Infinite sum of four-point ladder diagrams

A. I. Davydychev
Schlumberger, Sugar Land / INP MSU, Moscow
based on work with
D. J. Broadhurst and N. I. Ussyukina

Off-shell 3-point and 4-point ladder diagrams in ϕ^{3} theory

For arbitrary off-shell values of the momenta and massless internal propagators, analytical results 3 -point and 4 -point ladder diagrams were found for an arbitrary number of loops, L.

3-point and 4-point L-loop diagrams in ϕ^{3} theory
$[$ UD1] $=[$ N.I. Ussyukina \& A.I.D., Phys. Lett. B298 (1993) 363] - two-loop 3- and 4-point ladder diagrams
[UD2] $=$ [N.I. Ussyukina \& A.I.D., Phys. Lett. B305 (1993) 136] - L-loop 3- and 4-point ladder diagrams
[Bro] $=$ [D.J. Broadhurst, Phys. Lett. B307 (1993) 132] - using Gegenbauer-polynomial methods

Four-point ladder diagrams

The off-shell results are finite and depend on 6 kinematic invariants

$$
k_{1}^{2}, k_{2}^{2}, k_{3}^{2}, k_{4}^{2}, s=\left(k_{1}+k_{2}\right)^{2}, t=\left(k_{2}+k_{3}\right)^{2}
$$

zero-loop \mathcal{T}

one-loop

two-loop

Infinite sum of 4-point ladder diagrams

The infinite sum should satisfy a Dyson-Schwinger equation, of the schematic form

$$
\mathcal{D}=\mathcal{T}+g^{2} \int \mathrm{~d}^{4} k \mathcal{T} \cdot \mathcal{D}
$$

- \mathcal{T} is the t-channel tree-diagram (normalized to $1 / t$)
- the dot indicates convolution under the 4-dim integration that adds another loop
- \mathcal{D} can be understood as the Bethe-Salpeter kernel in ladder approximation
[B.A. Arbuzov and V.E. Rochev], [K.G. Klimenko and V.E. Rochev]

Analogy with the set of non-negative integers, $\mathcal{N}=\{0,1,2,3, \ldots\}$:

$$
\mathbf{1}^{+} \mathcal{N}=\{1,2,3,4, \ldots\}, \quad \mathcal{N}=\left\{0, \mathbf{1}^{+} \mathcal{N}\right\}
$$

Motivations

- To study the infinite coupling limit - in particular, to check our conjecture (back in 1993) that by including the tree-diagram \mathcal{T} in \mathcal{D} we would obtain zero for the sum of 4-point ladder diagrams at infinite coupling.
- Ladder approximations are of interest to $\mathcal{N}=4$ super Yang-Mills theory whose strong coupling limit may be governed by an AdS/CFT correspondence.
[B. Eden, P.S. Howe, C. Schubert, E. Sokatchev, P.C. West, M. Bianchi, S. Kovacs, G. Rossi, Y.S. Stanev,
F.A. Dolan, H. Osborn, N. Beisert, C. Kristjansen, J. Plefka, G.W. Semenoff, M. Staudacher, J.M. Drummond,
G.P. Korchemsky, J. Henn, V.A. Smirnov, D. Nguyen, M. Spradlin, A. Volovich, L.F. Alday, R. Roiban, B. Basso,
L.V. Bork, D.I. Kazakov, G.S. Vartanov]

Another interesting application is the conformal quantum mechanics [A.P. Isaev]

- Recent interest to studying properties of the functions occurring in such ladder diagrams [I. Kondrashuk, A. Vergara, A.V. Kotikov, I. Gonzalez, e.a.]

