# Differential reduction of generalized hypergeometric functions in application to Feynman diagrams. 

 HyperDire project.V. Bytev,<br>In collaboration with M. Kalmykov, B. Kniehl

CALC 2012
August 1, Dubna, Russia

## Motivation

Oleg Tarasov (1996), and Davydychev-Delbourgo (1997), have suggested two elegant approaches for construction of hypergeometric representation of one-loop Feynman Diagrams. One of main achievement of these approaches are the essential reduction of independent variables. In accordance with Fleischer-Jegerlehner-Tarasov, 2003.

| Type of 1-loop diagram | $\# 1$ | $\# 2$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{~N}=2$ (propagator) | 3 | 1 |
| $\mathrm{~N}=3$ (vertex) | 6 | 2 |
| $\mathrm{~N}=4$ (box) | 10 | 3 |
| $\mathrm{~N}=5$ (pentagon) | 15 | 4 |
| $\mathrm{~N}=\mathrm{k}$ |  |  |

where
\#1 the number of kinematic invariants (non-zero masses/momenta)
and
\#2 the number of variables in hypergeometric representation.
In this approach, the one-loop $N$-point function is expressible in terms of hypergeometric functions of $N-1$ variables.
New results for 1-loop Feynman integrals: Kniehl-Tarasov, 2009, 2010.

## 1-loop diagrams: Finite part

The program of constructing the analytical coefficients of the $\varepsilon$-expansion is a more complicated matter.
The finite parts of one-loop diagrams in $d=4$ dimension are expressible in terms of the Spence dilogarithm function
t'Hooft, Veltman, 1979;
Denner, Nierste, Scharf, 1991;
Ellis, Zanderighi, 2007;
Denner, Dittmaier, 2010

$$
\text { FeynmanDiagramm }=\frac{1}{\varepsilon^{2}} A+\frac{1}{\varepsilon} B+C+D \varepsilon+E \varepsilon^{2} \ldots
$$

## The Task

to elaborate the algorithm and implementation for:
$>$ manipulation with multiple hypergeometric (Horn-type) functions (express parameters of arbitrary values in terms of ones that differ from original by integers)
$>$ construction of analytical coefficients of $\varepsilon$-expansion of multiple hypergeometric (Horn-type) functions

Finally:
Package for Numerical Evaluation of finite, $O(\varepsilon)$ and $O\left(\varepsilon^{2}\right)$ parts of one-loop Feynman Diagrams with an arbitrary set of kinematic invariants

## Example: Sunset Diagram

$$
\begin{aligned}
& F_{G}=\int \frac{d^{d} k_{1} d^{d} k_{2}}{\left[\left(k_{1}-p\right)^{2}-m_{1}^{2}\right]\left[k_{2}^{2}-m_{2}^{2}\right]\left[\left(k_{1}-k_{2}\right)^{2}-m_{3}^{3}\right]} \overbrace{\mathrm{p}} \mathrm{~m}_{2} \\
& =\int_{-i \infty}^{i \infty} d s_{1} d s_{2} d s_{3} \frac{m_{1}^{2 s_{1}} m_{2}^{2 s_{2}} m_{3}^{2 s_{3}}}{\left(-p^{2}\right)^{s_{1}+s_{2}+s_{3}} \Gamma\left(-s_{1}\right) \Gamma\left(-s_{2}\right) \Gamma\left(-s_{3}\right)} \\
& \Gamma\left(3-d+s_{1}+s_{2}+s_{3}\right) \frac{\Gamma\left(d / 2-1-s_{1}\right) \Gamma\left(d / 2-1-s_{2}\right) \Gamma\left(d / 2-1-s_{3}\right)}{\Gamma\left(3 d / 2-3-s_{1}-s_{2}-s_{3}\right)} \\
& \sim z_{1}^{d / 2-1} z_{2}^{d / 2-1} F_{c}^{(3)}\left(1, d / 2, d / 2, d / 2, d / 2 ; z_{1}, z_{2}, z_{3}\right) \\
& \quad-z_{1}^{d / 2-1} \Gamma^{2}(1-d / 2) F_{c}^{(3)}\left(1,2-d / 2, d / 2,2-d / 2, d / 2, z_{1}, z_{2}, z_{3}\right) \\
& \quad-z_{2}^{d / 2-1} \Gamma^{2}(1-d / 2) F_{c}^{(3)}\left(1,2-d / 2, d / 2,2-d / 2, d / 2, z_{1}, z_{2}, z_{3}\right) \\
& \quad-\Gamma(d / 2-1) \Gamma(1-d / 2) \Gamma(3-d) F_{c}^{(3)}\left(3-d, 2-d / 2,2-d / 2,2-d / 2, d / 2, z_{1}, z_{2}, z_{3}\right),
\end{aligned}
$$

in terms of the hypergeometric function (in the case $n=3$ )

$$
F_{c}^{(n)}\left(a, b ; c_{1}, \cdots, c_{n} ; z_{1}, \cdots z_{n}\right)=\sum_{k_{1}, \ldots k_{n}} \frac{(a)_{k_{1}+\cdots+k_{n}}(b)_{k_{1}+\cdots+k_{n}}}{\left(c_{1}\right)_{k_{1}} \cdots\left(c_{n}\right)_{k_{n}}} \frac{z_{1}^{k_{1}} \cdots z_{n}^{k_{n}}}{k_{1}!\cdots k_{n}!}
$$

with arguments $z_{1}=m_{1}^{2} / m_{3}^{2}, \quad z_{2}=m_{2}^{2} / m_{3}^{2}, \quad z_{3}=p^{2} / m_{3}^{2}$.

