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SANC Motivation:

to implement a new class of processes in SANC

Within the framework of SANC it is intended to deygthe
formalism for a new class of reactions

iIn SANC notation: & B— | (all iIncoming 4-momenta)

here f = anyfermiol \\ /
b=anyboson

N



Examples off 2b--> 0 Processes:

o 2fbb—> 0, b=y,Z,W, H, not
e2fgb—> 0, b=y,Z,W, H, not

and in particular single top production in b-qughion
collisions (see V. Kolesnikov in this Workshop):
gb —> tW

(here b is the bottom quark andl is the top quark

Direct photon production also belongs to this class
of processes:

qg— gy (orqg— @) and qa~> g



Implementation within SANC means calculation of
the complete EW and QCD NLO corrections

QCD NLO for dpp has a long history; seg:
« T. Binot, J.P. Guillet, E. Pilon and M. Werlen,
Eur. Phys. J. C16 (2000) 311.

« S. Catani, M. Fontannaz, J.-Ph. Guillet, and BRIl
JHEP 0205 (2002) 028

e P.Aurenche, M. Fontannez, J.-Ph. Guillet, E. Pibowd
M. Werlen, Phys. Rev. D73 (2006) 094007.

and references therein

As far as we know, the EW NLO formulas for thissdaf processes
have not yet been derivegléase tell me if 1 am wrohg



e Direct Photon Production in hadronic collisionsfigion

Prompt Photon Production

the hard subprocess showrQ€D Compton scattering:
q9 —> ¢

by crossing we get the subprocesgj — y g



e Motivation for studying direct photon production

In hadronic collisions

QOriginal motivation
H. Fritzsch and P. Minkowski, PL 69B(1977) 31i&st of QCD

Today:
* precision test of pQCD;

* dpp is complementary to DIS, Drell-Yan and pure QCD
processes, such as production of jets or heavglilay

* dpp contributes significantly to the measuremerihef
gluon distribution in hadrons;

* serves to calibrate jet energy-serious experimental consideration



» A Historical Review of dpp Experiments

Direct photon production was first seerpincollisions
in 1980 by the CERN ISRexperiment R108
at a CMS energy of 62.4 GeV

*) ISR = IntersectingStorageRings: the world’s first pp collider

The current status of experiments in proton-proton
and proton - antiproton collisions is shown in the next
two tables



Direct Photon Production imp Collisions

1980 |R108 E...=62.4 GeV |Angelis 80
1982 |R806 E.,.=63 GeV Anassontis 82
1987 |NA24 E ..=300 GeV De Marzo 87
1988 |WAT7O0 E ..=280 GeV Bonesini 88
1989 |R110 E.,.=63 GeV Angelis 89
1989 |R807 E.,.=63 GeV Akesson 89
1993 |UAG6 E ..=315 GeV Ballochi 93
1995 |E704 E ..=200 GeV Adams 95
1998 |UAG6 E ..=315 GeV Ballochi 98
2006 |PHENIX |E.,=200 GeV |Adler 06




Direct Photon Production ip-antip Collisions

1988 |UA1 E...=546; 630 |Albajar 88
1988 |UA2 E.,..=630 GeV |Ansari 88
1992 |UA2 E.,..=630 GeV |Alitti 92

1993 |UAG E ..=315 GeV |Ballochi 93
1994 |CDF E...=1800 GeV | Abe 94

1996 |DO E.,..=1800 GeV | Abachi 96
1998 |UAG E ..=315 GeV |Ballochi 98
2000 |DO E.,.=1800 GeV | Abbott 00
2002 |CDF E.,.=1800 GeV | Acosta 02
2006 |DO E...=1960 GeV | Abazov 06
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Direct Photon Production in Other Reactions:

Direct photon production has also been studied Iin
pion-proton,

pion-nucleus,

proton-nucleus

and in

neavy ion collisions,
also at_LEPIn y*y* collisions

and atHERA,

but these will not be reviewed in this talk.
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* Experimental Data

* In the next few slides a selection of
experimental data of direct photon production
In p— p andanti p— p collisions are shown.



