1,0 − 2172 ζ4 H0,0,0,0,0 − 192 ζ3 H2,0,0,0,0

− 384 ζ2 H2,2,0,0,0 − 384H2,2,2,2,0 − 192H2,2,3,0,0 − 384H2,2,3,1,0 − 512H2,3,1,2,0

− 256H2,3,2,0,0 − 512H2,3,2,1,0 − 512H2,4,0,0,0 − 192H2,4,1,0,0 − 384H2,4,1,1,0

− 1104 ζ2 H3,0,0,0,0 − 576 ζ2 H3,1,0,0,0 − 576H3,1,2,2,0 − 288H3,1,3,0,0 − 576H3,1,3,1,0

− 768H3,2,1,2,0 − 384H3,2,2,0,0 − 768H3,2,2,1,0 − 768H3,3,0,0,0 − 288H3,3,1,0,0

− 576H3,3,1,1,0 − 768H4,1,1,2,0 − 384H4,1,2,0,0 − 768H4,1,2,1,0 − 960H4,2,0,0,0

− 288H4,2,1,0,0 − 576H4,2,1,1,0 − 1728H5,0,0,0,0 − 1136H5,1,0,0,0 − 192H5,1,1,0,0

– 12 –
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• no multiple zetas! E.g.           could have appeared at weight 8

explicit results, and surprises

Surprise #2: 
in small x limit, only single zeta values appear, at least to six loops

J. M. Henn, IAS

JMH, Huber

• e.g. at six loops:

At four loops, taking the x → 0 limit of eq. (3.37) leads to

Ω(4)
0 (x)

x→0
=

736

315
log7 x+

184π2

45
log5 x+ 16ζ3 log4 x+

76π4

45
log3 x+

(

32

3
π2ζ3 + 40ζ5

)

log2 x

+

(

34π6

315
+ 16ζ23

)

log x+

(

8

15
π4ζ3 + 4π2ζ5 + 36ζ7

)

+O(x) . (3.42)

At five loops, we find

Ω(5)
0 (x)

x→0
= − 2144

567
log9 x− 17152

315
ζ2 log7 x− 1472

45
ζ3 log6 x− 2896

5
ζ4 log5 x

−
(

736

3
ζ2 ζ3 +

304

3
ζ5

)

log4 x− (64 ζ23 + 1264 ζ6) log
3 x

− (912 ζ3 ζ4 + 288 ζ2 ζ5 + 168 ζ7) log
2 x

−
(

128 ζ2 ζ
2
3 + 160 ζ3 ζ5 +

1240

3
ζ8

)

log x

− 32

3
ζ33 − 144 ζ4 ζ5 − 204 ζ3 ζ6 − 72 ζ2 ζ7 −

340

3
ζ9 +O(x) . (3.43)

Finally, at six loops, one obtains

Ω(6)
0 (x)

x→0
=

339008

51975
log11 x+

339008

2835
ζ2 log9 x+

4288

63
ζ3 log8 x

+
12800

7
ζ4 log7 x+

(

34304

45
ζ2 ζ3 +

10688

45
ζ5

)

log6 x

+

(

2944

15
ζ23 +

110944

15
ζ6

)

log5 x+ (5792 ζ3 ζ4 + 1376 ζ2 ζ5 + 528 ζ7) log
4 x

+

(

2944

3
ζ2 ζ

2
3 +

2432

3
ζ3 ζ5 +

80048

9
ζ8

)

log3 x

+ (128 ζ33 + 3792 ζ4 ζ5 + 7584 ζ3 ζ6 + 1152 ζ2 ζ7 + 664 ζ9) log
2 x

+ (1824 ζ23 ζ4 + 1152 ζ2 ζ3 ζ5 + 336 ζ25 + 672 ζ3 ζ7 +
8292

5
ζ10) log x

+
256

3
ζ2 ζ

3
3 + 160 ζ23 ζ5 + 612 ζ5 ζ6 + 432 ζ4 ζ7 +

2480

3
ζ3 ζ8

+
680

3
ζ2 ζ9 + 372 ζ11 +O(x) . (3.44)

It is worth noting that in (3.42) – (3.44) certain transcendental constants which cor-

respond to Multiple Zeta Values [27] having negative indices – such as log(2) or Li4(
1
2 ) –

do not appear. This becomes obvious from eqs. (3.37) and (3.38) at four and five loops,

respectively, but also holds true at six loops. Moreover, eqs. (3.42) – (3.44) contain only

single zeta values and products thereof. No Multiple Zeta Values of depth 2 or higher

appear up to six loops, although constants like ζ5,3 would be allowed in principle.