## Horn-type Hypergeometric Functions

In accordance with Horn definition, a formal (Laurent) power series in $r$ variables,

$$
\Phi(\vec{z})=\sum C(\vec{m}) \vec{z}^{m} \equiv \sum_{m_{1}, m_{2}, \cdots, m_{r}} C\left(m_{1}, m_{2}, \cdots, m_{r}\right) x_{1}^{m_{1}} \cdots x_{r}^{m_{r}}
$$

is called hypergeometric if for each $i=1, \cdots, r$ the ratio
$\frac{C\left(\vec{m}+e_{j}\right)}{C(\vec{m})}=\frac{P_{j}(\vec{m})}{Q_{j}(\vec{m})} \Rightarrow C(\vec{m})=\Pi_{i=1}^{r} \lambda_{i}^{m_{i}} R(\vec{m})\left(\frac{\Pi_{j=1}^{N} \Gamma\left(\mu_{j}(\vec{m})+\gamma_{j}\right)}{\prod_{k=1}^{M} \Gamma\left(\nu_{k}(\vec{m})+\delta_{k}\right)}\right)$.
$P, Q, R$ are the rational functions in the index of summation: $\vec{m}=$ $\left(m_{1}, \cdots, m_{r}\right)$, and $\vec{e}_{j}$ is unit vector with unity in the $j^{\text {th }}$ place.
The Horn hypergeometric function satisfies the following system of equation

$$
Q_{j}\left(\sum_{k=1}^{r} x_{k} \frac{\partial}{\partial x_{k}}\right) \frac{1}{x_{j}} \Phi(\vec{z})=P_{j}\left(\sum_{k=1}^{r} x_{k} \frac{\partial}{\partial x_{k}}\right) \Phi(\vec{z}) .
$$

## Current status

The systematic algorithms for construction of analytical coefficients of $\varepsilon$ expansion for a large class of Horn-type hypergeometric functions around integer values of parameters was suggested by Moch-Uwer-Weinzierl, 2001.

| Hypergeometric function | Algorithm |
| :--- | :--- |
| ${ }_{p} F_{p-1}$ | A |
| $F_{1}$ | A , B |
| $F_{2}, F_{3}$ | A,C,D |
| $F_{4}$ | does not work |

Two of these algorithms $A \Rightarrow{ }_{p} F_{p-1}$ and $B \Rightarrow F_{1}$ was extended for zero-balance case: Weinzierl, 2004.
It was a few attempts to extend these approach
to hypergeometric functions like $F_{4}$
Del Duca,Duhr,Glover,Smirnov, 2009
or to another (different from zero-balance case) set of parameters
Rottmann-Reina, 2011
Ablinger-Blümlein-Schneider, 2011

# HyperDire project 

## (HYPERgeometric DIFFerential REduction)

HYPERDIRE is a set of Wolfram Mathematica based programs for differential reduction of Horn type hypergeometrical functions.

HYPERDIRE includes the following packages:

- -- pfq is relevant to manipulation with hypergeometrical functions ${ }_{p+1} \boldsymbol{F}_{\boldsymbol{p}}$
- -- AppellF1F4 is relevant to manipulation with Appell`s hypergeometric functions of two variables F1, F2,F3,F4.
- Fd multiple variable function

The package is available at:
https://sites.google.com/site/loopcalculations/home

Horn-type Hypergeometric Functions: reduction to the basis Let us consider the series

$$
\Phi(\vec{\gamma} ; \vec{\sigma} ; \vec{z})=\sum_{m_{1}, m_{2}, \cdots, m_{r}=0}^{\infty}\left(\frac{\Pi_{j=1}^{K} \Gamma\left(\sum_{a=1}^{r} \mu_{j a} m_{a}+\gamma_{j}\right)}{\prod_{k=1}^{L} \Gamma\left(\sum_{b=1}^{r} \nu_{k b} m_{b}+\sigma_{k}\right)}\right) x_{1}^{m_{1}} \cdots x_{r}^{m_{r}},
$$

The sequences $\vec{\gamma}=\left(\gamma_{1}, \cdots, \gamma_{K}\right)$ and $\vec{\sigma}=\left(\sigma_{1}, \cdots, \sigma_{L}\right)$ are called upper and lower parameters of the hypergeometric function, respectively. Two functions with sets of parameters shifted by a unit, $\Phi\left(\vec{\gamma}+\overrightarrow{e_{c}} ; \vec{\sigma} ; \vec{z}\right)$ and $\Phi(\vec{\gamma} ; \vec{\sigma} ; \vec{z})$, are related by a linear differential operator:

$$
\begin{aligned}
& \Phi\left(\vec{\gamma}+\vec{e}_{c} ; \vec{\sigma} ; \vec{z}\right)=\left(\sum_{a=1}^{r} \mu_{c a} x_{a} \frac{\partial}{\partial x_{a}}+\gamma_{c}\right) \Phi(\vec{\gamma} ; \vec{\sigma} ; \vec{z}) \\
& \Phi\left(\vec{\gamma} ; \vec{\sigma}-\vec{e}_{c} ; \vec{z}\right)=\left(\sum_{b=1}^{r} \nu_{c b} x_{b} \frac{\partial}{\partial x_{b}}+\sigma_{c}\right) \Phi(\vec{\gamma} ; \vec{\sigma} ; \vec{z}) .
\end{aligned}
$$

