Differential reduction of generalized hypergeometric functions in application to Feynman diagrams.

HyperDire project.

V. Bytev,
In collaboration with M. Kalmykov, B. Kniehl

CALC 2012
August 1, Dubna, Russia
Motivation

Oleg Tarasov (1996), and Davydychev-Delbourgo (1997), have suggested two elegant approaches for construction of hypergeometric representation of one-loop Feynman Diagrams. One of main achievement of these approaches are the essential reduction of independent variables. In accordance with Fleischer-Jegerlehner-Tarasov, 2003.

<table>
<thead>
<tr>
<th>Type of 1-loop diagram</th>
<th># 1</th>
<th># 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=2 (propagator)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>N=3 (vertex)</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>N=4 (box)</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>N = 5 (pentagon)</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>N = k</td>
<td>k(k+1)/2</td>
<td>k-1</td>
</tr>
</tbody>
</table>

where
#1 the number of kinematic invariants (non-zero masses/momenta)
and
#2 the number of variables in hypergeometric representation.

In this approach, the one-loop N-point function is expressible in terms of hypergeometric functions of $N-1$ variables.

1-loop diagrams: Finite part

The program of constructing the analytical coefficients of the ε-expansion is a more complicated matter. The finite parts of one-loop diagrams in $d = 4$ dimension are expressible in terms of the Spence dilogarithm function
t’Hooft, Veltman, 1979;
Denner, Nierste, Scharf, 1991;
Ellis, Zanderighi, 2007;
Denner, Dittmaier, 2010

\[\text{FeynmanDiagramm} = \frac{1}{\varepsilon^2} A + \frac{1}{\varepsilon} B + C + D\varepsilon + E\varepsilon^2 \ldots \]
The Task

to elaborate the algorithm and implementation for:

- manipulation with multiple hypergeometric (Horn-type) functions (express parameters of arbitrary values in terms of ones that differ from original by integers)
- construction of analytical coefficients of ε-expansion of multiple hypergeometric (Horn-type) functions

Finally:
Package for Numerical Evaluation of finite, $O(\varepsilon)$ and $O(\varepsilon^2)$ parts of one-loop Feynman Diagrams with an arbitrary set of kinematic invariants
Example: Sunset Diagram

\[F_G = \int \frac{d^d k_1 d^d k_2}{[(k_1 - p)^2 - m_1^2][k_2^2 - m_2^2][(k_1 - k_2)^2 - m_3^2]} \]

\[= \int_{-i\infty}^{i\infty} ds_1 ds_2 ds_3 \frac{m_1^{2s_1} m_2^{2s_2} m_3^{2s_3}}{(-p^2)^{s_1+s_2+s_3}} \Gamma(-s_1)\Gamma(-s_2)\Gamma(-s_3) \]

\[\Gamma(3-d+s_1+s_2+s_3) \Gamma(d/2-1-s_1)\Gamma(d/2-1-s_2)\Gamma(d/2-1-s_3) \]

\[\sim z_1^{d/2-1} z_2^{d/2-1} F_c^{(3)}(1, d/2, d/2, d/2, d/2, d/2; z_1, z_2, z_3) \]

\[-z_1^{d/2-1} \Gamma^2(1-d/2) F_c^{(3)}(1, 2-d/2, d/2, 2-d/2, d/2, d/2, z_1, z_2, z_3) \]

\[-z_2^{d/2-1} \Gamma^2(1-d/2) F_c^{(3)}(1, 2-d/2, d/2, 2-d/2, d/2, z_1, z_2, z_3) \]

\[-\Gamma(d/2-1)\Gamma(1-d/2)\Gamma(3-d) F_c^{(3)}(3-d, 2-d/2, 2-d/2, 2-d/2, d/2, d/2, z_1, z_2, z_3) \]

in terms of the hypergeometric function (in the case \(n = 3 \))

\[F_c^{(n)}(a, b; c_1, \cdots, c_n; z_1, \cdots z_n) = \sum_{k_1, \cdots k_n} \frac{(a)_{k_1+\cdots+k_n}(b)_{k_1+\cdots+k_n}}{(c_1)_{k_1} \cdots (c_n)_{k_n}} \frac{z_1^{k_1} \cdots z_n^{k_n}}{k_1! \cdots k_n!} \]

with arguments \(z_1 = m_1^2/m_3^2, \quad z_2 = m_2^2/m_3^2, \quad z_3 = p^2/m_3^2. \)
Horn-type Hypergeometric Functions

