Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References

Group structure of the integration-by-part identities Towards the general algorithm of IBP reduction

Roman N. Lee

The Budker Institute of Nuclear Physics, Novosibirsk

12 July, 2009

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Introduction	Operator representation	Group of linear changes of variables and IBP 0000	Criteria of redundancy	Conclusion & Outlook	
Outlir	ne				

▲□▶▲□▶▲□▶▲□▶ □ のQで

1 Introduction

- IBP and LI Identities
- Elimination of LI identities

Operator representation

- IBP identities in operator form
- Ideal of the IBP identities

3 Group of linear changes of variables and IBP

- Commutation relations
- Criterion of zero sectors
- 4 Criteria of redundancy

5 Conclusion & Outlook

Introduction	Operator representation 00000	Group of linear changes of variables and IBP 0000	Criteria of redundancy	Conclusion & Outlook	
Introd	luction				

 Calculate traces, perform tensor reduction in order to express the diagram in terms of scalar integrals.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Introduction	Operator representation	Group of linear changes of variables and IBP 0000	Criteria of redundancy	Conclusion & Outlook	
Introd	uction				

- Calculate traces, perform tensor reduction in order to express the diagram in terms of scalar integrals.
- Use IBP identities to reduce the integrals to some finite set of the master integrals. Take into account symmetry relations (identify equivalent topologies).

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Operator representation	Group of linear changes of variables and IBP 0000	Criteria of redundancy	Conclusion & Outlook	
Introd	uction				

- Calculate traces, perform tensor reduction in order to express the diagram in terms of scalar integrals.
- Use IBP identities to reduce the integrals to some finite set of the master integrals. Take into account symmetry relations (identify equivalent topologies).
- Evaluate the master integrals with the help of methods available. Among them
 - Mellin-Barnes representation
 - Differential equations with respect to some external parameter
 - Securrence relation with respect to the power of some denominator
 - Recurrence relation with respect to space-time dimension

Introduction	Operator representation 00000	Group of linear changes of variables and IBP 0000	Criteria of redundancy	Conclusion & Outlook	
Introd	uction				

- Calculate traces, perform tensor reduction in order to express the diagram in terms of scalar integrals.
- Use IBP identities to reduce the integrals to some finite set of the master integrals. Take into account symmetry relations (identify equivalent topologies).
- Evaluate the master integrals with the help of methods available. Among them
 - Mellin-Barnes representation
 - Differential equations with respect to some external parameter
 - Solution Recurrence relation with respect to the power of some denominator
 - Recurrence relation with respect to space-time dimension

IBP equations are widely used in the above procedures.

Introduction	Operator representation	Group of linear changes of variables and IBP 0000	Criteria of redundancy	Conclusion & Outlook					
Appro	paches to re	eduction							
Appro	Approaches to reduction								

No universal approach to IBP reduction is available.

 Laporta's method: Gauss elimination, starting from the simplest identities.(Laporta 2000)

Simple to implement and use, always works.

Accumulating database is time consuming, keeping it — memory consuming. The database can be insufficient.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Appro	oaches to r	eduction			
0000000	00000	0000			
Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References

No universal approach to IBP reduction is available.

 Laporta's method: Gauss elimination, starting from the simplest identities.(Laporta 2000)

Simple to implement and use, always works.

Accumulating database is time consuming, keeping it — memory consuming. The database can be insufficient.

Baikov's method: pass from loop momenta to denominators, choose appropriate contours of integration. (Baikov 1997)

No need to keep database, efficient.

Except for the main topology, requires manual heuristic work.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
0000000	00000	0000			
Appro	baches to re	eduction			

No universal approach to IBP reduction is available.

 Laporta's method: Gauss elimination, starting from the simplest identities.(Laporta 2000)

Simple to implement and use, always works.

Accumulating database is time consuming, keeping it — memory consuming. The database can be insufficient.

Baikov's method: pass from loop momenta to denominators, choose appropriate contours of integration. (Baikov 1997)

No need to keep database, efficient.