## Horn-type Hypergeometric Functions: Inverse Operators

Staring from homogeneous system of PDE and direct differential operators, the inverse differential operators can be constructed:

$$
\begin{aligned}
& \Phi\left(\vec{\gamma}-\vec{e}_{c} ; \vec{\sigma} ; \vec{z}\right)=\sum_{a} S_{a}\left(\vec{z}, \overrightarrow{\partial_{x}}\right) \Phi(\vec{\gamma} ; \vec{\sigma} ; \vec{z}) \\
& \Phi\left(\vec{\gamma} ; \vec{\sigma}+\overrightarrow{e_{c}} ; \vec{z}\right)=\sum_{b} L_{b}\left(\vec{z}, \overrightarrow{\partial_{x}}\right) \Phi(\vec{\gamma} ; \vec{\sigma} ; \vec{z}) .
\end{aligned}
$$

In this way, any Horn-type function can be written as follows:

$$
P_{0}(\vec{z}) \Phi(\vec{\gamma}+\vec{k} ; \vec{\sigma}+\vec{l} ; \vec{z})=\sum_{m_{1}, \cdots, m_{p}=0} P_{m_{1}, \cdots, m_{r}}(\vec{z})\left(\frac{\partial}{\partial \vec{z}}\right)^{\vec{m}} \Phi(\vec{\gamma} ; \vec{\sigma} ; \vec{z}),
$$

where $P_{0}(\vec{z})$ and $P_{m_{1}, \cdots, m_{p}}(\vec{z})$ are polynomials with respect to $\vec{\gamma}, \vec{\sigma}$ and $\vec{z}$ and $\vec{k}, \vec{l}$ are lists of integers.
Simplify the procedure of Factorization.

## Differential reduction algorithm for ${ }_{p+1} F_{p}$ hypergeometric funct.

- Differential identities:

$$
\begin{gathered}
{ }_{p} F_{q}\left(a_{1}+1, \vec{a} ; \vec{b} ; z\right)=B_{a_{1} p}^{+} F_{q}\left(a_{1}, \vec{a} ; \vec{b} ; z\right)=\frac{1}{a_{1}}\left(\theta+a_{1}\right)_{p} F_{q}\left(a_{1}, \vec{a} ; \vec{b} ; z\right) \\
{ }_{p} F_{q}\left(\vec{a} ; b_{1}-1, \vec{b} ; z\right)=H_{b_{1} p}^{-} F_{q}\left(\vec{a} ; b_{1}, \vec{b} ; z\right)=\frac{1}{b_{1}-1}\left(\theta+b_{1}-1\right)_{p} F_{q}\left(\vec{a} ; b_{1}, \vec{b} ; z\right)
\end{gathered}
$$

$$
{ }_{p+1} F_{p}\left(\vec{a} ; b_{i}+1, \vec{b} ; z\right)=H_{b_{i}}^{+} p+1 F_{p}\left(\vec{a} ; b_{1}, \vec{b} ; z\right),
$$

$$
H_{a_{i}}^{+}=\left.\frac{b_{i}-1}{d_{i}}\left[\frac{d}{d z} \Pi_{j \neq i}\left(\theta+b_{j}-1\right)-s_{i}(\theta)\right]\right|_{b_{i} \rightarrow b_{i}+1},
$$

$$
d_{i}=\Pi_{j=1}^{p+1}\left(1+a_{j}-b_{i}\right),
$$

$$
s_{i}(x)=\frac{\prod_{j=1}^{p+1}\left(x+a_{j}\right)-d_{i}}{x+b_{i}-1},
$$

Inverse operators:

$$
\begin{aligned}
& p+1 F_{p}\left(a_{i}-1, \vec{a} ; \vec{b} ; z\right)=B_{a_{i}}^{-} p+1 F_{p}\left(a_{i}, \vec{a} ; \vec{b} ; z\right), \\
& B_{a_{i}}^{-}=-\frac{a_{i}}{c_{i}}\left[t_{i}(\theta)-z \Pi_{j \neq i}\left(\theta+a_{j}\right)\right] a_{a_{i} \rightarrow a_{i}-1}, \\
& c_{i}=-a_{i} \Pi_{j=1}^{p}\left(b_{j}-1-a_{i}\right), \\
& t_{i}(x)=\frac{x \Pi_{j=1}^{p}\left(x+b_{j}-1\right)-c_{i}}{x+a_{i}},
\end{aligned}
$$

