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INTRODUCTION

Hadronic vacuum polarization func- q q
tion II(¢%) plays a crucial role in var-
ious issues of elementary particle
physics. Indeed, the theoretical description of some strong
interaction processes and of the hadronic contributions to

electroweak observables is inherently based on II(¢*):
e electron—positron annihilation into hadrons
e hadronic 7 lepton decay

¢ muon anomalous magnetic moment

e running of the electromagnetic coupling
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where s = ¢* = (p1 +p2)2 > 0,

1
Lyw =5 {qﬂqu — qua* — (p1 — p2)u(p1 — pz)u} ,
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[
[' denotes a final hadron state, and J,, = Zf Qr:qvuq: stands

for the electromagnetic quark current.

It is worth stressing that A, (¢*) exists only for ¢° > 4m2,

since otherwise no hadron state I' could be excited:

B R.P.Feynman (1972); S.L.Adler, PRD10 (1974).




The hadronic tensor can be represented as A, = 2ImlIl,,
HW(QQ) = '/eiqx<()| T{Ju(z) J,(0)}|0) d'e = (quav — qu2)H(q2).

The hadronic vacuum polarization function II(¢%) satisfies

the once-subtracted dispersion relation (cut for ¢° > 4m?)

[1(¢”) = (gp) — (¢° — q%)L:Q (s — ;;2 i)

where m; ~ 135MeV is the mass of the 7 meson and R(s)
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denotes the measurable ratio of two cross—sections:

R(s) = i lim {H(s —e) — (s + zs)} —
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o (e+e_ — hadrons; 3)

o(efe” — putuss)

It is worth noting here that R(s) = 0 for s < 4m> because of

the kinematic restrictions mentioned above:

B R.P.Feynman (1972).




For practical purposes it proves to be convenient to deal
with the so—called Adler function D(Q?) (Q?= —¢> > 0):

o dII(—Q%) 0 2 [ Rs)
D(Q)_ C“DQ2 ) D(Q)_Q llm%<3+@2>2d8’

which plays an indispensable role for the congruous analy-

sis of the timelike and spacelike experimental data:

B S.L.Adler PRD10 (1974); A.Rujula, H.Georgi PRD13 (1976); J.D.Bjorken (1989).

The inverse relation between $1Im¢
D(Q?) and R(s) reads

1 S—1€ d , Stie
Ris)= o tm [ D0 i " R

B A.V.Radyushkin (1982), hep-ph/9907228;
N.V.Krasnikov, A.A.Pivovarov PLB116 (1982).




Although there are no direct measurements of the Adler
function, it can be restored by employing the experimental
data on R(s) (overall factor N, Zf Q% is omitted):

Do (Q%) = Q° Hep(® sds + Q / S'TEQ ds
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There is also a number of lattice simulations, which gener-

ally agree with the shown result:

B JLQCD and TWQCD Collabs., PRD79 (2009); QCDSF Collab., NPB688 (2004).
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On the one hand, perturba- wrD@)

tion theory provides an ex- | el

plicit expression for the Adler [ it~ ol

function valid at Q? — oo: o

Dl(f()ert<Q2> = 1+Z§:1 d; [O‘g)(QQ)}J- - Q, GeV
00 L

B S.G.Gorishny, A.L.Kataev, S.A.Larin PLB259 (1991); L.R.Surguladze,
M.A.Samuel PRL66 (1991); P.A.Baikov, K.G.Chetyrkin, J.H.Kuhn, PRL101 (2008).

On the other hand, this perturbative approximation is in-

consistent with the dispersion relation for D(Q?) due to un-

physical singularities of the strong running coupling o, (Q?):

DU (@Q%) =1+d1al(QY),  al(Q%) =

where d; = 1/7m and [y = 11 — 2n¢/3.
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Dispersion relation imposes

D(Q?%) = @ A :2 7 f<;)2>2ds

stringent constraints on D(Q?):

@® Since R(s) assumes finite values and R(s) — const when
s — 00, then D(Q?) — 0 at @Q° — 0 (holds for m; # 0 only)

@® Adler function possesses the only cut ) < —4m727 along

the negative semiaxis of real (?