We would like to mention that there is a shortcut for obtaining the asymptotic limit,

without having to use the algorithm presented above. It suffices to notice that to logarith-

mic accuracy as x → 0, we can make the following replacement of the integration kernel
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• BES equation has same property - can one prove it here from field theory?
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• only three integral classes at LO + NLO:

(a) (c)(b)

Figure 1: Classes of loop integrals contribution to LO (diagram (a)) and NLO (diagram (b) and
(c)) in the scaling limit (1.1). Each class can have an arbitrary number of rungs. The arrows in (c)
denote a numerator factor (p+ q)2, where pµ and qµ are the momenta along the arrows.

2. General structure of the Bethe-Salpeter equations at LO and NLO

Here we discuss the general structure of the Bethe-Salpeter equations at leading order

(LO) and next-to-leading order (NLO) in the scaling limit. The LO equations were already

discussed in [10]. They are a natural generalization of the equations for the quark-antiquark

potential [22]. Here we briefly review the main points.

We recall the definition of the locally supersymmetric Wilson loop operator in N = 4

super Yang-Mills,

W ∼ Tr[Pei
∮
A·dx+

∮
|dx|!n·!Φ] , (2.1)

where !n is a point on S5. The contour we consider consists of two (infinite) segments

forming a cusp of Euclidean angle φ. We take the coupling to the scalars to be constant

along each segment, but with a jump of angle θ at the cusp, i.e. cos θ = !n · !n′, where !n

and !n′ are the directions of the two segments. Such a cusped Wilson loop in general has a

logarithmic divergence that takes the form

〈W 〉 ∼ e
−Γcusp(φ,θ) log

ΛUV
ΛIR , (2.2)

where ΛIR/UV are infrared and ultraviolet cutoffs, respectively. This defines the cusp

anomalous dimension Γcusp(φ, θ).1

In the scaling limit (1.1), the scalar coupling of the loop becomes dominant. At leading

order (LO) in the limit, the segments of the Wilson loop couple to conjugate scalars, and

we need to consider scalar exchange diagrams only. At next-to-leading order (NLO), we

have mostly scalar exchanges, plus one-loop interaction diagrams.

An analysis of the integrals contributing to the cusp anomalous dimension allows one

to see that the effective diagrams shown in Fig. 1 are needed at LO and NLO in the

scaling limit. Since only one-loop internal graphs are allowed at NLO order, one can

1Of course, Γcusp is also a function of the ’t Hooft coupling g2N , and the number of colours N .
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• modified Bethe-Salpeter equation

= 1 +
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Figure 2: Bethe-Salpeter equation at LO and NLO. The arrows denote a numerator factor (p+q)2,
with pµ, qµ being the momenta flowing along the arrows (in momentum space).

deduce the all-loop structure of these corrections already from the known three-loop ex-

pression. The fact that one has effective diagrams that arise after cancellations between

various gauge-dependent Feynman diagrams2 is intimately related to the similar diagrams

appearing in scattering amplitudes. We illustrate this relation at the level of the loop

integrals/integrands in Appendix C.

It is easy to see that the integrals of Fig. 1 are described by a Bethe-Salpeter equation.

The latter is shown (schematically) in Fig. 2. This equation sums the diagrams to all orders

in the coupling. At LO in the scaling limit, only the first line contributes, as the second

lines gives contributions of order α = λ/λ̂ and higher. At NLO, we keep the terms in the

second line and compute the answer linear in α. Note that there are also higher-order

terms in α contained in this equation that will only become relevant once we include all

NNLO and higher terms.

