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Generation of random numbers

So far: MC = method which uses random numbers *)

Where do they come from ?

- from any truly random process!

Examples:

® Radioactive decay
® Electronic noise
® Silicon Graphics lava lamp

*) In fact it turns out that random numbers which are “less random” are
also very useful - quasi random numbers...
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. 4
Random number generation

- Generators relying on truly random process are called
hardware random generators

Note that it is easy to remove any bias from the hardware
generator using a trick:

Suppose the generator generates O's and 1’s
with probability p(0) and p(1).

If two following bits are equal skip them, if not
keep the second one - random sequence {0,1}

-> possible to construct hardware random number generator without detailed knowledge of the probabilities

Problem:
Hardware generation of random numbers are often slow

LavaRng: 200kbit/s
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5
Random numbers

Requirements

® should be “random”

® should be reproducible

® should be fast

® should be portable (not the question whether the Lava lamp fits in your pocket...)
® should have long period

Why don’t produce them directly on the computer ??7?

...since they are supposed to be random...
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History: The mid square method

"Anyone who considers arithmetical methods
of producing random digits is, of course,
in a state of sin.”“ J. von Neumann

v. Neumann proposed the following algorithm:

Take a large number with # digits, square it and take the
middle as the random number

“Quality” of the random numbers rather poor, in particular if you
start producing O’s they will start to repeat over an over again,
there is also a finite period... at least it is portable...

Clear:
“Calculated random numbers” are not random, but

they look random!
- “Pseudo-random numbers”
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(Mixed) Linear Congruential generators

[Lehmer]

x; = (ax;,_1 +c) mod m

- maximum period: m/4 (from number theory)
only reached for special choice!

Usually m is taken to be 2/, were ¢ is the number of bits in the
iInteger representation (>rather short period for t=32)  2:2-4294 967,206

Problematic:

® Famous and infamous choices for a,c
® Short period
® Random numbers fall into hyperplanes

[Marsaglia effect]

- improvements required
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Non-random behaviour a simple example

Simple example:  x; = (ax;_; +c¢) mod m
Xo = 1234,a = 106, c = 1283, m = 6075

~ behaviour of (x;,X;11,Xi+2)
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Marsaglia effect 9

If consecutiv output of linear congruential RNG is interpreted as
vector in d dimensional space, points fall into hyper planes

Maximum number of hyperplanes =(d! 2¢)1/¢

Number of bits(z) d=3 d =4 d=6 d=10
16 73 35 19 13
32 2953 566 120 41
36 7442 1133 191 54
| 48 119086 9065 766 126 |
60 1905376 72520 3064 290
[Marsaglia]
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(Lagged) Fibonacci type RNG's

Improve period and quality by combining two random numbers

Xj+1 = A +xj—1 mod m Fibonacci

Xj=Xj_p+Xxj_,modm Lagged Fibonacci

Generalisation
Xi=Xji—pQ@Xj—gq mod m
\ L —
® € {+,—,*,6 =xor}

Special case: Shift-register, Tausworth Generator
Xj=Xj pDXj_4 mod 2
- production of random bits
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Subtract-with-carry

Marsaglia, Zaman:

Anzxn—s_xn—r_cn—l.’ (21)

and then determines x, and c, through

c,=0 if A >0,

*n =45, 22
x,=A +b, ¢, =1 i 4,<0. (2.2)

Further improvements by Luscher: RanLux

—> very long period + theory behind
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How to test random numbers?

Many sophisticated tests exist

® test of uniformity, x?-tests

® Serial correlation test

® Gap test (uniformity of sequences)
® Bit level tests

o ..

Important:

Every application represents a new test which might be the
first which fails
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Test of uniformity, -test

Generate n numbers in [0,1), multiply by v and truncated to
integers, count the number of occurrence m, of each v

Calculate ¥

xzzz(mi—<M>) Z(mi—<m>)

i=1 VCZI"(WZ) N

, o _ Poisson distribution
Compare with ¥2-distribution:

Zlft/2—le—z/2

2720 (1 /2)

fe=xn=v—1) =

—> Tells us the probability of our observation
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Testing random numbers

Table 6

[Vattulainen, Kankaala, Saarinen, Ala-Nissila 95]

A summary of the performance of the tested generators in standard and bit level tests

Test Random number generator

method GGL RAND RANF GOSFAF R250 RAN3 RANMAR RCARRY
Standard tests + 0 + + + 0 - -

Bit level tests + — 0 + + - 0 0

1.0 T

0.0 =

i

0.001
Fig. 1. Spatial distribution of 20 000 random number pairs in two
dimensions on a thin slice of a unit square as generated by GGL
(a), RAND (b) and R250 (c).

R250 seems to be a rather good choice

Peter Uwer
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Every simulation is a new test...

[Ferrenberg, Landau, Wong ‘92]
TABLE I. Values of the internal energy (top) and specific heat (bottom) for ten indepen-
dent runs with L =16 at K. obtained using the Wolff algorithm. The last number in each
column, labeled “dev,” gives the difference between the simulation value and the exact value,
measured in terms of the standard deviation o of the simulation.

