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Monte Carlo Integration

Consider I:/f(x)dx

The integral can be interpreted as an expectation value of
f(x) with uniform distributed random numbers:

1
I~ Iy= NZ][(?@)

The central limit theorem tells us %I;UN =1

The central limit theorem also gives an handle on the
uncertainty:

%: O(1/VN)
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Monte Carlo Integration

In principle we could think to do better:

Al \/Var(f(x;)) 1
I (f(x)) VN

—> cannot make use of the exact formula in a simple way since:

)= [ 1)dx, Var(£() = [ (£ = (£(x)))dx

- we would need the integrals over f(x) and f(x)*2 to improve the
error estimate

|dea: Replace both quantities by the MC estimates.
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Monte Carlo Integration in d dimensions

The extension to d dimensions is straight forward:

I = /f(x17x27°"7xd)ddx

The Monte Carlo estimate is given by:

I“%,Z,f@i)

(we form d dimensional vectors, conceivable that the
Marsaglia effect indeed causes problems...)
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Everything is integration...

Using Monte Carlo techniques we estimate the resulat from
random numbers:

F=F(xi,x,...,%,)

F can be interpreted as an estimate of the integral:

//.../F(xl,xz,...,xn)dxl...dxn
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. 7
Buffon’s needle

If we take the distance between the parallel lines and length
of the needle to be 1, we find as condition:

iy
v, /%”//

The ratio of 1t is obtained from the ratio of the two areas
which is in Buffon’s method estimated from the hit and miss MC

Hit and miss not very sensitive to the shape of the curve,
- we need many points

A direct integration would perform much better
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Monte Carlo Integration in d dimensions

How changes the error estimate ?7?

S

It doesn’ change at all, we still get the

Keep in mind:
If we want to decreas the uncertainty by a factor of
10 we have to increase the N by a factor 100 !

If the initial calculation took 1 day it will take 100 days afterwards

But:

® \We don't need to throw away what we calculated already
® Calculation can be parallelized
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Comparison with numerical quadrature

Numerical quadrature in one dimension looks very similar:
IS Zwif(xi)
Variants of this type:

® Trapezoidal rule
® Simpson’s rule
® Gauss rule

In one dimensions the error goes as:

I 1 1

- much better than Monte Carlo integration
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Comparison with numerical quadrature

In higher dimensions numerical quadrature not so well developed

We can still use an iterated 1-dim. version

Uncertainty as a function In one Ind [James]
of number of points n dimension dimensions

Monte Carlo n—1/2 n-1/2

Trapezoidal rule n—2 n-2/d

Simpson’s rule n—4 n—4/d

Gauss rule p—am+l n—(2m-1)/d

—> convergence of MC integration slow

Numerical quadrature seems to be competitive for
moderate dimensions

But: @ At a certain point brute force doesn’t work anymore
® Monte Carlo method can be improved
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Can we improve Monte Carlo integration?

Error estimate: Al /Var(f(x)) 1
1T (f)) VN

We can change the ﬁ

But we can decrease the error by decreasing Var( f)

Suppose we want to calculate

/01 6z(1 —z)dz

We learned in the previous lecture how to generate random
numbers according to 6z(1-z)
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Simple example how to improve MC

We can interpret the integral in a different way:

We are calculating the expectation value of one with respect
to the probability distribution function 6z(1 —z)

Our estimate then reads: |
I~—Y 1
VL

There will be no fluctuation at all, one throw is
sufficient to calculate the integral

Clear enough the result is not surprising:

When interpreting the 6z(1-z) as probability we knew
already that the integral is 1
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Simple example how to improve MC

Example shows:

Even if it is not possible to improve the 1/7N one
still improve the convergence by decreasing the
Variance using sophisticated techniques
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Variance reduction: importance sampling

Importance sampling

Chose large number of points where the integrand is largest

I:/f(x)dx:/%g(x)dx

with g(x) being probability distribution function

The expectation value is then obtained from

Iy = _Zf(xi)

N ; g(xi)

where the xi are distributed according to g(x)
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Variance reduction: importance sampling

Note that we need to know the integral over g(x)

g(x) should be chosen such that % is nearly constant

This improves the variance since we have now

Var(l) ~Var(f/g)

-> Overall convergence can be improved
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Variance reduction: importance sampling

Comments:

® |In general difficult to find appropriate g(x), in particular
iIn higher dimension

- need to know integral
- need to be able to generate appropriate random numbers

® |f g(x) goes to zero somewhere it can become instable

® Useful if something about the integral is know

—> transform variables to absorb part of the integrand
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Variance reduction: Stratified sampling

Stratified sampling

Split integral into integrals over sub-region:
1 a 1
1:/ f(x)dx:/ f(x)dx+/ f(x)dx
0 0 a

In general: j sub-spaces with NV, points per sub-space j

For each sub-space a partial sum is performed

V.