Except for the main topology, requires manual heuristic work.

 Smirnovs' method: construct Gröbner-like bases in sectors.(Smirnov and Smirnov 2006)

No need to keep database, efficient, can be automatized.

Requires some manual heuristic work in choosing ordering. In some cases, it is inefficient.

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook						
0000000										
IBP and LI Iden	IBP and L1 Identifies									
Loop	Integral									

L-loop diagram with *E* external momenta $p_1, \ldots p_E$:

Loop integral

$$J(\mathbf{n}) = J(n_1, \dots, n_N) = \int d^{\mathscr{D}} l_1 \dots d^{\mathscr{D}} l_L j(\mathbf{n}) = \int \frac{d^{\mathscr{D}} l_1 \dots d^{\mathscr{D}} l_L}{D_1^{n_1} \dots D_N^{n_N}}$$

where D_1, \ldots, D_M are denominators of the diagram, and D_{M+1}, \ldots, D_N are some additionally chosen numerators.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook					
0000000									
IBP and LI Iden	IBP and L1 Identities								
Loop	Integral								

L-loop diagram with *E* external momenta $p_1, \ldots p_E$:

Loop integral

$$J(\mathbf{n}) = J(n_1, \dots, n_N) = \int d^{\mathscr{D}} l_1 \dots d^{\mathscr{D}} l_L j(\mathbf{n}) = \int \frac{d^{\mathscr{D}} l_1 \dots d^{\mathscr{D}} l_L}{D_1^{n_1} \dots D_N^{n_N}}$$

where D_1, \ldots, D_M are denominators of the diagram, and D_{M+1}, \ldots, D_N are some additionally chosen numerators.

Prerequisites

All denominators and numerators linearly depend on $l_i \cdot q_j$. Any product $l_i \cdot q_j$ can be expressed via D_k .

Notation

$$q_i = \begin{cases} l_i, & i \leq L \\ p_{i-L}, & i > L \end{cases}$$

The total number of denominators and numerators

$$N = L(L+1)/2 + LE, \quad N \ge M$$

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook					
0000000									
IBP and LI Iden	IBP and L1 Identities								
Integr	ration-hy-n	art identities							

The integration-by-part identities arise due to the fact, that, in dimensional regularization the integral of the total derivative is zero (Tkachov 1981, Chetyrkin and Tkachov 1981)

 $\int d^{\mathscr{D}} l_1 \dots d^{\mathscr{D}} l_L O_{ij} j(\mathbf{n}) = 0$

IBP identities

IBP operators

$$O_{ij} = rac{\partial}{\partial l_i} \cdot q_j$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Explicitely differentiating, we obtain the relation between integrals with shifted indices.

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	
0000000					
IBP and LI Iden	ities				
I oren	tz_invarian	ce identities			

The Lorentz-invariance identities (Gehrmann and Remiddi 2000) follow from the fact that the integral is a scalar function of p_i :

LI identities Lorentz generator $\left(\sum_{k} p_{k[\nu} \frac{\partial}{\partial p_{k}^{\mu]}}\right) J(n_{1}, n_{2}, \dots, n_{N}) = 0$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	
0000000					
IBP and LI Ident	ities				
I oren	tz invarian	ce identities			

The Lorentz-invariance identities (Gehrmann and Remiddi 2000) follow from the fact that the integral is a scalar function of p_i :

LI identities

$$p_i^{\mu} p_j^{\nu} \left(\sum_k p_{k[\nu} \frac{\partial}{\partial p_k^{\mu]}} \right) J(n_1, n_2, \dots, n_N) = 0$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Explicitly differentiating, we obtain LI identity. Different choice of $p_i^{\mu} p_j^{\nu}$ gives E(E-1)/2 identities.

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
0000000					
IBP and LI Ident	tities				
Order	ing of inte	grals			
The goal o	of the reduction pro	cedure			

Any reduction procedure must have a goal, i.e., we have to know, what is simpler. Ordering of the integrals is required.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Common sense

Integrals with fewer denominators are simpler.

