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 Generation of random numbers

So far: MC = method which uses random numbers *)

Where do they come from ?

 from any truly random process!

Examples:

● Radioactive decay
● Electronic noise
● Silicon Graphics lava lamp

*) In fact it turns out that random numbers which are “less random” are 
also very useful  quasi random numbers…
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 Random number generation

 Generators relying on truly random process are called 
hardware random generators

Note that it is easy to remove any bias from the hardware 
generator using a trick:

Suppose the generator generates 0’s and 1’s
with probability p(0) and p(1). 

If two following bits are equal skip them, if not 
keep the second one  random sequence {0,1}

Problem:
Hardware generation of random numbers are often slow

LavaRng: 200kbit/s

 possible to construct hardware random number generator without detailed knowledge of the probabilities
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 Random numbers

● should be “random”
● should be reproducible
● should be fast
● should be portable
● should have long period

Requirements

Why don’t produce them directly on the computer ???

…since they are supposed to be random…

(not the question whether the Lava lamp fits in your pocket…)
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History: The mid square method

"Anyone who considers arithmetical methods
of producing random digits is, of course,

in a state of sin.“ J. von Neumann

v. Neumann proposed the following algorithm:

Take a large number with # digits, square it and take the
middle as the random number

“Quality” of the random numbers rather poor, in particular if you
 start producing 0’s  they will start to repeat over an over again,
there is also a finite period… at least it is portable…

“Calculated random numbers” are not random, but
 they look random!

Clear:

 “Pseudo-random numbers”
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 (Mixed) Linear Congruential generators

[Lehmer]

 maximum period: m/4 (from number theory)

Usually m is taken to be 2t, were t is the number of bits in the 
integer representation (rather short period for t=32) 232=4,294,967,296

Problematic:

● Famous and infamous choices for a,c
● Short period
● Random numbers fall into hyperplanes

 improvements required

[Marsaglia effect]

only reached for special choice!
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 Non-random behaviour a simple example

Simple example: 
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 Marsaglia effect

If consecutiv output of linear congruential RNG is interpreted as
vector in d dimensional space, points fall into hyper planes

[Marsaglia]
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 (Lagged) Fibonacci type RNG’s

Improve period and quality by combining two random numbers

Fibonacci

Lagged Fibonacci

Generalisation

Special case: Shift-register, Tausworth Generator

 production of random bits 
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 Subtract-with-carry 

Marsaglia, Zaman:

Further improvements by Lüscher: RanLux

 very long period + theory behind
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 How to test random numbers?

Many sophisticated tests exist

● test of uniformity, χ2-tests
● Serial correlation test
● Gap test (uniformity of sequences)
● Bit level tests
● …

Every application represents a new test which might be the
first which fails

Important:
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 Test of uniformity, χ2-test

Generate n numbers in [0,1), multiply by ν  and truncated to
integers, count the number of occurrence mν  of each ν  

Calculate χ2:

Compare with χ2-distribution:

 Tells us the probability of our observation

Poisson distribution
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 Testing random numbers

R250 seems to be a rather good choice

[Vattulainen, Kankaala, Saarinen, Ala-Nissila 95]

GGL RAND R250
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 Every simulation is a new test…

Simulation of
the Ising model
using a cluster
algorithm, using
different RNG’s 

[Ferrenberg, Landau, Wong ‘92]
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 Standard C/C++ random number generator drand48()
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 Important lesson

Never try to write your own random generator unless
are real expert!

Modern generators come with a lot of theory based 
on number theory and the study of chaotic systems

 see for example Ranlux [Lüscher]

The fact that your algorithm looks completely random does 
not guarantee the numbers are “random”

 see Knuth’s book for an instructive example

in fact today the opposite is true: the good generators are rather
simple since then we can study their properties



  

18

Peter Uwer                                      Monte Carlo Methods in High Energy Physics II                         CALC2009 -  July 10 – 20, Dubna

"A random number generator is much like sex:
when it's good it's wonderful,

and when it's bad it's still pretty good."
G. Marsaglia

Closing remark on random number from the “pope” 
of random numbers:
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Generating non-uniform distributions

General algorithms to produce non-uniform distributions
from uniform random variables:

● Transformation
● Hit and Miss / Acception and Rejection
● Sampling by composition (“Multichannel”)
● Metropolis 
●…

The first 3 are the most important for us
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 Transformation

with ui uniform in [0,1).

 Proof + examples
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 Hit and miss

f(x)

g(x)

Algorithm:

1. Generate xi according to g(x)

2. Generate y uniform  between 0 and g(xi)

3. Return xi if y < f(x), else goto 1

 the better g(x) matches f(x) the more efficient the alg. i

  modified version used in event generators to “unweight” events



  

22

Peter Uwer                                      Monte Carlo Methods in High Energy Physics II                         CALC2009 -  July 10 – 20, Dubna

 Sampling by composition

How to generate:

with 

Algorithm:

?

1. Chose z from {1,…,k} with probability pi
2. Generate y according to fz(x)  Transform, Hit and Miss,…
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 Metropolis algorithm

Methods presented so far not useful when generating

with n large (Ising model, lattice gauge theory…)

If ergodicity and detailed balance is satisfied then the following
algorithm gives samples following p (after warming up):

ergodicity: every configuration can be reached
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 Sampling discrete probabilities

For uniform distribution we have

● To generate discrete probabilities pi decompose [0,1) in 
subintervalls of length pi, 

● Generate uniform distributed variable  ([0,1))
● Return the event of the corresponding subintervall
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 Normal distribution

Box-Muller method

from the central limit theorem:

 Proof

N=6:
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 Breit-Wigner / Cauchy distribution

Transformation:

Alternative:

Gerneral case 

from
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 Special tricks

 Proof

 Proof
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The End
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