## Differential reduction algorithm for ${ }_{p+1} F_{p}$ hypergeometric funct.

- Example of differential reduction:

$$
\begin{aligned}
& { }_{3} F_{2}\left(\left.\begin{array}{c}
a_{1}-1, a_{2}, a_{3} \\
b_{1}, b_{2}
\end{array} \right\rvert\, z\right)\left(b_{1}-a_{1}\right)\left(b_{2}-a_{1}\right)=\left\{(1-z) \theta^{2}\right. \\
& \left.\quad+\left[\left(b_{1}+b_{2}-1-a_{1}\right)-z\left(a_{2}+a_{3}\right)\right] \theta+\left(b_{1}-a_{1}\right)\left(b_{2}-a_{1}\right)-z a_{2} a_{3}\right\}_{3} F_{2}\left(\left.\begin{array}{c}
a_{1}, a_{2}, a_{3} \\
b_{1}, b_{2}
\end{array} \right\rvert\, z\right)
\end{aligned}
$$

- In reduction on more units the structure of equality will be the same


## Implementation of algorithm

- The package called HYPERDIRE (HYPERgeometric DIFFerential REduction), based on language of program "Mathematica"
- Key feature is that the product of non-commutative step-up and step-down operators of differential reduction turn into product of special 2-dimensional matrices and vectors which greatly simplify and reduce the time of calculation
- The functional programming style reduce the calculation time

```
MapAt[ReplacePart[#, Join[#[[1, 1]], Table[0, {i, 1, Length[#[[2, 1]]]-\operatorname{Length[#[[1, 1]]]}]],{1, 1}]&,}
Map[ReplacePart[#, {Table[SymmetricPolynomial[-i, #[[1]]], {i, -Length[#[[1]]], 0}]}, 1]&,
    Nest[If[(numberOfAdBup = 1 + Sum[Length[#[[i, 1]]],{i, 1, Length[#]}];
        changevar = AdBupvector[#[[-1, 2]], listOfAdownAndBupch[[numberOfAdBup]]];
        Mod[Length[#[[-1, 1]]], Length[#[[-1, 2, 2]]]] == 0
        ), Append[#, {{changevar[[1]]}, changevar[[2]], 1/ changevar[[1]], 0}],
        ReplacePart[ReplacePart[Insert[#, changevar[[1]], {-1, 1, 1}], changevar[[2]], {-1, 2} ], #[[-1,3]]/ changevar[[1]],{-1, 3}]]& ,
    initialVector, Length[listOfAdownAndBupch]]]
-1]
```


## Example of module PFQ

ToGroebnerBasis [ $\left.\left\{\left\{1+\mathrm{a}_{1}, 1+\mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\right\},\left\{1+\mathrm{b}_{1}, \mathrm{~b}_{2}+1, \mathrm{~b}_{3}\right\}, \mathrm{x}\right\}\right]$,
IntegerPart $=\{1,1,0,0,1,1,0\} \quad$ changeVector $=\{-1,-1,0,0,0,0,1\}$
$\left.\left\{1, \frac{1}{a_{2}}+\frac{1}{b_{3}}+\frac{1}{a_{1}}, \frac{a_{1}+a_{2}+b_{3}}{a_{1} a_{2} b_{3}}, \frac{1}{a_{1} a_{2} b_{3}}\right\},\left\{\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\},\left\{b_{1}+1, b_{2}+1, b_{3}+1\right\}, x\right\}, 1\right\}$

Hypergeometric function parameters transformation

$$
\begin{aligned}
& { }_{4} F_{3}\left(\left.\begin{array}{c}
1+a_{1}, 1+a_{2}, a_{3}, a_{4} \\
1+b_{1}, 1+b_{2}, b_{3}
\end{array} \right\rvert\, z\right)=\left[1+\left(\frac{1}{a_{2}}+\frac{1}{b_{3}}+\frac{1}{a_{1}}\right) \theta\right. \\
& \left.+\frac{a_{1}+a_{2}+b_{3}}{a_{1} a_{2} b_{3}} \theta^{2}+\frac{1}{a_{1} a_{2} b_{3}} \theta^{3}\right]{ }_{4} F_{3}\left(\left.\begin{array}{c}
a_{1}, a_{2}, a_{3}, a_{4} \\
b_{1}+1, b_{2}+1, b_{3}+1
\end{array} \right\rvert\, x\right)
\end{aligned}
$$

## Example of module PFQ, reducibility

From differential reduction formulas could be derived reducibility criteria: under which conditions the hypergeometric function could be expressed in terms of hyp. function of lower order (four criteria)