We can see that there are two new features w.r.t. LO. First, the first term of the

second line of Fig. 2 is the starting point for the new infinite class of diagrams shown in

Fig. 1(b). These terms are absent in the quark-antiquark potential [23]. Second, there is a

new interaction term that is a higher-loop generalization of the simple scalar exchange at

LO.

Let us illustrate the usefulness of the Bethe-Salpether equation by reviewing the LO

case. We denote the sum of the ladder diagrams by F (s, t), where −spµ and tqµ are

positions on the cusp formed by the momenta pµ and qµ. Let us normalize p2 = q2 = 1 for

2In ref. [23], this one-loop calculation was explicitly performed (for the quark-antiquark potential, cor-

responding to φ → π), in agreement with the result here. Integral class (b) discussed here follows from a

boundary term at the cusp that is absent for the quark-antiquark potential.
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• can show: gives rise to same function class as at LO!

• can be solved at any loop order in terms of HPLs!

• integral class (b)

• ``seed’’ of iteration is simple function:

appearing e.g. in eq. (3.6),

1

w′ + 1/x
− 1

w′ + x
−→ − 1

w′ + x
. (3.45)

Next, rescaling all integration variables by x, we see that one can write the result in the

small x limit at any loop order in terms of HPLs with indices 0,−1, and argument 1/x.

The latter can be rewritten in terms of HPLs of argument x, and their small x asymptotic

behaviour can be made manifest using algorithms implemented in [28].

4. NLO terms in large ξ limit

4.1 Triangle-ladder diagrams (b)

We now wish to study the sum of the triangle-ladder diagrams shown in Fig. 1(b) in a

similar way to LO. Let F now denote the sum of the diagrams of Figs. 1(a,b), starting with

1 (as at LO). Then F satisfies the Bethe-Salpeter equation of Fig. 2, with the last term

omitted. (The last term will be discussed in the following section.)

Proceeding as at LO, we obtain the differential equation

∂σ∂τF (σ, τ) = Q(σ, τ) + F (σ, τ)P (σ, τ) . (4.1)

Here the essential new feature is the appearance of Q(σ, τ). It arises from the first term

in the second line of the r.h.s. of the equation shown in Fig. 2. It is given by the one-loop

integral

Q(σ, τ) =cλλ̂ e(σ+τ)
∫

d4x1
iπ2

1

x21(x1 − z1)2(x1 − z2)2
= cλλ̂

e(σ+τ)

z212
Φ(1)

(

z21
z212

,
z22
z212

)

, (4.2)

where z1 = eσpµ and z2 = −eτqµ are points along the Wilson line, and c = 2/(8π2)2. The

function Φ(1) is known analytically, and we will give a useful form for it later in this section.

Plugging in the expressions for zµ1 , z
µ
2 , we have

Q(τ,σ) =cλλ̂
1

cosh(τ − σ) + cosφ
Φ(1)

(

eτ−σ/2

cosh(τ − σ) + cosφ
,

eσ−τ/2

cosh(τ − σ) + cosφ

)

.

(4.3)

Making the same ansatz as at LO, F =
∑

n e
−Ωn(φ)y2Ψn(y1,φ), we obtain

[

−∂2
y1 −

λ̂

8π2

1

(cosh y1 + cosφ)
+

Ω2(φ)

4

]

Ψ(y1,φ) =

= c
λ λ̂

(cosh y1 + cosφ)
Φ(1)

(

ey1/2

cosh y1 + cosφ
,

e−y1/2

cosh y1 + cosφ

)

. (4.4)

We see that the essential new feature w.r.t. to the LO case is the appearance of an

inhomogeneous term. It is important to realize that we would like to solve this equation

to all orders in λ̂, but only to linear order in α = λ/λ̂, corresponding to the NLO case.
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For simplicity of notation, let us abbreviate the potential by −λ̂V and the inhomoge-

neous term by αλ̂2Q̃. Then we have
[

−∂2
y1 − λ̂V (y1,φ) +

Ω2(φ)

4

]

Ψ(y1,φ) = α λ̂2Q̃ . (4.5)