In any case, we hope that it may be of interest to see the explicit form of a 4-point ladder sum, as a function of the 6 kinematic invariants and the coupling g^{2}, which also has the dimensions of (mass) ${ }^{2}$ in ϕ^{3} theory.
$[B r D]=[D . J$. Broadhurst and A.I Davydychev, Nucl. Phys. B (Proc. Suppl.), 205-206 (2010) 326]

The L-loop term

We write the perturbation series of ladder diagrams as

$$
\mathcal{D}\left(k_{1}^{2}, k_{2}^{2}, k_{3}^{2}, k_{4}^{2}, s, t\right)=\frac{1}{t}\left\{1+\sum_{L=1}^{\infty}\left(-\frac{\kappa^{2}}{4}\right)^{L} \Phi^{(L)}(X, Y)\right\}
$$

with dimensionless ratios

$$
X \equiv \frac{k_{1}^{2} k_{3}^{2}}{s t}, \quad Y \equiv \frac{k_{2}^{2} k_{4}^{2}}{s t}, \quad \kappa^{2} \equiv \frac{g^{2}}{4 \pi^{2} s}
$$

that we assume to be positive.
Here the dimensionless function $\Phi^{(L)}(X, Y)$, accompanied by the factor $\frac{1}{t}\left(-\frac{\kappa^{2}}{4}\right)^{L}$, represents the contribution of the L-loop term.

The L-loop term (continued)

As shown in [UD2], the L-loop term

$$
\begin{aligned}
\Phi^{(L)}(X, Y)= & -\frac{1}{L!(L-1)!} \int_{0}^{1} \frac{\mathrm{~d} \xi}{Y \xi^{2}+(1-X-Y) \xi+X} \\
& \times\left[\ln \xi\left(\ln \frac{Y}{X}+\ln \xi\right)\right]^{L-1}\left(\ln \frac{Y}{X}+2 \ln \xi\right)
\end{aligned}
$$

depends only on the cross ratios X and Y and is described by the same function as the ladder 3-point function. When scaled by an appropriate power of p_{3}^{2}, the latter depends only on the ratios $x=p_{1}^{2} / p_{3}^{2}$ and $y=p_{2}^{2} / p_{3}^{2}$ and is given by $\Phi^{(L)}(x, y)$.

The origin of this simplification was explained in [UD2] and [Bro] by applying the conformal transformation that relates 4-point ladder diagram to the 3-point one.

The L-loop term (continued)

This integral may be evaluated in terms of polylogarithms Li_{j} [UD2]. Let us consider the case where the Källen function

$$
\mu=\sqrt{4 X Y-(X+Y-1)^{2}}
$$

is real and positive. Then we are outside the region that contains Landau singularities and hence may define the geometrical angle ϕ (with $0<\phi<\pi$):

$$
\phi=\arccos \left(\frac{X+Y-1}{2 \sqrt{X Y}}\right), \quad \text { so that } \quad \mu=2 \sqrt{X Y} \sin \phi
$$

In this region, the L-loop term [UD2] can be presented in terms of Li_{j} as

$$
\Phi^{(L)}(X, Y)=\frac{2}{\mu L!} \sum_{j=L}^{2 L} \frac{j!}{(j-L)!(2 L-j)!}\left(\ln \frac{X}{Y}\right)^{2 L-j} \operatorname{Im} \operatorname{Li}_{\mathrm{j}}\left(\sqrt{\frac{\mathrm{Y}}{\mathrm{X}}} \mathrm{e}^{\mathrm{i} \phi}\right)
$$

involving powers of $\ell \equiv \ln (X / Y)$ and $\operatorname{Im} \operatorname{Li}_{\mathrm{j}}(L \leq j \leq 2 L)$. The symmetry $\Phi^{(L)}(X, Y)=\Phi^{(L)}(Y, X)$ is ensured by the inversion formula for Li_{j}, see [Lewin].

