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Off-shell 3-point and 4-point ladder diagrams in ¢° theory

For arbitrary off-shell values of the momenta and massless internal propagators,

analytical results 3-point and 4-point ladder diagrams were found for an arbitrary
number of loops, L.
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3-point and 4-point L-loop diagrams in ¢> theory

[UD1] = [ N.I. Ussyukina & A.l.D., Phys. Lett. B298 (1993) 363 | — two-loop 3- and 4-point ladder diagrams
[UD2] = [ N.I. Ussyukina & A.l.D., Phys. Lett. B305 (1993) 136 | — L-loop 3- and 4-point ladder diagrams
[Bro] = [ D.J. Broadhurst, Phys. Lett. B307 (1993) 132 | — using Gegenbauer-polynomial methods
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Four-point ladder diagrams
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The off-shell results are finite and depend on 6 kinematic invariants

ki, k3, ki ki s = (k14 ko)?, t = (ko+ k3)”.
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Infinite sum of 4-point ladder diagrams

D = + + + ...

The infinite sum should satisfy a Dyson—Schwinger equation, of the schematic form
D=7’+92/d4k7'-13.

e T is the t-channel tree-diagram (normalized to 1/t)
e the dot indicates convolution under the 4-dim integration that adds another loop
e D can be understood as the Bethe—Salpeter kernel in ladder approximation

[B.A. Arbuzov and V.E. Rochev], [K.G. Klimenko and V.E. Rochev]

Analogy with the set of non-negative integers, N' = {0,1,2,3,...}:

1+N — {17273747 e '}7 N — {07 1+N}
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Motivations
e To study the infinite coupling limit — in particular, to check our conjecture (back
in 1993) that by including the tree-diagram 7 in D we would obtain zero for
the sum of 4-point ladder diagrams at infinite coupling.

e Ladder approximations are of interest to N/ = 4 super Yang—Mills theory whose
strong coupling limit may be governed by an AdS/CFT correspondence.
[B. Eden, P.S. Howe, C. Schubert, E. Sokatchev, P.C. West, M. Bianchi, S. Kovacs, G. Rossi, Y.S. Stanev,
F.A. Dolan, H. Osborn, N. Beisert, C. Kristjansen, J. Plefka, G.W. Semenoff, M. Staudacher, J.M. Drummond,
G.P. Korchemsky, J. Henn, V.A. Smirnov, D. Nguyen, M. Spradlin, A. Volovich, L.F. Alday, R. Roiban, B. Basso,
L.V. Bork, D.l. Kazakov, G.S. Vartanov|
Another interesting application is the conformal quantum mechanics [A.P. Isaey]

e Recent interest to studying properties of the functions occurring in such ladder
diagrams [I. Kondrashuk, A. Vergara, A.V. Kotikov, |. Gonzalez, e.a.]

In any case, we hope that it may be of interest to see the explicit form of a 4-point
ladder sum, as a function of the 6 kinematic invariants and the coupling g2, which

also has the dimensions of (mass)? in ¢> theory.
[BrD] = [D.J. Broadhurst and A.l Davydychev, Nucl. Phys. B (Proc. Suppl.), 205-206 (2010) 326]
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The L-loop term

We write the perturbation series of ladder diagrams as

1 > K2 L
D 2 1.2 1.2 1.2 — -1 v (I)(L) XV
(k17k27k37k4757t) / { +Z ( 4) ( Y )

with dimensionless ratios

N Y R

st st ’ 4725

that we assume to be positive.

Here the dimensionless function ®X)(X,Y"), accompanied by the factor 1 (—

represents the contribution of the L-loop term.

Calc2012
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The L-loop term (continued)
As shown in [UD2], the L-loop term

1 ! dé¢
L! (L—1)!/0 Y+ (1-X-Y)E+X

L—1
X [ln{ (1n§—|—ln§>] <ln§—|—2ln§>

depends only on the cross ratios X and Y and is described by the same function
as the ladder 3-point function. When scaled by an appropriate power of p3,

the latter depends only on the ratios = p?/p3 and y = p3/p% and is given by
o) (z,y).

dLN(XY) = —

The origin of this simplification was explained in [UD2| and [Bro| by applying the
conformal transformation that relates 4-point ladder diagram to the 3-point one.
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The L-loop term (continued)

This integral may be evaluated in terms of polylogarithms Li; [UD2].
Let us consider the case where the Kallen function

= /4XY — (X +Y —1)2

is real and positive. Then we are outside the region that contains Landau
singularities and hence may define the geometrical angle ¢ (with 0 < ¢ < 7):

X+Y -1
2v XY

In this region, the L-loop term [UD2| can be presented in terms of Li; as

(L) X\ Y o
o) (X,Y) va 2L 7 (ln?) Im Lij | 1/ e

involving powers of ¢ = In(X/Y) and Im Li; (L < j < 2L). The symmetry
PLN(X)Y) = &) (Y, X) is ensured by the inversion formula for Li;, see [Lewin].