In accordance with Horn definition, a formal (Laurent) power series in \(r \) variables,
\[
\Phi(\vec{z}) = \sum C(\vec{m}) \vec{z}^\vec{m} \equiv \sum_{m_1, m_2, \ldots, m_r} C(m_1, m_2, \ldots, m_r) x_1^{m_1} \cdots x_r^{m_r},
\]
is called hypergeometric if for each \(i = 1, \ldots, r \) the ratio
\[
\frac{C(\vec{m} + e_j)}{C(\vec{m})} = \frac{P_j(\vec{m})}{Q_j(\vec{m})} \Rightarrow C(\vec{m}) = \prod_{i=1}^{r} \lambda_i^{m_i} R(\vec{m}) \left(\frac{\prod_{j=1}^{N} \Gamma(\mu_j(\vec{m}) + \gamma_j)}{\prod_{k=1}^{M} \Gamma(\nu_k(\vec{m}) + \delta_k)} \right).
\]

\(P, Q, R \) are the rational functions in the index of summation: \(\vec{m} = (m_1, \ldots, m_r) \), and \(\vec{e}_j \) is unit vector with unity in the \(j^{\text{th}} \) place. The Horn hypergeometric function satisfies the following system of equation
\[
Q_j \left(\sum_{k=1}^{r} x_k \frac{\partial}{\partial x_k} \right) \frac{1}{x_j} \Phi(\vec{z}) = P_j \left(\sum_{k=1}^{r} x_k \frac{\partial}{\partial x_k} \right) \Phi(\vec{z}).
\]
Current status

The systematic algorithms for construction of analytical coefficients of ε-expansion for a large class of Horn-type hypergeometric functions around integer values of parameters was suggested by Moch-Uwer-Weinzierl, 2001.

<table>
<thead>
<tr>
<th>Hypergeometric function</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>pF_{p-1}</td>
<td>A</td>
</tr>
<tr>
<td>F_1</td>
<td>A, B</td>
</tr>
<tr>
<td>F_2, F_3</td>
<td>A, C, D</td>
</tr>
<tr>
<td>F_4</td>
<td>does not work</td>
</tr>
</tbody>
</table>

Two of these algorithms $A \Rightarrow pF_{p-1}$ and $B \Rightarrow F_1$ was extended for zero-balance case: Weinzierl, 2004.
It was a few attempts to extend these approach to hypergeometric functions like F_4
Del Duca,Duhr,Glover,Smirnov, 2009
or to another (different from zero-balance case) set of parameters
Rottmann-Reina, 2011
Ablinger-Blümlein-Schneider, 2011
HyperDIRE project
(HYPERgeometric DIFFerential REduction)

HYPERDIRE is a set of Wolfram Mathematica based programs for differential reduction of Horn type hypergeometrical functions.

HYPERDIRE includes the following packages:

- **pfq** is relevant to manipulation with hypergeometrical functions $p+1F_p$
- **AppellF1F4** is relevant to manipulation with Appell`s hypergeometric functions of two variables F_1, F_2,F_3,F_4.
- Fd multiple variable function

The package is available at: https://sites.google.com/site/loopcalculations/home
Horn-type Hypergeometric Functions: reduction to the basis