Infinite sum: an integral with a Bessel function

Let us omit the tree term $1 / t$ and use the integral representation for the L-loop term to sum the series

$$
\begin{aligned}
\sum_{L=1}^{\infty}\left(-\frac{\kappa^{2}}{4}\right)^{L} \Phi^{(L)}(X, Y)= & \frac{\kappa}{2} \int_{0}^{1} \frac{\mathrm{~d} \xi}{X+(1-X-Y) \xi+Y \xi^{2}}\left(\ln \frac{Y}{X}+2 \ln \xi\right) \\
& \times \frac{1}{\sqrt{\ln \xi\left(\ln \frac{Y}{X}+\ln \xi\right)}} J_{1}\left(\kappa \sqrt{\ln \xi\left(\ln \frac{Y}{X}+\ln \xi\right)}\right)
\end{aligned}
$$

where J_{1} is a Bessel function,

$$
J_{1}(z)=-\frac{2}{z} \sum_{L=1}^{\infty} \frac{1}{L!(L-1)!}\left(-\frac{z^{2}}{4}\right)^{L}
$$

To remind,

$$
X \equiv \frac{k_{1}^{2} k_{3}^{2}}{s t}, \quad Y \equiv \frac{k_{2}^{2} k_{4}^{2}}{s t}, \quad \kappa^{2} \equiv \frac{g^{2}}{4 \pi^{2} s}
$$

Infinite sum: an integral with a Bessel function (continued)

Substituting $\xi=e^{-\eta}$ and denoting $\ell \equiv \ln \frac{X}{Y}$, we obtain

$$
\begin{aligned}
\sum_{L=1}^{\infty}\left(-\frac{\kappa^{2}}{4}\right)^{L} \Phi^{(L)}(X, Y)= & -\frac{\kappa}{2} \int_{0}^{\infty} \frac{e^{-\eta} \mathrm{d} \eta}{X+(1-X-Y) e^{-\eta}+Y e^{-2 \eta}} \\
& \times \frac{2 \eta+\ell}{\sqrt{\eta(\ell+\eta)}} J_{1}(\kappa \sqrt{\eta(\ell+\eta)})
\end{aligned}
$$

The denominator may be re-written as

$$
\begin{aligned}
X+(1-X-Y) e^{-\eta}+Y e^{-2 \eta} & =e^{-\eta}\left[1-X-Y+2 \sqrt{X Y} \cosh \left(\eta+\frac{\ell}{2}\right)\right] \\
& =-2 \sqrt{X Y} e^{-\eta}\left[\cos \phi-\cosh \left(\eta+\frac{\ell}{2}\right)\right] .
\end{aligned}
$$

Infinite sum: an integral with a Bessel function (continued)

In this way, we arrived at

$$
\begin{aligned}
\sum_{L=1}^{\infty}\left(-\frac{\kappa^{2}}{4}\right)^{L} \Phi^{(L)}(X, Y)= & \frac{\kappa}{4 \sqrt{X Y}} \int_{0}^{\infty} \frac{\mathrm{d} \eta}{\cos \phi-\cosh \left(\eta+\frac{\ell}{2}\right)} \\
& \times \frac{2 \eta+\ell}{\sqrt{\eta(\ell+\eta)}} J_{1}(\kappa \sqrt{\eta(\ell+\eta)})
\end{aligned}
$$

and obtained, in 1999-2000, an explicit summation of all 4-point ladder diagrams with loop numbers $L>0$.

Yet we could find no way of investigating our hunch that inclusion of the tree diagram, with $L=0$, might give an exponentially vanishing result at infinitely strong coupling.

Infinite sum: an integral with a Bessel function (continued)

The first break-through came from noticing that

$$
\frac{2 \eta+\ell}{\sqrt{\eta(\ell+\eta)}} J_{1}(\kappa \sqrt{\eta(\ell+\eta)})=-\frac{2}{\kappa} \frac{\mathrm{~d}}{\mathrm{~d} \eta} J_{0}(\kappa \sqrt{\eta(\ell+\eta)}) .
$$