Prompt Photon Production in pp Collisions
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Tevatron Results Run ifs = 1800 GeV
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Direct Photon Production in pbar-p Collisions

Direct v Production in pp Interactions
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* A remarkable property:pscaling

pep sollicions (e=20-1 20008 W

RF Cahalan, KA Geer, S s
JB Kogut and L Susskind, £ S o
Phys. Rev.D11 (1975) 1199
w10®
d’c -n 210
E dp3 %(\/_S) X F( )ﬁr) :E:: |
" p+p collisions [8=20-200GaY I!EJ
where e

10
1“ v FHEME-Rund prp s 20del
vy N I i
- p'r '1'} w R0 prip a0
g ETOE pep 33 ey
ETE p L
AL

shown in the figure is

3 102 Ts
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from Takuma Horaguchi, Thesis - PHENIX experiment




UAG Ballochi 98 E,z=315 GeV (s = 24.3 GeV)
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CERN ISR Experiment R807 (AFS)

1 - AKESSON 89 - CERN-EP/89-98 - T 2
2 - AKESS50N 89 - CERN-EP/B9-98 - T 4

| e pp—> 7° X
1000 _%_.
¢ & - ° pp_>7/x
= — 5 -
_E=aEvemmecew this shows that there is an
¢ | SRR = overwhelming background
g I < of 70 production
N e+ . Y
1 ; ._é;_.!+'
“’L == Ref: Anassontzis et al. (AFS Coll.),
4% 50 55 &0 65 70 75 B0 B85 90 95 100 1E:.5 1-1'0_ Yad' FIZ'51(1990)1314
TRy [Sov. J. Nucl. Physs1 (1990) 836]

source HEPDATA
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- Photon isolation

To suppress the background of unresolved photons fr
n9 andn decay one applies an isolation condition in the
event selection:

the hadronic energy in a cone about the photon of
half-opening anglé in (p,m) space should be
less than a fractior of the photon energy.

The precise values ad and £ are chosen by the experimentalists
specifically for their experiment, but typicallyety are

S = \/A(p) Ai]) ~0.5; £~ 0.]



e Kinematics: I: basic definitions

MS)2

s=(pn+p) =(2Em

N

|’51ZX1p1; P, =% P,
S=(R+Dh) = %x%:
= A A 2

P :(p3+p4)

t= ( P - I53)2
A ~ A \2
UZ(Q_QJ

massless quarks “+4s +t~ =0
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Kinematics; Il: Rapidity and Pseudorapidity

Definition of rapidity:  |y==In—"F-
2 E-p,

for p0 m and 00 mE

1 1+cos9+m [ 40" +... %
y=— ~—Intan—=n
2 1—cos9+m [ 40" +... 2

n - pseudorapidity
for LHC beam protons, neglecting terms of order (m/E)4, we have:
2
y= In—Ebeam:Q 6
m

(cf. Tevatron Run Il (Eg.,,,=0.98 TeV): Yyeam = 7-6)



In colliders, the CMS four-momenta of incoming hadrons A and B are

p.=(E0,0,E), p,=(E,0,0-B| (EIisbeam energy)

Total CMS energy squared: S=(p+ pS)Z =4E

incoming parton four-momenta: P=XP. B=%R; %,€[01

Longitudinal momentum of the parton pair:

Feynman X

f)z: ,plz+ ,pZZZ(XL_ XZ) E
X =b,/E=(%x-x%)e[-1]]




 Reconstruction of Event Kinematics

X1P1 X505

P=XPp+X%PR
=x(E,0,0,E)+ x( EO0,0- B

=E(%+%,0,0,%- %)

rapidity of the intermediate state:
-

yzélnﬁ, .'.i
2 X, X,

and hence with )
XX =9 ¢

we get

X 2 :\/?S e’
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from the measured four-momenta of the prompt photon
and associated jet we get

N

S and x

and hence using

r=§s=x% x=7p E ¥ )

we getx; and X,:

=o(VR+arex ), %=+ x)

25



e Observable: invariant cross section

hadronic process: A+B—y+ X
partonic (hard) subprocessa+b—y+c

then the invariant cross section Is

d°c 4 dx do(ab— @)

- dp :;;JZ&— x Foa(% @) Fys( % Q) di

where , _ 2P _ X, _ogin__ %
=g % Xr2xa—xr’ X=X > x

and ) 1 ) 1
S=XX3 t=—§ X XS U:—E KXy



* The Hard Subprocesses of dpp in LO

QCD Compton effect:

s channel w channel

qg annihilation

t channel u channel

27



Formulas and plots of direct photon productio

differential cross sections LO
(the plots were produced using CompHEP)