Let us consider the series

$$
\Phi(\vec{\gamma}; \vec{\sigma}; \vec{z}) = \sum_{m_1, m_2, \ldots, m_r=0}^{\infty} \left(\frac{\prod_{j=1}^{K} \Gamma \left(\sum_{a=1}^{r} \mu_{ja} m_a + \gamma_j \right)}{\prod_{k=1}^{L} \Gamma \left(\sum_{b=1}^{r} \nu_{kb} m_b + \sigma_k \right)} \right) x_1^{m_1} \cdots x_r^{m_r},
$$

The sequences $\vec{\gamma} = (\gamma_1, \cdots, \gamma_K)$ and $\vec{\sigma} = (\sigma_1, \cdots, \sigma_L)$ are called upper and lower parameters of the hypergeometric function, respectively. Two functions with sets of parameters shifted by a unit, $\Phi(\vec{\gamma} + e^c; \vec{\sigma}; \vec{z})$ and $\Phi(\vec{\gamma}; \vec{\sigma}; \vec{z})$, are related by a linear differential operator:

$$
\Phi(\vec{\gamma} + e^c; \vec{\sigma}; \vec{z}) = \left(\sum_{a=1}^{r} \mu_{ca} x_a \frac{\partial}{\partial x_a} + \gamma_c \right) \Phi(\vec{\gamma}; \vec{\sigma}; \vec{z})
$$

$$
\Phi(\vec{\gamma}; \vec{\sigma} - e^c; \vec{z}) = \left(\sum_{b=1}^{r} \nu_{cb} x_b \frac{\partial}{\partial x_b} + \sigma_c \right) \Phi(\vec{\gamma}; \vec{\sigma}; \vec{z}) .
$$
Horn-type Hypergeometric Functions: Inverse Operators

Staring from homogeneous system of PDE and direct differential operators, the inverse differential operators can be constructed:

$$\Phi(\vec{\gamma} - \vec{e}_c; \vec{\sigma}; z) = \sum_{a} S_a(z, \vec{\partial}_x) \Phi(\vec{\gamma}; \vec{\sigma}; z)$$

$$\Phi(\vec{\gamma}; \vec{\sigma} + \vec{e}_c; z) = \sum_{b} L_b(z, \vec{\partial}_x) \Phi(\vec{\gamma}; \vec{\sigma}; z).$$

In this way, any Horn-type function can be written as follows:

$$P_0(z)\Phi(\vec{\gamma} + \vec{k}; \vec{\sigma} + \vec{l}; z) = \sum_{m_1, \ldots, m_p=0} P_{m_1, \ldots, m_r}(z) \left(\frac{\partial}{\partial z} \right)^{m} \Phi(\vec{\gamma}; \vec{\sigma}; z),$$

where $P_0(z)$ and $P_{m_1, \ldots, m_p}(z)$ are polynomials with respect to $\vec{\gamma}, \vec{\sigma}$ and z and \vec{k}, \vec{l} are lists of integers.

Simplify the procedure of Factorization.
Differential reduction algorithm for \(p+1 F_p \) hypergeometric funct.

- Differential identities:
 \[
 _p F_q(a_1 + 1, \bar{a}; \bar{b}; z) = B^+_{a_1} F_q(a_1, \bar{a}; \bar{b}; z) = \frac{1}{a_1} (\theta + a_1) \ F_q(a_1, \bar{a}; \bar{b}; z)
 \]
 \[
 _p F_q(\bar{a}; b_1 - 1, \bar{b}; z) = H^+_{b_1} F_q(\bar{a}; b_1, \bar{b}; z) = \frac{1}{b_1 - 1} (\theta + b_1 - 1) \ F_q(\bar{a}; b_1, \bar{b}; z)
 \]

- Inverse operators:
 \[
 p+1 F_p(\bar{a}; b_i + 1, \bar{b}; z) = H^+_{b_i} F_p(\bar{a}; b_i, \bar{b}; z) ,
 \]
 \[
 H^+_a = \frac{b_i - 1}{d_i} \left[\frac{d}{dz} \prod_{j \neq i} (\theta + b_j - 1) - s_i(\theta) \right]_{b_i \to b_i + 1} ,
 \]
 \[
 d_i = \prod_{j=1}^{p+1} (1 + a_j - b_i) ,
 \]
 \[
 s_i(x) = \frac{\prod_{j=1}^{p+1} (x + a_j) - d_i}{x + b_i - 1} ,
 \]