Proceeding as in the homogeneous case and setting Ψ = e−Ω/2y1η we have

−∂2
y1η − 1

2
Ω∂y1η − λ̂V η = α e+Ω/2 y1 λ̂2 Q̃ . (4.6)

Recall that at α = 0, this is just the equation for the ladder diagrams, which we already

solved. We need the solution to order α. We can expand

η = ηladders + α ηα , Ω = Ωladders + αΩα , (4.7)

to obtain, at order α,

−∂2
y1ηα − 1

2
Ωladders∂y1ηα − λ̂V ηα = ey1Ωladders/2λ̂2Q̃+

1

2
Ωαη

′
ladders . (4.8)

As before, Ω is obtained by requiring that Ψ′(y1) vanishes at y1 = 0 Therefore we have

Ω = 2∂y1 log η|y1=0 . (4.9)

At order α, this gives

Ωα =2∂y1

(

ηα
ηladders

)

|y1=0 . (4.10)

In summary, we have arrived at a differential equation, eq. (4.8), together with (4.10), for

the contribution of the triangle-ladder diagrams shown in Fig. 1(b).

We will now explain how to solve these equations to any order in λ̂. First of all, it is

clear that we can integrate order by oder in λ̂ just as we did at LO. The main question is

whether we can express the resulting wavefunction at each order in terms of the same set

of iterated integrals as in the previous section. We will now show that this is indeed the

case, and in fact is true also for a more general class of diagrams.

The new feature of eq. (4.8) is the appearance of Q̃, so we need to analyze whether

integrals over Q̃ will be of the same form as at LO. An example will suffice to see that

this in indeed the case. Consider expanding to order λ̂2. Then η(1) ′(w, x) is given by an

integral of the form

∫ logw

0

dy

(cosh y + cosφ)
Φ(1)

(

ey/2

cosh y1 + cosφ
,

e−y/2

cosh y1 + cosφ

)

. (4.11)

We will now make use of the fact that Φ(1) is a function with very special properties. In

fact, this allows us to immediately make a generalization where Φ(1) is replaced by Φ(n).

This function is given by a beautiful formula [29],

Φ(n)(x, y) =
1

√

(1− x− y)2 − 4xy
Φ̃(n)(x, y) , (4.12)
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where

Φ̃(L)(x, y) =
L
∑

f=0

(−1)f (2L− f)!

L!f !(L− f)!
logf (z1z2) [Li2L−f (z1)− Li2L−f (z2)] , (4.13)

and

x = z1z2 , y = (1− z1)(1 − z2) . (4.14)

Changing variables to w′ = ey and x = eiφ, eq. (4.11) becomes, up to a trivial normalization

factor,

∫ w

0

dw′

w′ Φ̃(1)

(

1

w′2 + 2w′ cosφ+ 1
,

w′2

w′2 + 2w′ cosφ+ 1

)

. (4.15)

Inspection shows that the variables defined in (4.14) are given by

z1 =
x

x+ w′ , z2 =
1

1 + xw′ . (4.16)

Furthermore, the functions above can be defined using only iterative integrals corresponding

to symbols z1, z2, 1−z1, 1−z2. It is easy to verify that the latter factorize over x,w,w+x, 1+

wx, and hence are contained in the function class discussed in the previous section. This

implies that we can again perform all iterated integrals within the set of polylogarithms

defined by the same integration kernels/symbols as in the homogeneous case, and therefore

allowing for an algorithmic solution of this problem.

We note that there is an obvious generalization to a class of diagrams where Φ(1) is

replaced by Φ(n), see Appendix A of ref. [10]. The perturbative solution for that class of

diagrams can be done in the same way as explained above.

4.2 H-exchange diagrams (c)

The diagrams with H-exchange of Fig. 1(c) were analyzed in ref. [23] for the quark-antiquark

potential. It was found that the Bethe-Salpeter equation in that case contains a new term

of the form
∫ ∞

0
du

∫ ∞

0
dv e−

Ω0
2
(u+v) f(u, v; y1)Ψ(y1 − u+ v) , (4.17)

so that one has a linear integro-differential equation for Ψ. Their analysis can be adapted

to the present case of general φ, with f now depending on φ.