Then, integrating by parts, we found that the Dyson-Schwinger solution is

$$
\begin{aligned}
\mathcal{D}\left(k_{1}^{2}, k_{2}^{2}, k_{3}^{2}, k_{4}^{2}, s, t\right) & =\frac{1}{t}+\frac{1}{t} \sum_{L=1}^{\infty}\left(-\frac{\kappa^{2}}{4}\right)^{L} \Phi^{(L)}(X, Y) \\
& =\frac{1}{2 t \sqrt{X Y}} \int_{0}^{\infty} \mathrm{d} \eta \frac{\sinh \left(\eta+\frac{\ell}{2}\right) J_{0}(\kappa \sqrt{\eta(\ell+\eta)})}{\left[\cosh \left(\eta+\frac{\ell}{2}\right)-\cos \phi\right]^{2}}
\end{aligned}
$$

where the tree-term $1 / t$ is precisely included by the surface term of the partial integration.

Infinite sum: an integral with a Bessel function (continued)

Next, we shift the integration variable η and obtain

$$
\mathcal{D}\left(k_{1}^{2}, k_{2}^{2}, k_{3}^{2}, k_{4}^{2}, s, t\right)=\frac{1}{2 t \sqrt{X Y}} \int_{\ell / 2}^{\infty} \mathrm{d} \eta \frac{\sinh \eta J_{0}\left(\kappa \sqrt{\eta^{2}-\frac{1}{4} \ell^{2}}\right)}{(\cosh \eta-\cos \phi)^{2}} .
$$

The $X \longleftrightarrow Y$ symmetry of the result is now quite easy to understand:

- If we were to interchange X and Y, then the only thing that would change is the lower limit of integration: $\ell / 2 \rightarrow-\ell / 2$, since $\phi \equiv \arccos ((X+Y-1) /(2 \sqrt{X Y}))$ is symmetric in (X, Y).
- The integral between $-\ell / 2$ and $\ell / 2$ is zero, since the integrand is an odd function of η and an even function of $\ell \equiv \ln (X / Y)$.
\Rightarrow We may take $\frac{1}{2}|\ell|=\frac{1}{2}|\ln X-\ln Y|$ as the lower limit of integration.

Infinite sum: getting rid of the Bessel function

We re-write the result as
$\mathcal{D}\left(k_{1}^{2}, k_{2}^{2}, k_{3}^{2}, k_{4}^{2}, s, t\right)=\frac{1}{2 t \sqrt{X Y}} \int_{0}^{\infty} \frac{\mathrm{d} \eta \sinh \eta}{(\cosh \eta-\cos \phi)^{2}} J_{0}\left(\kappa \sqrt{\eta^{2}-\frac{1}{4} \ell^{2}}\right) \vartheta\left(\eta^{2}-\frac{1}{4} \ell^{2}\right)$,
where $\vartheta(x)$ is the Heaviside function: $\vartheta(x)=1$, for $x>0$, and $\vartheta(x)=0$, otherwise. Now, let us use the integral representation

$$
\int_{0}^{\infty} \mathrm{d} \tau \sin (\kappa \eta \cosh \tau) \cos \left(\frac{1}{2} \ell \kappa \sinh \tau\right)=\frac{\pi}{2} J_{0}\left(\kappa \sqrt{\eta^{2}-\frac{1}{4} \ell^{2}}\right) \vartheta\left(\eta^{2}-\frac{1}{4} \ell^{2}\right)
$$

which may be obtained from [PBM1] (Equation (2.5.25.9), with the substitutions $x=\kappa \sinh \tau, y=\kappa, c=\eta$, and $\left.b=\frac{1}{2} \ell\right)$.
The key point is that we are rid of the integration limit $\ell / 2$.