Inverse operators:

- \(p+1 F_p(a_i - 1, \bar{a}; \bar{b}; z) = B^-_{a_i} F_p(a_i, \bar{a}; \bar{b}; z) , \)
 \[
 B^-_{a_i} = -\frac{a_i}{c_i} \left[t_i(\theta) - z \prod_{j \neq i} (\theta + a_j) \right]_{a_i \to a_i - 1} ,
 \]
 \[
 c_i = -a_i \prod_{j=1}^{p} (b_j - 1 - a_i) ,
 \]
 \[
 t_i(x) = \frac{x \prod_{j=1}^{p} (x + b_j - 1) - c_i}{x + a_i} ,
 \]
Differential reduction algorithm for \(p+1F_p \) hypergeometric funct.

- Example of differential reduction:

\[
\begin{align*}
\begin{pmatrix} a_1-1, a_2, a_3 \mid z \end{pmatrix}_{b_1, b_2} (b_1-a_1)(b_2-a_1) &= \left\{ (1-z)\theta^2 \\
+ [(b_1+b_2-1-a_1)-z(a_2+a_3)] \theta + (b_1-a_1)(b_2-a_1)-za_2a_3 \right\} \begin{pmatrix} a_1, a_2, a_3 \mid z \end{pmatrix}_{b_1, b_2}
\end{align*}
\]

- In reduction on more units the structure of equality will be the same
Implementation of algorithm

• The package called HYPERDIRE (HYPERgeometric DIFFerential REduction), based on language of program “Mathematica”

• Key feature is that the product of non-commutative step-up and step-down operators of differential reduction turn into product of special 2-dimensional matrices and vectors which greatly simplify and reduce the time of calculation

• The functional programming style reduce the calculation time

```mathematica
MapAt[ReplacePart[#, Join[#[[1, 1]], Table[0, {i, 1, Length[#[[2, 1]]] - Length[#[[1, 1]]]]], {1, 1}] &, Map[ReplacePart[#, {Table[SymmetricPolynomial[-i, #[[1]]], {i, -Length[#[[1]]], 0}]}], 1] &, Nest[If[(numberOfAdBup = 1 + Sum[Length[#[[i, 1]]], {i, 1, Length[#]}]; changevar = AdBupvector[#[[-1, 2]], listOfAdownAndBupch[[numberOfAdBup]]]; Mod[Length[#[[-1, 1]]], Length[#[[-1, 2, 2]]]] == 0
), Append[#, {{changevar[[1]]}, changevar[[2]], 1/changevar[[1]], 0}], ReplacePart[ReplacePart[Insert[#, changevar[[1]], {-1, 1, 1}], changevar[[2]], {-1, 2} ], #[[[-1, 3]]/ changevar[[1]], {-1, 3}]] & , initialVector, Length[listOfAdownAndBupch]]
, -1]
```
Example of module PFQ

ToGroebnerBasis [{[1+a_1,1+a_2, a_3,a_4],[1+b_1, b_2+1,b_3],x}] ,

IntegerPart={1,1,0,0,1,1,0} changeVector={-1,-1,0,0,0,0,1}

\left\{1, \frac{1}{a_2} + \frac{1}{b_3} + \frac{1}{a_1}, \frac{a_1+a_2+b_3}{a_1a_2b_3}, \frac{1}{a_1a_2b_3}\right\}, \{\{a_1, a_2, a_3, a_4\}, \{b_1 + 1, b_2 + 1, b_3 + 1\}, x\}, 1