1 ,(-u s
qg—> q: = ( + j

Note: co$=0.76 corresponds tp=1 | T <is oo es T'm;ﬁ
and co08=0.96 tg=2 28




the complete expressions for the differential csesgions of the
hard subprocesses are

do (a9 ) _ 7 (Q’)
dt T3¢

fn of co9

d&(qﬁ—> y g) @ 872'0[0[8(QZ
di 9 o¥

There is a famous ambiguity in the definition®f:
()Q%?=-f, (i)Q?= 2§f0/(2:,2+ P+ 1), (ii)Q*=2p’

((i1) was favoured by Feynman)



« NLO amplitudes of direct photon production

SRR O
q g q g q g
NLO graph: “box”

‘\'elteX (()lle(tl()l] \'@lt@X C()ll@(tl()ll

and similar NLO graphs in QCD Compton scattering



Real gluon bremsstrahlung gives rise to an expeiiahen

difficulty:
kinematically it is possible for the additional gluon

to travel close to the photon and thereby
violate the isolation criterion

hence we lose a good direct photon!

there is an obvious need to control
this difficulty theoretically.
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«JETPHOX: the state-of-the-art program of dpy

JETPHOXis a program to calculate direct photon (or hadrojet
production cross sections in NLQJHEP 0205:028, 2002

Authors: P. Aurenche, T. Binot, M. Fontannaz, J.-Ph. Guillet
G. Heinrich, E. Pilon, and M. Werlen

http://wwwlapp.in2p3.fr/lapth/PHOX-FAMILY/main.html



the inclusive direct photon production
cross section can be obtained within JETPHOX
by integrating over the jet.

you can choose any set of parton density functicmm PDFLIB
(by default: MRST99, MRSTO1, CTEQS and CTEQ®6)

to dateJETPHOXis probably the most advanced program
of its kind

It is widely used by experimentalists to compar&dath theory.

but do NOT use it blindly: read tMeARNINGS
supplied on their web site!
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e “The PHOX codesARE NOT FULL EVENT GENERATORS”

* “The PHOX codeslo not provide a full, exclusive portrait
of eventawhich could for example be further processed
through a detector simulation”.

34



« Comparison of DO data with JETPHOX calculation

from “Photon + jet measurements at DO”
(D. Bandurin, Talk on behalf of DO CollaborationGiIPAND 2009)

o 10° | » data g [ L =380 pb DO
() — NLOQCD DD E 1.4
n "
207 (ug=He=it=p}) = L
I CTEQB.1M 51_2— J
& 1l I T e S
2 10} 2 1l
5| = |
; 0.8 ||'TT| TT& WL .
107 | C
- 0.6~ —®— ratio of data to theory
107 CTEQS.1M PDF uncertainty
g - scale depende?ce :
1u-\3 -' NI B R | i TR AN B | o - ﬁuﬂ:uF:uﬁzulﬁuT H.fltu E!:IIT]I | |
¢ 50 10 1N N0 20 0 0 50 100 150 200 250 300
pr (GeV) p! (GeV)
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Conclusions to draw from DO data vs. JETPHOX

e There Is a systematic discrepancy between datdEBhBHOX

e Experiment is faulty?
no, | think they are too smart

« JETPHOX is still rather less than perfect?

no, | think they are too good

* New physics?
that’s not where we'd look for it

e The WARNINGS of the JETPHOX authors were not heé@de

well, canyou think of an alternative?
» Take your pick, BUT
whichever it is: there is room for improvement.
36



 Relative contributions of QCD Compton and

guark-antiquark annihilation
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e Parton Density Functions
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Summary and Conclusions

« SANC Motivation: to implement a new class of preses in SANC

* Direct photon production: definition

* Motivation for studying dpp in hadronic collisions
» Review of dpp experimentsX; scaling
 1° background; photon isolation

» The hard subprocesses of dpp in LO
 Kinematics of dpp; event reconstruction
* Observable: invariant differential cross section

 NLO amplitudes of dpp

« JETPHOX: state-of-the-art QCD NLO program of dpp;
comparison with datagreement not perfect, but not clear ...