¢ = arccos ( ) , sothat u =2V XY sin¢.
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Infinite sum: an integral with a Bessel function

Calc2012

Let us omit the tree term 1/t and use the integral representation for the L-loop
term to sum the series

= K2\ K 1 d¢ Y

AT 5@ _ K Yoo
Lz_l ( 4) PHXY) = 2/X+(1—X—Y)§+Y§2 (l x T2 5)
- 0

X ! J1 m\/lng(lny+ln§)
JIné (I +Ine) X

where J; is a Bessel function,

To remind,
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Infinite sum: an integral with a Bessel function (continued)

Substituting £ = e~ " and denoting £ = In % we obtain

> K2\ " k[ e~ dn

=) oB)(X)Y) = ——/
Lzl( 4) (X, Y) 2) X+(1-X-Y)e "+Ye 2n
= 0
2n+ ¢
X Jl (li\/ﬁ(f‘#ﬁ)) .
V(€ +mn)
The denominator may be re-written as
14

X+(1-X-Y)e "4+Ye ™ = ¢ [1 — X — Y+2vXYcosh(77+§)]

= —2vXYe " [cosgb — cosh (77 + g)] :
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Infinite sum: an integral with a Bessel function (continued)

In this way, we arrived at

= K2\ " K r dn
ERAS B 1€2) X, Y) = /
Z ( 4) ( ) 4\/XYO Cos¢—cosh(77—|—§)

2n + ¢
X
V1 +n)

Ji (m/n(f + 77))

and obtained, in 1999-2000, an explicit summation of all 4-point ladder diagrams
with loop numbers L > 0.

Yet we could find no way of investigating our hunch that inclusion of the tree
diagram, with L = 0, might give an exponentially vanishing result at infinitely
strong coupling.

10
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Infinite sum: an integral with a Bessel function (continued)

The first break-through came from noticing that

\/?77261677) Ji (fﬂz\/n(f + 77)) = —Jo (&\/77(6 + 77)) -

Then, integrating by parts, we found that the Dyson—Schwinger solution is

1 1 o0 o\ L
D(k%,kg,k%,ki,s,t) — ;"‘;Z (_%) (I)(L)(X,Y)
L=1

smh (77—|— ) Jo (K 77(€—|—77))
275\/7 [cosh(n +£) — cos ¢] ?

where the tree-term 1/t is precisely included by the surface term of the partial
integration.

11
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Infinite sum: an integral with a Bessel function (continued)

Next, we shift the integration variable 1 and obtain

Smhn JO( \/77 162)

2tv X (coshn — cos ¢)*

e/z

D(k?, k3, k3, k3, 5,t) =

The X <— Y symmetry of the result is now quite easy to understand:

e |f we were to interchange X and Y, then the only thing that would change is the
lower limit of integration: ¢/2 — —/¢/2, since ¢ = arccos((X+Y —1)/(2v XY))
is symmetric in (X,Y).

e The integral between —//2 and ¢/2 is zero, since the integrand is an odd
function of n and an even function of / = In(X/Y").

= We may take 1]¢| = 3|In X — InY| as the lower limit of integration.

12
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Infinite sum: getting rid of the Bessel function

We re-write the result as

1 r dn sinhn
D(k?, k2, k3, k2, 5,1) = / J (H, 2—%2)19 2_ 1)
(K1, k3, k3, ki, 8, 1) Qt\/ﬁo (cosh 7 — cos )’ 0 \/77 4 (n* — 10%)

where ¥(x) is the Heaviside function: ¥(x)=1, for x > 0, and ¥(x) =0, otherwise.
Now, let us use the integral representation

oo

/dT sin (kn cosh 7) cos (%Kﬁ: sinh 7') — g Jo (/{\/772 — iﬂ) V (772 — iﬁ)
0

which may be obtained from [PBM1| (Equation (2.5.25.9), with the substitutions
r =ksinh7, y=k,c=mn, and b = %E)
The key point is that we are rid of the integration limit ¢/2.

13
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Infinite sum: getting rid of the Bessel function (continued)

By this device, we obtain a double integral

dn sinhn

1 o0
D(k?, k2, k3, k2, 5,1) = /
(R, b, K ) wt\/ﬁo (coshn—cosq5)2

X / dr sin (kn cosh ) cos (34r sinh 7)

0

Next, substitution z = k cosh 7 gives ksinh 7 = v/ 22 — k? and d7 = dz /v 2% — K2,
Hence we obtain

dn sinhn

1 o0
D(k2, k2, k3, k2, s, t /
(k1 K, b3, ) wt\/ﬁo (coshn—cosq5)2

0. @)

X / dz sin(nz) COS (%E\/ 22 — /4:2) .

22 g2

K

14



A.l. Davydychev Calc2012

Infinite sum: getting rid of the Bessel function (continued)

Now we reverse the order of the integrations, obtaining

D(k?, k3, k3, k3,5,t) =

1 r dz
v ] v s (VF )

y /Oodn sinh 7 sin(nz)
(coshn — cos¢)®

From Equation (2.5.48.18) of [PBM1] (witht =7 — ¢, c =1, b = z), we obtain

oo

/dn sinhn sin(nz) w2z sinh|(7 — qb)z]

) (coshn — cos qb)2 ~ sing  sinh(nz)

15
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Infinite sum of ladder diagrams: the final solution

Recalling that 4 = 2/ XY sin ¢, we obtain

0

2 zdz  sinh[(7 — ¢)Z]
2 1.2 1.2 1.2 _ 1 2 _ 4.2
D(k1, k3, k3, ki, s,t) = ” 2 sinh(rz) COS (26\/,2 K ) :

This is our final solution to the Dyson—Schwinger equation that sums all L-loop
4-point ladder diagrams, including (most crucially) the tree-diagram, with L = 0
loops. The sum manifestly vanishes, exponentially fast, as the dimensionless
coupling kK = g/(2m4/s) tends to infinity, since the ratio of sinh functions in the
integrand satisfies

sinh [(7m — ¢)2Z] - sinh [(7m — ¢)K]

sinh(rz) —  sinh(7wk)

= O(e™")

with 0 < ¢ < .

So we are done, 17 years after conjecturing such an exponential suppression.
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