$$
\begin{gathered}
{ }_{p} F_{q}\left(\left.\begin{array}{c}
b_{1}+m_{1}, a_{2}, \cdots, a_{p} \mid z \\
b_{1}, b_{2}, \cdots b_{q}
\end{array} \right\rvert\, z\right)=\sum_{j=0}^{m_{1}} z^{j}\binom{m_{1}}{j} \frac{\left(a_{2}\right)_{j} \cdots\left(a_{p}\right)_{j}}{\left(b_{1}\right)_{j} \cdots\left(b_{q}\right)_{j}} p-1 F_{q-1}\left(\left.\begin{array}{c}
a_{2}+j, \cdots a_{p}+j \\
b_{2}+j, \cdots b_{q}+j
\end{array} \right\rvert\, z\right) \\
{ }_{p} F_{q}\left(\left.\begin{array}{c}
a_{1}, \cdots a_{n}, a_{n+1} \cdots a_{p} \\
a_{1}+1+m_{1}, \cdots, a_{n}+1+m_{n}, b_{n+1}, \cdots, b_{q}
\end{array} \right\rvert\, z\right) \prod_{r=1}^{n} \frac{1}{\left(a_{r}\right)_{m_{r}+1}} \\
=\sum_{i=1}^{n} \sum_{j=0}^{m_{i}} \frac{\left(-m_{i}\right)_{j}}{j!\left(a_{i}+j\right) m_{i}!}\left(\prod_{r=1, r \neq i}^{n} \frac{1}{\left(a_{r}-a_{i}-j\right)_{m_{r}+1}}\right) \\
\left.\quad \times{ }_{p-n+1} F_{q-n+1}\binom{a_{i}+j, a_{n+1}, \cdots, a_{p}}{a_{i}+1+j, b_{n+1}, \cdots, b_{q}} z\right)
\end{gathered}
$$

## Example of module PFQ, reducibility

ToGroebnerBasis [\{\{3+b+ $\left.\left.\left.\mathrm{b}_{1}, 1+\mathrm{a}_{2}, 1+\mathrm{a}_{3}\right\},\left\{2+\mathrm{b}_{1}, 2+\mathrm{b}_{2}\right\}, \mathrm{x}\right\}\right]$;
IntegerPart $=\{3,1,1,2,2\} \quad$ changeVector $=\{-1,-1,-1\}$
$\left\{\left\{-\frac{b_{2}+1}{(x-1)\left(b_{1}+2\right)},-\frac{\left(a_{2} x+a_{3} x-b_{1} x-x+b_{1}-b_{2}+1\right)\left(b_{2}+1\right)}{(x-1) x a_{2} a_{3}\left(b_{1}+2\right)}\right\},\left\{\left\{a_{2}, a_{3}\right\},\left\{b_{2}+1\right\}, x\right\}, 1\right\}$

Hypergeometric function parameters transformation

$$
\begin{aligned}
& { }_{3} F_{2}\left(\left.\begin{array}{c}
3+b_{1}, 1+a_{2}, 1+a_{3} \\
2+b_{1}, 2+b_{2}
\end{array} \right\rvert\, x\right) \\
& =\left[-\frac{b_{2}+1}{(x-1)\left(b_{1}+2\right)}-\frac{\left(a_{2} x+a_{3} x-b_{1} x-x+b_{1}-b_{2}+1\right)\left(b_{2}+1\right)}{(x-1) x a_{2} a_{3}\left(b_{1}+2\right)} \theta{ }_{2} F_{1}\left(\left.\begin{array}{c}
a_{2}, a_{3} \\
b_{2}+1
\end{array} \right\rvert\, x\right)\right.
\end{aligned}
$$



$$
\begin{aligned}
& J_{22}^{q}\left(m^{2}, p^{2}, \alpha_{1}, \alpha_{2}, \sigma_{1}, \cdots, \sigma_{q-1}\right)=\left[i^{1-n} \pi^{n / 2}\right]^{q} \frac{\left(-m^{2}\right)^{\frac{n}{2} q-\alpha_{1,2}-\sigma}}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)}\left\{\Pi_{k=1}^{q-1} \frac{\Gamma\left(\frac{n}{2}-\sigma_{k}\right)}{\Gamma\left(\sigma_{k}\right)}\right\} \\
& \times \frac{\Gamma\left(\alpha_{1}+\sigma-\frac{n}{2}(q-1)\right) \Gamma\left(\alpha_{2}+\sigma-\frac{n}{2}(q-1)\right) \Gamma\left(\sigma-\frac{n}{2}(q-2)\right) \Gamma\left(\alpha_{1,2}+\sigma-\frac{n}{2} q\right)}{\Gamma\left(\alpha_{1,2}+2 \sigma-n(q-1)\right) \Gamma\left(\frac{n}{2}\right)} \\
& { }_{4} F_{3}\left(\begin{array}{c}
\alpha_{1}+\sigma-\frac{n}{2}(q-1), \alpha_{2}+\sigma-\frac{n}{2}(q-1), \sigma-\frac{n}{2}(q-2), \alpha_{1,2}+\sigma-\frac{n}{2} q \\
\frac{n}{2}, \frac{1}{2}\left(\alpha_{1,2}-n(q-1)\right)+\sigma, \frac{1}{2}\left(1+\alpha_{1,2}-n(q-1)\right)+\sigma,
\end{array} \frac{p^{2}}{4 m^{2}}\right)
\end{aligned}
$$

- Criteria of reducibility:
- $q=1$

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c}
1, I_{1}-\frac{n}{2}, \\
I_{2}
\end{array} \right\rvert\, z\right)
$$

IBP gives 1 MI

- $q=2$

$$
(1, \theta) \times{ }_{3} F_{2}\left(\left.\begin{array}{c}
1, I_{1}-\frac{n}{2}, I_{2}-n \\
I_{3}+\frac{n}{2}, I_{4}+\frac{1}{2}-\frac{n}{2}
\end{array} \right\rvert\, z\right)
$$

IBP gives 2 MI

- $q=3,4,5 \ldots$

$$
\left(1, \theta, \theta^{2}\right) \times{ }_{3} F_{2}\left(\left.\begin{array}{c}
I_{1}-\frac{n}{2}(q-1), I_{2}-\frac{n}{2}(q-2), I_{3}-\frac{n}{2} q \\
\frac{n}{2}, I_{4}+\frac{1}{2}-\frac{n}{2}(q-1)
\end{array} \right\rvert\, z\right)
$$

IBP gives ???