Hypergeometric function parameters transformation

\[
\begin{aligned}
{4}F{3}\left(\begin{array}{c}
1+a_1, 1+a_2, a_3, a_4 \\
1+b_1, 1+b_2, b_3
\end{array} \bigg| z \right) &=
\left[1 + \left(\frac{1}{a_2} + \frac{1}{b_3} + \frac{1}{a_1}\right) \theta \right]
\left[1 + \frac{a_1 + a_2 + b_3}{a_1a_2b_3} \theta^2 + \frac{1}{a_1a_2b_3} \theta^3\right]
{4}F{3}\left(\begin{array}{c}
a_1, a_2, a_3, a_4 \\
b_1 + 1, b_2 + 1, b_3 + 1
\end{array} \bigg| x \right)
\end{aligned}
\]
From differential reduction formulas could be derived reducibility criteria:
under which conditions the hypergeometric function could be expressed in
terms of hyp. function of lower order (four criteria)
Example of module PFQ, reducibility

\[\text{ToGroebnerBasis} \left[\left\{ \left\{ 3+b_1, 1+a_2, 1+a_3 \right\}, \left\{ 2+b_1, 2+b_2 \right\}, x \right\} \right]; \]

\[\text{IntegerPart} = \{3,1,1,2,2\} \quad \text{changeVector} = \{-1,-1,-1\} \]

\[\left\{ \frac{b_2+1}{(x-1)(b_1+2)}, \frac{(a_2x+a_3x-b_1x-x+b_1-b_2+1)(b_2+1)}{(x-1)xa_2a_3(b_1+2)} \right\}, \left\{ \{a_2, a_3\}, \{b_2 + 1\}, x \right\}, 1 \]

Hypergeometric function parameters transformation

\[_3F_2 \left(\begin{array}{c} 3 + b_1, 1 + a_2, 1 + a_3 \\ 2 + b_1, 2 + b_2 \end{array} \bigg| x \right) \\
= \left[-\frac{b_2+1}{(x-1)(b_1+2)} - \frac{(a_2x+a_3x-b_1x-x+b_1-b_2+1)(b_2+1)}{(x-1)xa_2a_3(b_1+2)} \theta \right] _2F_1 \left(\begin{array}{c} a_2, a_3 \\ b_2+1 \end{array} \bigg| x \right) \]
\[J^q_{22}(m^2, p^2, \alpha_1, \alpha_2, \sigma_1, \cdots, \sigma_{q-1}) = \left[i^{1-n} \pi^{n/2} \right]^q \left(-m^2 \right)^{\frac{n}{2} q - \alpha_1,2 - \sigma} \frac{\prod_{k=1}^{q-1} \Gamma \left(\frac{n}{2} - \sigma_k \right)}{\Gamma(\alpha_1) \Gamma(\alpha_2)} \left\{ \Gamma \left(\alpha_1 + \sigma - \frac{n}{2} (q-1) \right) \Gamma \left(\alpha_2 + \sigma - \frac{n}{2} (q-1) \right) \Gamma \left(\sigma - \frac{n}{2} (q-2) \right) \Gamma \left(\alpha_1,2 + \sigma - \frac{n}{2} q \right) \right\} \\
\times \frac{\Gamma \left(\alpha_1 + \sigma - \frac{n}{2} (q-1) \right) \Gamma \left(\alpha_2 + \sigma - \frac{n}{2} (q-1) \right) \Gamma \left(\sigma - \frac{n}{2} (q-2) \right) \Gamma \left(\alpha_1,2 + \sigma - \frac{n}{2} q \right)}{\Gamma(\alpha_1,2 + 2\sigma - n(q-1)) \Gamma \left(\frac{n}{2} \right)} \right. \\
\left. 4 F_3 \left(\begin{array}{c} \alpha_1 + \sigma - \frac{n}{2} (q-1), \alpha_2 + \sigma - \frac{n}{2} (q-1), \sigma - \frac{n}{2} (q-2), \alpha_1,2 + \sigma - \frac{n}{2} q \\ \frac{n}{2}, \frac{1}{2} (\alpha_1,2 - n(q-1)) + \sigma, \frac{1}{2} (1 + \alpha_1,2 - n(q-1)) + \sigma \end{array} \right| \frac{p^2}{4m^2} \right) \right]. \\