PRIMARY OBJECTIVE: to merge these nonperturbative

constraints with perturbative result for the Adler function.

Perturbation theory + Dispersion relations: the basic idea
of the “Analytic” (or “Dispersive”) approach to QFT.

QCD Analytic Perturbation Theory: [see A.Bakulev’s talk |
B D.V. Shirkov, I.L. Solovtsov, PRL79 (1997); EPJC22 (2001); TMP150 (2007).
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MASSLESS = MESON

This objective can be achieved by deriving the integral rep-

resentations for the Adler function and R(s)-ratio, which

involve the common spectral function.

@)= Q/ s+@2> *
I

b Im ¢

S+ig
Re ¢

R(s) = — lim /S_ZED(—C) d




Parton model predictions: Ry(s)=1 <=» Dy(Q*) =1.
Strong corrections:  R(s) = 1+7(s), D(Q?) = 1+d(Q?).

It is convenient to express d(Q?) and r(s) in terms of the

common spectral function pp(o):

D(Q*) = 1+d(Q?)

l R(s) = L lim /S_ZSD(_O %
00 o T e—04 Js1ie 4
R(s) =1+ / ()%
S ) ) 00 R(S) )
l > po(o) D<Q)Q/0 (s+ Q22
D@ =1+ [ 2
! dR..
pD(O> :% 81—1>I8+ {Dtheor<_0- _ Z€> — Dtheor(_o- + iE)}: _ d hlpé_o-)




Thus one arrives at the following integral representations:

50 ©.@)
po(0) do
D(Q% =1 d Fis) =1 e
(Q?) +/o pWo? o P (s) +/S po(0) 5
1 . . . dReXp(O-)
po(0) :%5156: [Dtheor(_g =€) = Dineor(—0 + ZS)}:  dlno

e nonperturbative constraint on D(Q?) satisfied (cut Q° < 0)

e congruent analysis of spacelike and timelike processes

In this study only perturbative contributions to the spec-

tral function are retained; at the /—loop level it reads

1
(€) - (€)
o)=— lim |D
ppert( ) Vi & 0. pert

(~0 — ig) = Dy(—0 +i2)|.
In this case the obtained expressions for D(Q?) and R(s)

become 1dentical to those of Shirkov—Solovtsov’s APT::
B D.V. Shirkov, I.L. Solovtsov, PRL79 (1997); EPJC22 (2001); TMP150 (2007).
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0o A0 o 15 D(QY)
ppert( >d0' _ 1

(€) 2\ _
D @) = 1+ [ e,

e no spurious singularities

e no free parameters -
0.5

e good higher loop stability

e mild scheme dependence ool

The APT method extends the range of applicability of per-
turbation theory, but fails to describe D(Q?) below 1 GeV.

This situation can be rescued at the expense of:

e relativistic quark mass (250 MeV) threshold resummation:
K.A.Milton, I.L.Solovtsov, O.P.Solovtsova (2001)—(2006)

e vector meson dominance assumption:
G.Cvetic, C.Valenzuela, I.Schmidt (2005)—(2007)

e keep the pion mass m; nonvanishing:
A.V.Nesterenko, J.Papavassiliou (2006)—(2009)
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APT <+ relativistic quark

mass threshold resummation:

1.5 :
I 2
- D(Q)
1.0} 7/ ) i
| s T Experiment ]
——— Theor. with m(p’)
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| taken from MPLA21 (2006) |

K.A. Milton, I.L. Solovtsov,
O.P. Solovtsova (2001)—(2006)

APT 4+ vector meson

dominance assumption:
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[ taken from NPBPS164 (2007) |

G. Cvetic, C. Valenzuela,
I. Schmidt (2005)—(2007)
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MASSIVE = MESON

The effects due to the masses of the light hadrons can be
safely neglected only in the ultraviolet asymptotic. Such

effects can be accounted for in a similar way:

Q7) = Q/ 3+Q2) ds f\
1 Kétm% ST Re ¢

R = o=l [ D0T

271 8—>O_|_ S+ie C

Parton model prediction + kinematic restriction 811 R(s):
Rols) = O(s — Am2) <+ Dy(@%) = =y

2 2
Q=+ 4mz
B R.P. Feynman (1972).