## Possible applications

## pFq package could work even with $\mathbf{1 1}^{\boldsymbol{F}} \mathbf{1 0}$ and reduce it to the function of type $\boldsymbol{7}_{\mathbf{F}}^{\mathbf{6}}$

Mill $=$ b1 $=$ Appergeonertricper $\left[\left\{2,2,2,2,2, \frac{7}{5}+\alpha, \frac{8}{5}+\alpha, \frac{9}{5}+\alpha, \frac{11}{6}+\alpha, \frac{13}{6}+\alpha, \frac{11}{5}+\alpha\right\},\left\{1,1,1,1, \frac{23}{10}+\alpha, \frac{5}{2}+\alpha, \frac{27}{10}+\alpha, \frac{29}{10}+\alpha, 3+\alpha, \frac{31}{10}+\alpha\right\}, \frac{27}{64}\right] ;$ $\operatorname{In}[4]:=\mathrm{b} 2=$ Simplify [ToGroebnerBasis [\{b1[[1]], b1[[2]], x\}]]

IntegerPart $=\{2,2,2,2,2,1,1,1,1,2,2,1,1,1,1,2,2,2,2,3,3\} \quad$ changeVector $=\{-1,0,0,0,0,-1,-1,0,0,0,0,-1,-1\}$ workingvector $=\left\{\{\{2,1\},\{2,1\},\{2,1\},\{2,1\}\},\left\{\left\{2, \frac{7}{5}+\alpha, \frac{8}{5}+\alpha, \frac{9}{5}+\alpha, \frac{11}{6}+\alpha, \frac{13}{6}+\alpha, \frac{11}{5}+\alpha\right\},\left\{\frac{23}{10}+\alpha, \frac{5}{2}+\alpha, \frac{27}{10}+\alpha, \frac{29}{10}+\alpha, 3+\alpha, \frac{31}{10}+\alpha\right\}, x\right\}\right\}$
Out[4] $=\left\{\left\{\left\{\frac{1}{1680000 \times(6+5 \alpha)(7+6 \alpha)}\right.\right.\right.$
$\left.33968000000 \alpha^{8}+6170000000 \alpha^{9}+500000000 \alpha^{10}\right)+8 x\left(2289316512+20526085978 \alpha+82179706211 \alpha^{2}+193548285390 \alpha^{3}+297057184225 \alpha^{4}+\right.$
$\left.\left.310533744000 \alpha^{5}+223966777500 \alpha^{6}+110064475000 \alpha^{7}+35277125000 \alpha^{8}+6660000000 \alpha^{9}+562500000 \alpha^{10}\right)\right), \frac{1}{1680000 \times(6+5 \alpha)(7+6 \alpha)}$
$\left(42+41 \alpha+10 \alpha^{2}\right)\left(16 x\left(4134953189+34034836761 \alpha+123451772560 \alpha^{2}+259114946450 \alpha^{3}+346970643125 \alpha^{4}+307496426250 \alpha^{5}+180405287500 \alpha^{6}+\right.\right.$
$\left.67580062500 \alpha^{7}+14670000000 \alpha^{8}+1406250000 \alpha^{9}\right)-9\left(9575224025+76961167654 \alpha+272380200240 \alpha^{2}+557274636800 \alpha^{3}+\right.$
$\left.\left.726459610000 \alpha^{4}+625775630000 \alpha^{5}+356190400000 \alpha^{6}+129174000000 \alpha^{7}+27080000000 \alpha^{8}+2500000000 \alpha^{9}\right)\right), \frac{1}{210000 \times(6+5 \alpha)(7+6 \alpha)}$



$\left.4 \times\left(424389117+2880426845 \alpha+8293156875 \alpha^{2}+13137846250 \alpha^{3}+12376143750 \alpha^{4}+6936043750 \alpha^{5}+2142000000 \alpha^{6}+281250000 \alpha^{7}\right)\right)$,
$\frac{1}{2800 \times(6+5 \alpha)(7+6 \alpha)}\left(42+41 \alpha+10 \alpha^{2}\right)\left(-6\left(7166113+43262875 \alpha+107451750 \alpha^{2}+140705000 \alpha^{3}+102525000 \alpha^{4}+39425000 \alpha^{5}+6250000 \alpha^{6}\right)+\right.$
$2800 \times(6+5 \alpha)(7+6 \alpha)$
$\left.\quad \times\left(40189883+244308000 \alpha+612175500 \alpha^{2}+809880000 \alpha^{3}+597150000 \alpha^{4}+232800000 \alpha^{5}+37500000 \alpha^{6}\right)\right)$,