The partial sums are added weighted with ﬁ]
J
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Variance reduction: Stratified sampling

Integral estimate:

Using this technique the variance is given by
.
~-Var(f)ly,
=1V v
Total variance can be reduced by a proper choice of (V},N;)

“sample more points where the error gets large contributions”
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Variance reduction: Control variates

Control variates:
ldea similar to importance sampling:

Make use of knowledge about the integrand,
to avoid instabilities we use the sum:

[ f@dx= [ (1) - g)dx+ [ gx)a

If g approximates f very well the variance of f-g will be smaller
than the variance of f !

Need to know the integral over g or have at least an
efficient Monte Carlo method
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Variance reduction: Antithetic variables

In lecture 1 we saw:

Var(f+g) = Var(f)+ Var(g) +2cor(f,g)
|dea:

use subsequent points which are negatively correlated

Example:

Suppose we want to integrate a monotonically
iIncreasing function of x from 0 to 1

Use as two subsequent points x; and /-x,

1
Iy = ﬁ;f(xi) + f(1—x)
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Quasi-random variables

Taking antithetic variables to the extreme:

- Random numbers are no longer “random”

In many MC integrations it is more important to sample
the integration region as uniform as possible, than having
truly random numbers

Will not be discussed in this lecture

For a integration making also use of quasi-random numbers see:

Cuba by Thomas Hahn
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Variance reduction

Seen so far:

There are techniques to reduce the variance of the
Monte Carlo integration

In all cases information about the integrand is needed

Integrand might be complicated function in many variables

- in general not trivial to obtain this information

-> automatic procedure applying some
variance reducing techniques highly desired

—> adaptive procedure which learn about
the integrand during integration
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Vegas by G.P.Lepage

JOURNAL OF COMPUTATIONAL PHYSICS 27, 192-203 (1978)

A New Algorithm for Adaptive Multidimensional Integration

G. PETER LEPAGE

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305
Received November 10, 1976; revised June 15, 1977

A new general purpose algorithm for multidimensional integration is described. It is an
iterative and adaptive Monte Carlo scheme. The new algorithm is compared with several
others currently in use, and shown to be considerably more efficient than all of these for a
number of sample integrals of high dimension (n = 4).

—> traditional working horse for MC integration,

different implementations exist (Fortran,C), parallelized
versions available, easy to use, still used by many
people, less flexible than Cuba library
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Vegas by G.P.Lepage: some detalls

Basic assumption:

Integrand can be approximated by factorized form

- Each integration variable is divided into a certain
numbers of subintervalls

Note that using a more general decomposition we would run
out of memory:

Using 10 intervalls in each direction we get 109 hypercubes

During the integration information on the contribution to the
iIntegral and to the error is collected
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Vegas by G.P.Lepage: some detalils

Before starting the next iteration this information is used to
apply importance sampling/stratified sampling

The user specifies:

® function to integrate

® number of calls per iteration

® number of iterations

® accuracy when the integration should be stopped

Typical usage:

vegas (f,1tmx,ncall,acc)

default integration volume is [0,1]¢
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[=] uwer on pepnote01: /home/uwer/projekte/WWj

uwerBpepnotedl (Wl jx . fobjs/ =86_64/1

FAMDOM GEMERATOR: RAMLUX

INFUT FPARAMETERS FOR YWEGAS HD
IT

AC
MO

IMTEGRATION EY WEGAS

ITERATION NO 1. INTEGRAL =
STD DEV =

ACCUMULATED RESULTS. INTEGRAL
=TD DEY

CHI**z P

IMTEGRATION EY YWEGAS

ITERATION HO z2. INTEGRAL =
=TD DEV =

ACCUMULATED RESULTS. INTEGRAL
=TD DEW

CHI**Z2 P

IMTEGRATION EY YWEGAS

ITERATION HO 3. INTEGRAL =
=TD DEV =

ACCUMULATED RESULTS. INTEGRAL
=TD DEY

CHI**Z P

INTEGREATION BY YWEGAS

ITERATION HO 4. INTEGRAL =
=10 DEV =

ACCUMULATED RESULTS. INTEGRAL
=TD DEY

CHI**Z P

IMTEGRATION EY YEGAS

ITERATION MO a. INTEGRAL =
=TD DEY =

ACCUMULATED RESULTS. INTEGRAL
=TD DEY

CHI**z P

IMTEGRATION EY WEGAS
ITERATION HO B. INTEGREAL

oTh MEMW

i e e e e e e e n ¢ i« ¢ s i« S« o x e« e« e« e« e« e« e« e« o 1 e n e n e x o« o - S« o« o« o« o e i 1 1 5