Although such an equation may seem complicated, it simplifies considerably solving

it in the small α = λ/λ̂ limit. The reason is that the kernel, the H-exchange diagram is

already of order α, so that we only need the wavefunction at order α0. In other words,

the problem reduces to a differential equation for the wavefunction at order α, with an

inhomogeneous term. This is exactly the case we studied in the previous section.

Having said this, the main difficulty lies in the computation of the H insertion, and in

integrating it when iteratively solving for the wavefunction. From the discussion above it
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L
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• integral class (c)

(a) (c)(b)

Figure 1: Classes of loop integrals contribution to LO (diagram (a)) and NLO (diagram (b) and
(c)) in the scaling limit (1.1). Each class can have an arbitrary number of rungs. The arrows in (c)
denote a numerator factor (p+ q)2, where pµ and qµ are the momenta along the arrows.

2. General structure of the Bethe-Salpeter equations at LO and NLO

Here we discuss the general structure of the Bethe-Salpeter equations at leading order

(LO) and next-to-leading order (NLO) in the scaling limit. The LO equations were already

discussed in [10]. They are a natural generalization of the equations for the quark-antiquark

potential [22]. Here we briefly review the main points.

We recall the definition of the locally supersymmetric Wilson loop operator in N = 4

super Yang-Mills,

W ∼ Tr[Pei
∮
A·dx+

∮
|dx|!n·!Φ] , (2.1)

where !n is a point on S5. The contour we consider consists of two (infinite) segments

forming a cusp of Euclidean angle φ. We take the coupling to the scalars to be constant

along each segment, but with a jump of angle θ at the cusp, i.e. cos θ = !n · !n′, where !n

and !n′ are the directions of the two segments. Such a cusped Wilson loop in general has a

logarithmic divergence that takes the form

〈W 〉 ∼ e
−Γcusp(φ,θ) log

ΛUV
ΛIR , (2.2)

where ΛIR/UV are infrared and ultraviolet cutoffs, respectively. This defines the cusp

anomalous dimension Γcusp(φ, θ).1

In the scaling limit (1.1), the scalar coupling of the loop becomes dominant. At leading

order (LO) in the limit, the segments of the Wilson loop couple to conjugate scalars, and

we need to consider scalar exchange diagrams only. At next-to-leading order (NLO), we

have mostly scalar exchanges, plus one-loop interaction diagrams.

An analysis of the integrals contributing to the cusp anomalous dimension allows one

to see that the effective diagrams shown in Fig. 1 are needed at LO and NLO in the

scaling limit. Since only one-loop internal graphs are allowed at NLO order, one can

1Of course, Γcusp is also a function of the ’t Hooft coupling g2N , and the number of colours N .
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• H-exchange kernel involves same function!

is clear that we need to understand how to carry out the H-shaped and similar integrals.

Let us therefore start with the basic three-loop integral, which has one H-exchange, and

no additional rungs. It is given by
∫ ∞

0
ds2

∫ s2

0
ds1

∫ ∞

0
dt2

∫ t2

0
dt1 f(−s1p

µ,−s2p
µ; t1q

µ, t2q
µ) . (4.18)

Note that strictly speaking we should introduce IR and UV regulators for this integral, but

since we are only interested in extracting the overall divergence, the details of the cutoffs

are not very important. For the same reason, the H-shaped subintegral can be defined in

exactly four dimensions,

f(x1, x2, x3, x4) =(∂1 + ∂4)
2 h(x1, x2;x3, x4) , (4.19)

h(x1, x2;x3, x4) =

∫

d4x5d4x6
(iπ2)2

1

x215x
2
25x

2
36x

2
46x

2
56

. (4.20)

Eq. (4.19) defines the function f . Although this is a two-loop integral, f reduces to one-loop

integrals thanks to differential equations it satisfies. We review these differential equations

in Appendix A. Remarkably, they allow us to express f in terms of the one-loop function