$\left\{\left\{1, \frac{7}{5}+\alpha, \frac{8}{5}+\alpha, \frac{9}{5}+\alpha, \frac{11}{6}+\alpha, \frac{7}{6}+\alpha, \frac{6}{5}+\alpha\right\},\left\{\frac{23}{10}+\alpha, \frac{5}{2}+\alpha, \frac{27}{10}+\alpha, \frac{29}{10}+\alpha, 2+\alpha, \frac{21}{10}+\alpha\right\}, \mathrm{x}\right\}$,
1\},
$\left\{\frac{3(1+\alpha)(3+2 \alpha)(11+10 \alpha)(13+10 \alpha)(17+10 \alpha)(19+10 \alpha)\left(855078+4478639 \alpha+9531550 \alpha^{2}+10533000 \alpha^{3}+6360000 \alpha^{4}+1985000 \alpha^{5}+250000 \alpha^{6}\right)}{560000 \times(6+5 \alpha)(7+6 \alpha)}\right.$
$560000 \times(6+5 \alpha)(7+6 \alpha)$
[1,
1\}\}

## Appell Function F1,F2,F3,F4 the case of two variables

Let us consider the system of linear differential equations of the second order for the functions $\omega(\vec{z})$ :

$$
\begin{array}{ll}
\theta_{11} \omega(\vec{z})=\left\{P_{0}(\vec{z}) \theta_{12}+P_{1}(\vec{z}) \theta_{1}+P_{2}(\vec{z}) \theta_{2}+P_{3}(\vec{z})\right\} \omega(\vec{z}), \\
\theta_{22} \omega(\vec{z})=\left\{R_{0}(\vec{z}) \theta_{12}+R_{1}(\vec{z}) \theta_{1}+R_{2}(\vec{z}) \theta_{2}+R_{3}(\vec{z})\right\} \omega(\vec{z}),
\end{array}
$$

The differential reduction algorithm in application to the Appell function could be done in similar way as for the case of one variable hypergeometrical function

$$
\begin{align*}
& R(x, y) F_{1}(\vec{A}+\vec{m} ; x, y)=\left[P_{0}(x, y)+P_{1}(x, y) \theta_{x}+P_{2}(x, y) \theta_{y}\right] F_{1}(\vec{A} ; x, y),  \tag{76}\\
& S(x, y) F_{j}(\vec{A}+\vec{m} ; x, y)=\left[Q_{0}(x, y)+Q_{1}(x, y) \theta_{x}+Q_{2}(x, y) \theta_{y}+Q_{3}(x, y) \theta_{x} \theta_{y}\right] F_{j}(\vec{A} ; x, y), \tag{77}
\end{align*}
$$

## Differential reduction for $F_{1}$

the direct differential expressions reads:

$$
\begin{aligned}
a F_{1}\left(a+1, b_{1}, b_{2}, c ; x, y\right) & =\left(\theta_{x}+\theta_{y}+a\right) F_{1}\left(a, b_{1}, b_{2}, c ; x, y\right), \\
b_{1} F_{1}\left(a, b_{1}+1, b_{2}, c ; x, y\right) & =\left(\theta_{x}+b_{1}\right) F_{1}\left(a, b_{1}, b_{2}, c ; x, y\right), \\
(c-1) F_{1}\left(a, b_{1}, b_{2}, c-1 ; x, y\right) & =\left(\theta_{x}+\theta_{y}+c-1\right) F_{1}\left(a, b_{1}, b_{2}, c ; x, y\right) .
\end{aligned}
$$

Inverse differential relations:

$$
\begin{aligned}
& (c-a) F_{1}\left(a-1, b_{1}, b_{2}, c ; x, y\right)= \\
& {\left[c-a-b_{1} x-b_{2} y+(1-x) \theta_{x}+(1-y) \theta_{y}\right] F_{1}\left(a, b_{1}, b_{2}, c ; x, y\right),} \\
& \left(c-b_{1}-b_{2}\right) F_{1}\left(a, b_{1}-1, b_{2}, c ; x, y\right)= \\
& {\left[c-b_{1}-b_{2}-a x+(1-x) \theta_{x}-x\left(1-\frac{1}{y}\right) \theta_{y}\right] F_{1}\left(a, b_{1}, b_{2}, c ; x, y\right),} \\
& (c-a)\left(c-b_{1}-b_{2}\right) F_{1}\left(a, b_{1}, b_{2}, c+1 ; x, y\right)= \\
& c\left[\left(c-a-b_{1}-b_{2}\right)-\left(1-\frac{1}{x}\right) \theta_{x}-\left(1-\frac{1}{y}\right) \theta_{y}\right] F_{1}\left(a, b_{1}, b_{2}, c ; x, y\right) .
\end{aligned}
$$

## Example of module AppellF1F4

F1IndexChange[\{1,-1,0,0\}, $\left.\left\{a, b_{1}, b_{2}, c, z_{1}, z_{2}\right\}\right]$
$\left\{\left\{\frac{a(-z 1)+a+\mathrm{b} 1 z_{1}+\mathrm{b}_{2} z_{2}-c-z_{1}+1}{a-c+1},-\frac{\left(z_{1}-1\right)\left(a-\mathrm{b}_{1}+1\right)}{\left(\mathrm{b}_{1}-1\right)(a-c+1)}, \frac{z_{2}-1}{a-c+1}\right\},\left\{a+1, \mathrm{~b}_{1}-1, \mathrm{~b}_{2}, c, \mathrm{z}_{1}, \mathrm{z}_{2}\right\}\right.$, AppellF1 $\}$