Infinite sum: getting rid of the Bessel function (continued)

By this device, we obtain a double integral

$$
\begin{aligned}
\mathcal{D}\left(k_{1}^{2}, k_{2}^{2}, k_{3}^{2}, k_{4}^{2}, s, t\right)= & \frac{1}{\pi t \sqrt{X Y}} \int_{0}^{\infty} \frac{\mathrm{d} \eta \sinh \eta}{(\cosh \eta-\cos \phi)^{2}} \\
& \times \int_{0}^{\infty} \mathrm{d} \tau \sin (\kappa \eta \cosh \tau) \cos \left(\frac{1}{2} \ell \kappa \sinh \tau\right)
\end{aligned}
$$

Next, substitution $z=\kappa \cosh \tau$ gives $\kappa \sinh \tau=\sqrt{z^{2}-\kappa^{2}}$ and $\mathrm{d} \tau=\mathrm{d} z / \sqrt{z^{2}-\kappa^{2}}$. Hence we obtain

$$
\begin{aligned}
\mathcal{D}\left(k_{1}^{2}, k_{2}^{2}, k_{3}^{2}, k_{4}^{2}, s, t\right)= & \frac{1}{\pi t \sqrt{X Y}} \int_{0}^{\infty} \frac{\mathrm{d} \eta \sinh \eta}{(\cosh \eta-\cos \phi)^{2}} \\
& \times \int_{\kappa}^{\infty} \frac{\mathrm{d} z \sin (\eta z)}{\sqrt{z^{2}-\kappa^{2}}} \cos \left(\frac{1}{2} \ell \sqrt{z^{2}-\kappa^{2}}\right)
\end{aligned}
$$

Infinite sum: getting rid of the Bessel function (continued)

Now we reverse the order of the integrations, obtaining

$$
\begin{aligned}
\mathcal{D}\left(k_{1}^{2}, k_{2}^{2}, k_{3}^{2}, k_{4}^{2}, s, t\right)= & \frac{1}{\pi t \sqrt{X Y}} \int_{\kappa}^{\infty} \frac{\mathrm{d} z}{\sqrt{z^{2}-\kappa^{2}}} \cos \left(\frac{1}{2} \ell \sqrt{z^{2}-\kappa^{2}}\right) \\
& \times \int_{0}^{\infty} \frac{\mathrm{d} \eta \sinh \eta \sin (\eta z)}{(\cosh \eta-\cos \phi)^{2}}
\end{aligned}
$$

From Equation (2.5.48.18) of [PBM1] (with $t=\pi-\phi, c=1, b=z$), we obtain

$$
\int_{0}^{\infty} \frac{\mathrm{d} \eta \sinh \eta \sin (\eta z)}{(\cosh \eta-\cos \phi)^{2}}=\frac{\pi z}{\sin \phi} \frac{\sinh [(\pi-\phi) z]}{\sinh (\pi z)}
$$

Infinite sum of ladder diagrams: the final solution

Recalling that $\mu=2 \sqrt{X Y} \sin \phi$, we obtain

$$
\mathcal{D}\left(k_{1}^{2}, k_{2}^{2}, k_{3}^{2}, k_{4}^{2}, s, t\right)=\frac{2}{t \mu} \int_{\kappa}^{\infty} \frac{z \mathrm{~d} z}{\sqrt{z^{2}-\kappa^{2}}} \frac{\sinh [(\pi-\phi) z]}{\sinh (\pi z)} \cos \left(\frac{1}{2} \ell \sqrt{z^{2}-\kappa^{2}}\right)
$$

This is our final solution to the Dyson-Schwinger equation that sums all L-loop 4-point ladder diagrams, including (most crucially) the tree-diagram, with $L=0$ loops. The sum manifestly vanishes, exponentially fast, as the dimensionless coupling $\kappa=g /(2 \pi \sqrt{s})$ tends to infinity, since the ratio of sinh functions in the integrand satisfies

$$
\frac{\sinh [(\pi-\phi) z]}{\sinh (\pi z)} \leq \frac{\sinh [(\pi-\phi) \kappa]}{\sinh (\pi \kappa)}=\mathcal{O}\left(e^{-\kappa \phi}\right)
$$

with $0<\phi<\pi$.
So we are done, 17 years after conjecturing such an exponential suppression.