Φ(1), the same function that appeared already in integral class (b). Explicitly, we have

f̃ = x224(x
2
12 + x223 − x231)Φ

(1)

(

x212
x213

,
x223
x213

)

+ x213(x
2
12 + x214 − x224)Φ

(1)

(

x212
x224

,
x214
x224

)

+ x224(x
2
14 + x234 − x213)Φ

(1)

(

x234
x213

,
x214
x213

)

+ x213(x
2
23 + x234 − x224)Φ

(1)

(

x234
x224

,
x223
x224

)

+ (x213x
2
24 − x214x

2
23 − x212x

2
34)Φ

(1)

(

x212x
2
34

x213x
2
24

,
x214x

2
23

x213x
2
24

)

, (4.21)

where f̃ = (x212x
2
13x

2
24x

2
34)f . This formula will be very convenient when discussing the

strong coupling limit.

After this digression on h, we can proceed to extract the overall divergence and compute

the H-exchange integral. Changing variables according to s1 = x1s2, t1 = x2t2, and s2 =

zρ, t2 = ρz̄, where z̄ = 1− z, and using that h scales as 1/x4, we find
∫ ∞

0

dρ

ρ
H(3) , (4.22)

where

H(3) =

∫ 1

0
dz dx1 dx2 f(−x1zp

µ,−zpµ;x2z̄q
µ, z̄qµ) . (4.23)

Note that by assumption H(3) is finite (i.e. the original integral only had an overall UV

divergence). However, when carrying out the integration in (4.23), care is required, be-

cause the finiteness is not necessarily true for individual terms appearing in (4.21). This

small problem can be avoided by introducing an auxiliary regulator. With the above

parametrization, we have

xµ1 = −x1zp
µ , xµ2 = −zpµ , xµ3 = x2z̄q

µ , xµ4 = z̄qµ , (4.24)
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• needs to be integrated over line parameters

• will the result be given in terms of HPLs? Algorithm for all loops?

diff. eq. :  Beisert et al.; Sokatchev et al;

x1

x2

x3

x4

x5 x6
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scaling limit at strong coupling to NLO

J. M. Henn, IAS

JMH, Huber

• expand string theory result of                     in limit

Correa, JMH, Maldacena, Sever

Drukker, Forini

This means that the correct effective potential for the general angle case is obtained by

replacing each (x2 + 1) terms in (5.3) of [23] by (2 cosh y1 + 2cosφ) for the cusped Wilson

loop. Then we have a Schrödinger equation
[

−∂2
y1 + Veff(y1) +

Ω2

4

]

Ψ(y1) = 0 (5.3)

where the correction to the effective potential comes from the integral

Veff |λλ̂2 ∼
∫ ∞

0

∫ ∞

0
du dv e−

Ω
2
(u+v) f(u, v) . (5.4)

Explicitly, we have

Veff = − λ̂

4π2(2 cosh y1 + 2cosφ)
+

λλ̂2 logΩ

2π6Ω4(2 cosh y1 + 2cos φ)3
. (5.5)

At strong coupling, we can focus on λ̂ # 1, y1 $ 1, with λ̂(y1)1/4 fixed. In that regime the

leading term of the Schrödinger equation is

Veff(y1 = 0) +
Ω2
0

4
= 0 . (5.6)

From this we obtain for the ground state energy,

Γ(a)+(c) = −Ω0 = −

√

λ̂

2π cos φ
2

[

1− 1

2

λ

λ̂
log

λ̂

λ
+O

(

λ

λ̂

)

]

(5.7)

Here the superscript indicates that this is the contribution from the integrals shown in

Figs. 1(a),(c).

Let us now discuss the integrals of Fig. 1(b). Here we obtained a Schrödinger equation

with an inhomogeneous term (note that there α = λ/λ̂) that is not multiplied by the wave

function. The latter fact suggests to us that the contribution of this class of diagrams at

strong coupling will not be given by an exponential factor of the type seen for integral

classes (a) and (c). If one assumes the absence of contributions of integral class (b) at

strong coupling, as we will do in the following, then (5.7) is the full answer at LO and NLO

in the scaling limit.