In explicit form:

$$
\begin{aligned}
& F_{1}\left(a, b_{1}, b_{2}, c ; z_{1}, z_{2}\right)= \\
& {\left[\frac{-a z_{1}+a+b_{1} z_{1}+b_{2} z_{2}-c-z_{1}+1}{a-c+1}-\frac{\left(z_{1}-1\right)\left(a-b_{1}+1\right)}{\left(b_{1}-1\right)(a-c+1)} \theta_{1}+\frac{z_{2}-1}{a-c+1} \theta_{2}\right]} \\
& \times F_{1}\left(a+1, b_{1}-1, b_{2}, c ; z_{1}, z_{2}\right) .
\end{aligned}
$$

The similar procedures are implemented for Appell function $F_{2}, F_{3}, F_{4}$
F2IndexChange], F3IndexChange], and F4IndexChange]]

## Application AppellF1F4

massive q-loop propagator
 could be expressed trough the F4 hypergeometrical function.

$$
\begin{align*}
& J_{023}^{q}\left(M_{1}^{2}, M_{2}^{2}, \alpha_{1}, \alpha_{2}, \sigma_{1}, \cdots, \sigma_{q-1}\right)=\frac{\left[i^{1-n} \pi^{q / 2}\right]^{q}\left(-M_{1}^{2}\right)^{\frac{n}{2} q-a_{\alpha_{1}, \alpha_{2}, \sigma}}}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \Gamma\left(\frac{n}{2}\right)}\left\{\Pi_{i=1}^{q-1} \frac{\Gamma\left(\frac{n}{2}-\sigma_{i}\right)}{\Gamma\left(\sigma_{i}\right)}\right\} \\
& {\left[\Gamma\left(\frac{n}{2}-\alpha_{2}\right) \Gamma\left(a_{\alpha_{1}, \alpha_{2}, \sigma}-\frac{n}{2} q\right) \Gamma\left(a_{\alpha_{2}, \sigma}-\frac{n}{2}(q-1)\right)\right.} \\
& \quad \times F_{4}\left(a_{\alpha_{1}, \alpha_{2}, \sigma}-\frac{n}{2} q, a_{\alpha_{2}, \sigma}-\frac{n}{2}(q-1), \frac{n}{2}, 1+\alpha_{2}-\frac{n}{2} \left\lvert\, \frac{p^{2}}{M_{1}^{2}}\right., \frac{M_{2}^{2}}{M_{1}^{2}}\right) \\
& +\left(\frac{M_{2}^{2}}{M_{1}^{2}}\right)^{\frac{n}{2}-\alpha_{2}} \Gamma\left(\alpha_{2}-\frac{n}{2}\right) \Gamma\left(a_{\alpha_{1}, \sigma}-\frac{n}{2}(q-1)\right) \Gamma\left(\sigma-\frac{n}{2}(q-2)\right) \\
& \left.\quad \times F_{4}\left(a_{\alpha_{1}, \sigma}-\frac{n}{2}(q-1), \sigma-\frac{n}{2}(q-2), \frac{n}{2}, 1-\alpha_{2}+\frac{n}{2} \left\lvert\, \frac{p^{2}}{M_{1}^{2}}\right., \frac{M_{2}^{2}}{M_{1}^{2}}\right)\right] \tag{132}
\end{align*}
$$

## The case of multiple variables

- Functions $F_{A}, F_{B}, F_{C}, F_{D}$ are the extensions of two variable functions $F_{1}, F_{2}, F_{3}, F_{4}$ to the mutivariable case.
- In HyperDire project now is implemented only $F_{D}$ differential reduction for any number of argument:
answer $=\operatorname{FdIndexChange}[\{-1,\{1,-1,0,0,0\}, 0\}, \quad\{a,\{b 1, b 2, b 3, b 4, b 5\}, c,\{z 1, z 2, z 3, z 4, z 5\}\}]$;
Simplify[answer]
Out $[5]=\left\{\left\{\frac{-1+z 1}{-1+z 2}, \frac{-1+z 1}{(-1+a)(-1+z 2)}, \frac{a(z 1-z 2)+(-1+b 2)(-1+z 1) z 2+c(-z 1+z 2)}{(-1+a)(-1+b 2)(-1+z 2) z 2}, \frac{-1+z 1}{(-1+a)(-1+z 2)}, \frac{-1+z 1}{(-1+a)(-1+z 2)}, \frac{-1+z 1}{(-1+a)(-1+z 2)}\right\}\right.$,
$\{-1+a,\{1+b 1,-1+b 2, b 3, b 4, b 5\}, c,\{z 1, z 2, z 3, z 4, z 5\}\}\}$
$F_{D}(a ; b 1, b 2, b 3, b 4, b 5 ; c ; z 1, z 2, z 3, z 4, z 5) \quad$ is expressed in the terms of the function
$F_{D}(a-1 ; b 1+1, b 2-1, b 3, b 4, b 5 ; c ; z 1, z 2, z 3, z 4, z 5) \quad$ and its five derivatives
thank You for an attention!

