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 Monte Carlo Integration

Consider

The integral can be interpreted as an expectation value of
f(x) with uniform distributed random numbers:

The central limit theorem also gives an handle on the
uncertainty:

The central limit theorem tells us
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 Monte Carlo Integration

In principle we could think to do better:

 cannot make use of the exact formula in a simple way since:

 we would need the integrals over f(x) and f(x)^2 to improve the 
error estimate

Idea: Replace both quantities by the MC estimates.
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 Monte Carlo Integration in d dimensions

The extension to d dimensions is straight forward:

The Monte Carlo estimate is given by:

(we form d dimensional vectors, conceivable that the
Marsaglia effect indeed causes problems…)
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 Everything is integration…

Using Monte Carlo techniques we estimate the resulat from
random numbers:

F can be interpreted as an estimate of the integral:
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 Buffon’s needle

If we take the distance between the parallel lines and length
 of the needle to be 1, we find as condition: 

α

x

The ratio of π  is obtained from the ratio of the two areas
which is in Buffon’s method estimated from the hit and miss MC

Hit and miss not very sensitive to the shape of the curve,
 we need many points

A direct integration would perform much better
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Monte Carlo Integration in d dimensions

How changes the error estimate ??

It doesn’ change at all, we still get the 

Keep in mind:

If we want to decreas the uncertainty by a factor of
10 we have to increase the N by a factor 100 !

If the initial calculation took 1 day it will take 100 days afterwards

But:
● We don’t need to throw away what we calculated already
● Calculation can be parallelized



  

9

Peter Uwer                                     Monte Carlo Methods in High Energy Physics III                         CALC2009 -  July 10 – 20, Dubna

 Comparison with numerical quadrature

Numerical quadrature in one dimension looks very similar:

Variants of this type:

● Trapezoidal rule
● Simpson’s rule
● Gauss rule

In one dimensions the error goes as:

 much better than Monte Carlo integration
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 Comparison with numerical quadrature

In higher dimensions numerical quadrature not so well developed

We can still use an iterated 1-dim. version

[James]

Numerical quadrature seems to be competitive for
 moderate dimensions 

But: ● At a certain point brute force doesn´t work anymore
● Monte Carlo method can be improved

 convergence of MC integration slow 
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 Can we improve Monte Carlo integration?

Error estimate:

We can change the 

But we can decrease the error by decreasing

Suppose we want to calculate

We learned in the previous lecture how to generate random
numbers according to 6z(1-z)
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 Simple example how to improve MC

We can interpret the integral in a different way:

We are calculating the expectation value of one with respect
to the probability distribution function 

Our estimate then reads:

There will be no fluctuation at all, one throw is 
sufficient to  calculate the integral

Clear enough the result is not surprising:

When interpreting the 6z(1-z) as probability we knew 
already that the integral is 1
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Simple example how to improve MC

Example shows:

Even if it is not possible to improve the 1/√N one 
still improve the convergence by decreasing the
Variance using sophisticated techniques
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 Variance reduction: importance sampling

Importance sampling

Chose large number of points where the integrand is largest 

The expectation value is then obtained from

where the xi are distributed according to g(x)
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 Variance reduction: importance sampling

Note that we need to know the integral over g(x)

This improves the variance since we have now

 Overall convergence can be improved
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Variance reduction: importance sampling

Comments:

● In general difficult to find appropriate g(x), in particular
in higher dimension

 need to know integral
 need to be able to generate appropriate random numbers 

● If g(x) goes to zero somewhere it can become instable

● Useful if something about the integral is know

 transform variables to absorb part of the integrand
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 Variance reduction: Stratified sampling

Stratified sampling

Split integral into integrals over sub-region:

In general: j sub-spaces with Nj points per sub-space j

For each sub-space a partial sum  is performed

The partial sums are added weighted with
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 Variance reduction: Stratified sampling

Integral estimate:

Using this technique the variance is given by

Total variance can be reduced by a proper choice of 

“sample more points where the error gets large contributions”
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 Variance reduction: Control variates

Control variates:

Idea similar to importance sampling:

Make use of knowledge about the integrand,
to avoid instabilities we use the sum:

If g approximates f very well the variance of f-g will be smaller
than the variance of f !

Need to know the integral over g or have at least an
efficient Monte Carlo method
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 Variance reduction: Antithetic variables

In lecture 1 we saw:

Idea:

use subsequent points which are negatively correlated

Suppose we want to integrate a monotonically
increasing function of x from 0 to 1

Example:

Use as two subsequent points xi and 1-xi
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 Quasi-random variables

 Random numbers are no longer “random”

In many MC integrations it is more important to sample
the integration region as uniform as possible, than having

truly random numbers

Taking antithetic variables to the extreme:

Will not be discussed in this lecture

For a integration making also use of quasi-random numbers see:

Cuba by Thomas Hahn
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 Variance reduction

Seen so far:

There are techniques to reduce the variance of the
Monte Carlo integration

In all cases information about the integrand is needed

Integrand might be complicated function in many variables

 in general not trivial to obtain this information

 automatic procedure applying some 
variance reducing techniques highly desired

 adaptive procedure which learn about
 the integrand during integration 
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 Vegas by G.P.Lepage

 traditional working horse for MC integration, 

different implementations exist (Fortran,C), parallelized 
versions available, easy to use, still used by many 

people, less flexible than Cuba library
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 Vegas by G.P.Lepage: some details

Basic assumption:

Integrand can be approximated by factorized form

 Each integration variable is divided into a certain 
numbers of subintervalls

Note that using a more general decomposition we would run
out of memory:

Using 10 intervalls in each direction we get 10d hypercubes

During the integration information on the contribution to the
integral and to the error is collected
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Vegas by G.P.Lepage: some details

Before starting the next iteration this information is used to
apply importance sampling/stratified sampling

The user specifies:

● function to integrate
● number of calls per iteration
● number of iterations
● accuracy when the integration should be stopped

vegas(f,itmx,ncall,acc)

Typical usage:

default integration volume is [0,1]d
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 Vegas
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 Vegas
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Vegas by G.P.Lepage: some details

Comments:

● results of individual iterations should be to some 
extend consistent  increase the number of calls

● The accumulated information about the integrand 
can be stored and used later to add iterations

● Adaptive Monte Carlo is a trouble finder:   if there 
is problem in the integration region the integrator 
will find it  large fluctuation, inconsistent results

● Possible to calculate arbitrary distributions 
together with the integrand 

(apply to some extend also to other MC integrators)
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 Understanding Vegas

Due to factorization ansatz Vegas cannot tune to all types
of problems:

need to use the proper variables to get good performance 
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 Comparison of MC results

What is meant by convergence of MC results ?

 Convergence in a probabilistic sence

Depending on the size of the uncertainy we attribute 
(1sigma, 2 sigma, …) the results should agree with a certain

probability within their errors 

Important:

There is always a probability that they do not agree
despite the fact that everything was done correct!

(if we assume a Gaussian we can calculate the probaility)
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 If we have large N…

The variance Var(f) is estimated from MC:
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 Important consequences

If you compare many numbers there are always some which
do not agree within 1 StD, 2 StD and even 3 StD.

If it is different something is wrong with the Monte Carlo

If the results are correlated because you are using the
same random numbers or something similar that would
explain a better agreement than expeced from statistics

Note: 

When increasing the statistics, the picture will not change,
although the relative uncertainty goes down!

 to compare just count how many numbers are off by 1StD, 2Std,..
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The End
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