Let us now compare this against the corresponding quantity computed in string theory.

5.2 Scaling limit of the string theory result

The leading term (and first subleading term as well) in the 1/
√
λ expansion at strong

coupling has been computed using string theory in ref. [7]. It is straightforward to expand

their result in the large λ̂ limit that we are interested in. For the LO, this was already

done in ref. [10].

It is easy to take the scaling limit of the formula for Γ given in ref. [7]. The details of

this calculation are presented in Appendix B. We find

Γ = −

√

λ̂

2π cos φ
2

[

1− 1

2

λ

λ̂
log

λ̂

λ
+O

(

λ

λ̂

)

]

. (5.8)
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• agreement with field theory at LO (ladders)

• at NLO: 

� ! ⇡

(a) (c)(b)

Figure 1: Classes of loop integrals contribution to LO (diagram (a)) and NLO (diagram (b) and
(c)) in the scaling limit (1.1). Each class can have an arbitrary number of rungs. The arrows in (c)
denote a numerator factor (p+ q)2, where pµ and qµ are the momenta along the arrows.

2. General structure of the Bethe-Salpeter equations at LO and NLO

Here we discuss the general structure of the Bethe-Salpeter equations at leading order

(LO) and next-to-leading order (NLO) in the scaling limit. The LO equations were already

discussed in [10]. They are a natural generalization of the equations for the quark-antiquark

potential [22]. Here we briefly review the main points.

We recall the definition of the locally supersymmetric Wilson loop operator in N = 4

super Yang-Mills,

W ∼ Tr[Pei
∮
A·dx+

∮
|dx|!n·!Φ] , (2.1)

where !n is a point on S5. The contour we consider consists of two (infinite) segments

forming a cusp of Euclidean angle φ. We take the coupling to the scalars to be constant

along each segment, but with a jump of angle θ at the cusp, i.e. cos θ = !n · !n′, where !n

and !n′ are the directions of the two segments. Such a cusped Wilson loop in general has a

logarithmic divergence that takes the form

〈W 〉 ∼ e
−Γcusp(φ,θ) log

ΛUV
ΛIR , (2.2)

where ΛIR/UV are infrared and ultraviolet cutoffs, respectively. This defines the cusp

anomalous dimension Γcusp(φ, θ).1

In the scaling limit (1.1), the scalar coupling of the loop becomes dominant. At leading

order (LO) in the limit, the segments of the Wilson loop couple to conjugate scalars, and

we need to consider scalar exchange diagrams only. At next-to-leading order (NLO), we

have mostly scalar exchanges, plus one-loop interaction diagrams.

An analysis of the integrals contributing to the cusp anomalous dimension allows one

to see that the effective diagrams shown in Fig. 1 are needed at LO and NLO in the

scaling limit. Since only one-loop internal graphs are allowed at NLO order, one can

1Of course, Γcusp is also a function of the ’t Hooft coupling g2N , and the number of colours N .
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coupling has been computed using string theory in ref. [7]. It is straightforward to expand
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agrees if integral class (b) is subleading at strong coupling

• NB: in principle there could be an order of limits ambiguity 
between scaling and strong coupling limit
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Summary and discussion

J. M. Henn, IAS

is interesting physical quantity�cusp(�, ✓,�, N)

• exact result for small angles

• new scaling limit; Schrödinger problem

   full three-loop result

• relation to Regge limit of massive amplitudes
planar integrand for cusped Wilson loop known!

systematic solution to all loop orders

surprises in structure of results:
only certain HPLs, zeta values

agrees with string theory result
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Outlook

J. M. Henn, IAS

• prove more exact properties: HPLs, zeta values,...

• non-planar corrections

• apply new ideas to QCD - three loops?

• TBA equations from integrability Correa, Maldacena, Sever; 
Drukker

simplify them in exactly known cases?
- e.g. scaling limit; small angle limit (Bremsstrahlung)

proofs are often constructive, 
- i.e. also solve the computational problem

 is special case of massive amplitude 
- does integrability apply there too?

�cusp

appear first at four-loops
earlier in other Wilson loops with more external lines
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