CONG R250 R1279 SwC SWCW

1.453089 1.455096 1.453237 1.452321 1.453058
1.453107 1.454697 1.452947 1.452321 1.453132
1.452866 1.455126 1.453036 1.452097 1.453330
1.453056 1.455011 1.452910 1.452544 1.453219
1.453035 1.454866 1.453040 1.452366 1.452828
1.453198 1.455054 1.453065 1.452388 1.453273
1.453032 1.454989 1.453129 1.452444 1.453128

1453169 1454988  1.453091 1452321  1.453083 Simulation of
1452970  1.455178  1.453146  1.452306  1.453216
1453033 1.455162  1.452961  1.452093  1.453266 the Isin gm odel
“<E> 1453055 1455017 1453056 1452320  1.453153 _
error  0.000030  0.000046  0.000032  0.000044  0.000046
dev. ~0.31¢ ~027c 16950  1.94c using a cluster
1499210 1447436  1.497665  1.515966 1497988 al go rithm, usin g
1498099 1451072 1498049 1515066 1497813 _ ,
1498866 1446619 1497026 1514664 1496413 different RNG's

1.499150 1.447657 1.498608 1.512534 1.497631

1.499907 1.450726 1.499018 1.513009 1.499337

1.498127 1.447349 1.497292 1.513267 1.496294

1.498484 1.448782 1.498314 1.512298 1.496332

1.498532 1.449522 1.498801 1.513575 1.497203

1.499409 1.449012 1.496602 1.516258 1.498850

1.498814 1.448098 1.497887 1.514838 1.496123

<C> 1.498860 1.448627 1.497926 1.514237 1.497398
error 0.000182 0.000250 0.000473 0.000356
dev. 0.820 —107.160 —3.140 32.81¢0 —3.68¢0
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Standard C/C++ random number generator drand48() -

X1 = (ax, +c) mod m

m — 248
a = Ox5deece66d

b = 0xb
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Important lesson

Never try to write your own random generator unless
are real expert!

Modern generators come with a lot of theory based
on number theory and the study of chaotic systems

- see for example Ranlux [Luscher]

The fact that your algorithm looks completely random does
not guarantee the numbers are “random”

in fact today the opposite is true: the good generators are rather
simple since then we can study their properties

- see Knuth’s book for an instructive example
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Closing remark on random number from the “pope”
of random numbers:

"A random number generator is much like sex:
when jt's good it's wonderful,
and when it's bad it's still pretty good.”
G. Marsaglia

Peter Uwer Monte Carlo Methods in High Energy Physics |l CALC2009 - July 10 — 20, Dubna



Generating non-uniform distributions

General algorithms to produce non-uniform distributions
from uniform random variables:

® Transformation

® Hit and Miss / Acception and Rejection

® Sampling by composition (“Multichannel”)
® Metropolis

o...

The first 3 are the most important for us
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Transformation

F(u) = /:f(x)dx

If F~! exist then generate numbers according to

X; — F_l(l/ti)

with ui uniform in [0,1).

- Proof + examples
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Hit and miss

o)

J(x)

Algorithm:

1. Generate xi according to g(x)
2. Generate y uniform between 0 and g(xi)

3. Return xi if y < f{x), else goto 1
- the better g(x) matches f(x) the more efficient the alg. |

- modified version used in event generators to “unweight” events
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Sampling by composition

How to generate:
k
flx) =Y pifilx)
i=1
with ?

[dxfix) =1, Ypi=1, pi>0

Algorithm:

1. Chose z from {4, ...k} with probability pi
2. Generate Yy aCCOrding tOJZ(x) & Transform, Hit and Miss, ...
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Metropolis algorithm

Methods presented so far not useful when generating
p(X1,X2,...,%,)

with n large (Ising model, lattice gauge theory...)

If ergodicity and detailed balance is satisfied then the following
algorithm gives samples following p (after warming up):

— start with arbitrary ¢o = (x1,x2,...x,)

— generate a new ¢; from ¢

— calculate As = —In(p(01)/p(do))

—if AS > 0O replace ¢¢ by ¢

— if AS < 0 accept the new candidate with probability

p(%o)/p(1)

detailed balance: p(01)W (01 — P3) = p(02)W (02 — 1) ergodicity: every configuration can be reached
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Sampling discrete probabilities

For uniform distribution we have
£6) = LF() = [ daf () =

PO<x<y<x<1)=F(x) —F(x1) =x—x

® o generate discrete probabilities pi decompose [0,1) in
subintervalls of length pi,

® Generate uniform distributed variable ([0,1))

® Return the event of the corresponding subintervall
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Normal distribution

Box-Muller method

x = [—2In(1 —u;)]"/? cos(2mus)

y = [—2In(1 — u;)]"/?sin(27mu,)
- Proof

from the central limit theorem:
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Breit-Wigner / Cauchy distribution

flx) = ——
x p—
(14 x?)
Transformation: 11
F(x) = 5 + - arctan(y)

x=F '(u) =tan(n(u—1/2))

Alternative:
Ui
X =—
75)
Gerneral case B
fO) ="
(B> + (y—a)?)
from y =0+ Px
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Special tricks

f(z) =6z(1—2)

is obtained from z = mid(u,u,, u3) with u; uniform

- Proof
f(z) = k!
F(z)=2"
from z = max{u,...,u;}
- Proof
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