- **Criteria of reducibility:**

- **q=1**
 \[2 F_1 \left(\begin{array}{c} 1, I_1 - \frac{n}{2} \\ I_2 \end{array} \right| z \right) \quad \text{IBP gives 1 MI} \\

- **q=2**
 \[(1, \theta) \times 3 F_2 \left(\begin{array}{c} 1, I_1 - \frac{n}{2}, I_2 - n \\ I_3 + \frac{n}{2}, I_4 + \frac{1}{2} - \frac{n}{2} \end{array} \right| z \right) \quad \text{IBP gives 2 MI} \\

- **q=3,4,5....**
 \[(1, \theta, \theta^2) \times 3 F_2 \left(\begin{array}{c} I_1 - \frac{n}{2} (q-1), I_2 - \frac{n}{2} (q-2), I_3 - \frac{n}{2} q \\ \frac{n}{2}, I_4 + \frac{1}{2} - \frac{n}{2} (q-1) \end{array} \right| z \right) \quad \text{IBP gives ???} \]
Possible applications

pFq package could work even with $\textbf{11F}_{10}$ and reduce it to the function of type $\textbf{7F}_{6}$
Appell Function F1,F2,F3,F4
the case of two variables

Let us consider the system of linear differential equations of the second order for the functions $\omega(\bar{z})$:

$$
\begin{align*}
\theta_{11}\omega(\bar{z}) &= \left\{ P_0(\bar{z})\theta_{12} + P_1(\bar{z})\theta_1 + P_2(\bar{z})\theta_2 + P_3(\bar{z}) \right\} \omega(\bar{z}), \\
\theta_{22}\omega(\bar{z}) &= \left\{ R_0(\bar{z})\theta_{12} + R_1(\bar{z})\theta_1 + R_2(\bar{z})\theta_2 + R_3(\bar{z}) \right\} \omega(\bar{z}), \\
\theta_j &= z_j \frac{\partial}{\partial z_j}.
\end{align*}
$$

The differential reduction algorithm in application to the Appell function could be done in similar way as for the case of one variable hypergeometrical function.

\begin{align*}
R(x, y) F_1(\bar{A} + \bar{m}; x, y) &= [P_0(x, y) + P_1(x, y)\theta_x + P_2(x, y)\theta_y] F_1(\bar{A}; x, y), \\
S(x, y) F_j(\bar{A} + \bar{m}; x, y) &= [Q_0(x, y) + Q_1(x, y)\theta_x + Q_2(x, y)\theta_y + Q_3(x, y)\theta_x\theta_y] F_j(\bar{A}; x, y).
\end{align*}
Differential reduction for F_1

the direct differential expressions reads:

\[
\begin{align*}
aF_1(a + 1, b_1, b_2, c; x, y) &= (\theta_x + \theta_y + a)F_1(a, b_1, b_2, c; x, y), \\
b_1F_1(a, b_1 + 1, b_2, c; x, y) &= (\theta_x + b_1)F_1(a, b_1, b_2, c; x, y), \\
(c - 1)F_1(a, b_1, b_2, c - 1; x, y) &= (\theta_x + \theta_y + c - 1)F_1(a, b_1, b_2, c; x, y).
\end{align*}
\]

Inverse differential relations:

\[
\begin{align*}
(c-a)F_1(a-1, b_1, b_2, c; x, y) &= \\
[c-a-b_1x-b_2y+(1-x)\theta_x+(1-y)\theta_y]F_1(a, b_1, b_2, c; x, y), \\
(c-b_1-b_2)F_1(a, b_1 - 1, b_2, c; x, y) &= \\
\left[c-b_1-b_2-ax+(1-x)\theta_x-x\left(1-\frac{1}{y}\right)\theta_y\right]F_1(a, b_1, b_2, c; x, y), \\
(c-a)(c-b_1-b_2)F_1(a, b_1, b_2, c + 1; x, y) &= \\
c\left[(c-a-b_1-b_2)-\left(1-\frac{1}{x}\right)\theta_x-\left(1-\frac{1}{y}\right)\theta_y\right]F_1(a, b_1, b_2, c; x, y).
\end{align*}
\]
Example of module AppellF1F4