13




D(Q%) = o 5 [1 +/:O op(0) T dmy dU]

m2 O'—I—Q2 o

| . |
pD<0) :% 515& [Dtheor<_0 o 7’5) o Dtheor<_0 T ZS)} -

B A.V. Nesterenko, J. Papavassiliou, JPG32 (2006).

d Rexp(0)

dlno
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Thus one arrives at the following integral representations:

0 Q7 o o — 4m2 do
D(Q)_@2+4m%[1+[m%@(a) o+ Q° a]

R(s) = 0ls — 1) 1+ [l 7|

o

| . |
pD(U) :%€£%+ [Dtheor(_o- o ZE) o Dtheor<_0 + 26)}: o

d Rexp(0)
dlIno

B A.V. Nesterenko, J. Papavassiliou, JPG32 (2006).

e all nonperturbative constraints on D(Q?) are satisfied

e congruent analysis of spacelike and timelike processes

In the limit m,; = 0 the obtained expressions become iden-

tical to those of the Analytic perturbation theory.
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Only perturbative contribu-
tions to the spectral func-
tion pp(o) are retained here.
The obtained results are in
reasonable agreement with
the “experimental” Adler
function D(Q?) in the entire

energy range 0 < Q? < oo.

1.5
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Besides, this approach has the same advantages as APT:

e no unphysical singularities

e mild scheme dependence

e no free parameters

e enhanced loop stability

e congruent analysis of spacelike and timelike processes

e coincides with perturbation theory at high energies
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One—loop Adler function within considered approaches:

4
o PT: Dpert(QZ) =14+ = a 2 (Q2>
reliable for ) = 1.5GeV

e APT: DY (Q?%

reliable for ) = 1 GeV

e MAPT: DMAPT(Q2)

1 2 1 _QQ
By °© (@) = Inz’ Z_p
4 5 b1 1
=14 5 0a(Q7),  am(Q7) = =+ 7
Q4
Q2+ 4m2 5() <Q2 4m)

reliable in the entire energy range

The one—loop massive effective coupling takes the form

Q@2 m?) =

z 1+x

In 2z

where y = m?/\°.

_|_

l—2z2z2z4+y

Z

Z+YX

I

X 1—x/o do

lr12(7—|—7r20—|—27
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INCLUSIVE 7 LEPTON DECAY

The inclusive semileptonic branching ratio:
['(r™ — hadrons™ v;)

Ry = — RT,V + RT,A + R’r,s-

(77 — e Vevy)
Its nonstrange part associated with vector quark currents:
Ne
Rry == Vaad|*Sew (Agop + Oy ) = 1.764 + 0.016

B OPAL Collab., EPJC7 (1999); ALEPH Collab., EPJC4 (1998), RMP78 (2006).

In this equation N, =3, |Vuq| = 0.9738 & 0.0005, 4., = 0.0010,
Sew = 1.0194 £ 0.0050, M, = 1.777 GeV, and

M2 2
T S S ds
AQCD:Q/O (1——72> <1+2—TZ)R(5)—TQ.
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Perturbative approach:
Agep = L +diaV(MZ) —» A= (678455 MeV, np=2

B E. Braaten, S. Narison, A. Pich, NPB373 (1992).

Current analysis:

1
Ngow = 1+ i (M2) = i + 2 / F(©)p N (EM2)dg — diorall(m})

2

m 1
fO=€-20+42 x=gp dr=xf0)=008 d=,
als) =5 05 —mi) [PV T mp =gt

e massive case: A = (941 4+ 86) MeV
e massless limit: A = (493 £ 56) MeV

B A.V. Nesterenko, NPBPS186 (2009).
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SUMMARY

e New integral representations for the Adler function and

R(s)-ratio are derived

e These representations possess appealing features:

« unphysical perturbative singularities are eliminated

e additional parameters are not introduced

. the m°—terms are automatically taken into account

e reasonable description of D(Qz) in entire energy range

e The effects due to the pion mass play a substantial role

in processing the data on the inclusive 7 lepton decay
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