ntel/test.exe

IM = 10 HCALL=
= o ITMx =
C = —-.300E-21

5= 1 MO= 350

0.53486263E-01
0.3055E-03

= 0.53486263E-01
= 0.3055E-03

ER ITH = 0,000

0.53828753E-01
0.1377E-03

= 0.53771525E-01
= 0.1Z253E-03

ER ITH = 1.040

0.340260735E-01
0.4521E-04

= 0.53993p45E-01
= 0.4483E-04

ER ITH = Z2.310

0.539645938E-01
0.2091E-04
0.53970040E-01
0.1891E-04

ER ITH = 1.650

0.539595502E-01
0.14590E-04

= 0.53986R52E-01
= 0.1165%E-04

ER ITH = 1.547

0.53962666E-01
1 44aA=NF =1

10

216,

10,1
H / dx;jexp(—x?)
0

i=1
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[=] uwer on pepnoted1: /home/uwer/projekte/WWj

uwerkEpepnotedl : Ll j> . /objs/ <86 B4/ 1ntel test.exe
RANMDOM GEMERATOR: RAMLLK

IT = 0 ITM=
ACC = —-.300E-Zz1
MDS= 1 HD= 50

IMTEGREATION EY WEGAS

0.1
=TD DEY 0.1678E+11
ACCUMULATED RESULTE.

STD DEYW = 0.5Z38E+10

IMTEGRATION BY WEGAS
ITERATION MO 3. INTEGRAL = 0.1404Z2757E+09

STD DEY = D.7164E+03

STD DEYW = D.2057E+09
IMTEGRAL
STD DEY = D.Z076E+10

ACCUMULATED RESULTS.

T HHHHFHAFHAHATAHTEHFEHFFAHFHAFAHEHFEFEAFSAHAFHEFEFEHFEFEAFSEHEEHEESE ST TEHER

ACCUMULATED RESULTS.

IMNFUT PARAMETERS FOR WEGAS MDIM = 410 HMNCALL=

ITERATION MO 1. INTEGRAL = 0.10788242E+09
STD DEYW = 0.5100E+0&
ACCUMULATED RESULTS. INTEGRAL = 0.10788Z4ZE+09
STD DEY = D.5100E+0%
CHI#**Z PER ITH = 0,000
IMTEGRATION BY WEGARS
ITERATION NO 2. IMTEGREAL T4E45928E+11

IMTEGRAL = 0,34916527E+10
CHI#**Z PER ITH = 1.723

ACCUMULATED RESULTE. IMTEGREAL = 0.Z21219552E+10
=TD DEY = 0.3Z89E+10
CHI**Z FPER ITH = 1.41%

IMNTEGRATION BY WEGAS

ITERATION MO 4. IMTEGRAL 0.59333667E+09

0. 14043Z60E+10

CHI#**Z FPER ITH = 1.304
IMTEGREATION EY WEGAS
ITERATION MO 3. IMTEGRAL = 0.88301683E+10
STD DEYW = 0.Z8p9E+10
ACCUMULATED RESULTS. IMTEGRAL = 0.399176Z9E+10
STD DEY = D.1679E+10
CHI#*Z FPER ITH = Z2.084
IMTEGEATION BY WEGAS
ITERATION NO B. IMTEGRAL = 0.16553500E+11
=sTD DEY = 0.Z2967E+10

INTEGRAL = 0.10695305E+11

10

9Z16.

10 1 1
H/O dxl-;i

i=1
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Vegas by G.P.Lepage: some detalils

Comments: (apply to some extend also to other MC integrators)

® results of individual iterations should be to some
extend consistent 2 increase the number of calls

® [he accumulated information about the integrand
can be stored and used later to add iterations

® Adaptive Monte Carlo is a trouble finder: if there
IS problem in the integration region the integrator
will find it = large fluctuation, inconsistent results

® Possible to calculate arbitrary distributions
together with the integrand
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Understanding Vegas

Due to factorization ansatz Vegas cannot tune to all types
of problems:

A N

need to use the proper variables to get good performance
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Comparison of MC results

What is meant by convergence of MC results ”?

- Convergence in a probabilistic sence

Depending on the size of the uncertainy we attribute
(1sigma, 2 sigma, ...) the results should agree with a certain
probability within their errors

(if we assume a Gaussian we can calculate the probaility)

Important:

There is always a probabillity that they do not agree
despite the fact that everything was done correct!
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If we have large N...

Var(f) _ 13 Var()\ 1 b 1
Prob(—a \;Z;V SN;f(xn)—IS—b \j}% >_ﬁ _adteXPT

The variance Var(f) is estimated from MC:
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Important consequences

If you compare many numbers there are always some which
do not agree within 1 StD, 2 StD and even 3 StD.

If it is different something is wrong with the Monte Carlo

If the results are correlated because you are using the
same random numbers or something similar that would
explain a better agreement than expeced from statistics

Note:

When increasing the statistics, the picture will not change,
although the relative uncertainty goes down!

- to compare just count how many numbers are off by 1StD, 25td,
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