In explicit form:

\[
F_1(a, b_1, b_2, c; z_1, z_2) =
\left[
\begin{array}{c}
-az_1 + a + b_1z_1 + b_2z_2 - c - z_1 + 1 \\
\frac{a(-z_1)+a+b_1z_1+b_2z_2-c-z_1+1}{a-c+1} - \frac{(z_1-1)(a-b_1+1)}{(b_1-1)(a-c+1)} \theta_1 + \frac{z_2-1}{a-c+1} \theta_2 \\
\end{array}
\right]
\times F_1(a + 1, b_1 - 1, b_2, c; z_1, z_2).
\]

The similar procedures are implemented for Appell function \(F_2, F_3, F_4 \)
Application AppellF1F4

massive q-loop propagator could be expressed through the F4 hypergeometrical function.

\[J_{023}^q(M_1^2, M_2^2, \alpha_1, \alpha_2, \sigma_1, \ldots, \sigma_{q-1}) = \frac{[i^{1-n} \pi^{q/2}] q(-M_1^2)^{n/2} q^{-a_{\alpha_1, \alpha_2, \sigma}}}{\Gamma(\alpha_1) \Gamma(\alpha_2) \Gamma\left(\frac{n}{2}\right)} \left\{ \prod_{i=1}^{q-1} \frac{\Gamma\left(\frac{n}{2} - \sigma_i\right)}{\Gamma(\sigma_i)} \right\} \]

\[
\left[\Gamma\left(\frac{n}{2} - \alpha_2\right) \Gamma\left(a_{\alpha_1, \alpha_2, \sigma} - \frac{n}{2} q\right) \Gamma\left(a_{\alpha_2, \sigma} - \frac{n}{2} (q-1)\right) \right.
\times F_4\left(a_{\alpha_1, \alpha_2, \sigma} - \frac{n}{2} q, a_{\alpha_2, \sigma} - \frac{n}{2} (q-1), \frac{n}{2}, 1 + \alpha_2 - \frac{n}{2} \left| \frac{p^2}{M_1^2}, \frac{M_2^2}{M_1^2}\right.\right]
\left. + \left(\frac{M_2^2}{M_1^2}\right)^{\frac{n}{2} - \alpha_2} \Gamma\left(\alpha_2 - \frac{n}{2}\right) \Gamma\left(a_{\alpha_1, \sigma} - \frac{n}{2} (q-1)\right) \Gamma\left(\sigma - \frac{n}{2} (q-2)\right) \right.
\times F_4\left(a_{\alpha_1, \sigma} - \frac{n}{2} (q-1), \sigma - \frac{n}{2} (q-2), \frac{n}{2}, 1 - \alpha_2 + \frac{n}{2} \left| \frac{p^2}{M_1^2}, \frac{M_2^2}{M_1^2}\right.\right) \right].
\] (132)
The case of multiple variables

- Functions F_A, F_B, F_C, F_D are the extensions of two variable functions F_1, F_2, F_3, F_4 to the mutivariable case.
- In HyperDIRE project now is implemented only F_D differential reduction for any number of argument:

\[
F_D(a; b_1, b_2, b_3, b_4, b_5; c; z_1, z_2, z_3, z_4, z_5) \text{ is expressed in the terms of the function } \\
F_D(a - 1; b_1 + 1, b_2 - 1, b_3, b_4, b_5; c; z_1, z_2, z_3, z_4, z_5) \text{ and its five derivatives}
\]
thank You for an attention!