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
0000000					
IBP and LI Ident	ities				
Order	ing of integ	grals			

The goal of the reduction procedure

Any reduction procedure must have a goal, i.e., we have to know, what is simpler. Ordering of the integrals is required.

Common sense

Integrals with fewer denominators are simpler.

Sectors & Ordering

Integrals with the same set of denominators form a sector in \mathbb{Z}^N .

Example

$$J(n_1, n_2) = \int \frac{d^{\mathscr{D}l}}{[l^2 - m^2]^{n_1} \left[(l-p)^2 - m^2 \right]^{n_2}}$$

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
0000000					
IBP and LI Identi	ities				
Order	ing of integ	grals			

The goal of the reduction procedure

Any reduction procedure must have a goal, i.e., we have to know, what is simpler. Ordering of the integrals is required.

Common sense

Integrals with fewer denominators are simpler.

Sectors & Ordering

Integrals with the same set of denominators form a sector in \mathbb{Z}^N . Sectors can be labeled by their corner points.

Example

$$J(n_1, n_2) = \int \frac{d^{\mathcal{D}}l}{[l^2 - m^2]^{n_1} \left[(l-p)^2 - m^2 \right]^{n_2}}$$

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
0000000					
IBP and LI Ident	ities				
Order	ing of integ	grals			

The goal of the reduction procedure

Any reduction procedure must have a goal, i.e., we have to know, what is simpler. Ordering of the integrals is required.

Common sense

Integrals with fewer denominators are simpler.

Sectors & Ordering

Integrals with the same set of denominators form a sector in \mathbb{Z}^N . Sectors can be labeled by their corner points.

Example

$$J(n_1, n_2) = \int \frac{d^{\mathcal{D}}l}{\left[l^2 - m^2\right]^{n_1} \left[\left(l - p\right)^2 - m^2\right]^{n_2}}$$

- The number of denominators.
- Total power of denominators and numerators.
- Number of numerators.

Introduction 0000000

Conclusion & Outlook

IBP and LI Identities

Reduction to simpler integrals

- Blue dot the integrand differentiated to obtain the identity.
- Hightlighted region the result of the differentiation. Different colors denote different differential operators.
- Red dot the most complex integral of the identity.

イロト 不得 とうほう イヨン

3

Reduction to simpler integrals

▲□▶▲圖▶▲≣▶▲≣▶ = 三 のへで

IBP and LI Identities

Reduction to simpler integrals

- Blue dot the integrand differentiated to obtain the identity.
- Hightlighted region the result of the differentiation. Different colors denote different differential operators.
- Red dot the most complex integral of the identity.

Huge redundancy

In fact, we need only one identity per integral. Others can be reduced to 0 = 0, which takes a lot of time. Which identities can be discarded?

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
0000000					
Elimination of L	I identities				
Elimi	nation of L	J identities			

LI identities can be discarded

All LI identities can be represented as linear combination of IBP identities.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
00000000					
Elimination of L	I identities				
Elimi	nation of I	Lidentities			

LI identities can be discarded

All LI identities can be represented as linear combination of IBP identities.

Observation

$$J(\mathbf{n}) = \int d^{\mathscr{D}} l_1 \dots d^{\mathscr{D}} l_L j(\mathbf{n}) = \int \frac{d^{\mathscr{D}} l_1 \dots d^{\mathscr{D}} l_L}{D_1^{n_1} \dots D_N^{n_N}}$$

The integral $J(\mathbf{n})$ is a scalar function of external momenta p_i , while the integrand $j(\mathbf{n})$ is a scalar function of all momenta q_i . Thus the operator

$$\sum_{k=1}^{L+E} q_{k[\nu} \frac{\partial}{\partial q_k^{\mu]}} \equiv \sum_{k=1}^L l_{k[\nu} \frac{\partial}{\partial l_k^{\mu]}} + \sum_{k=1}^E p_{k[\nu} \frac{\partial}{\partial p_k^{\mu]}},$$

being the generator of the Lorentz transformations on the scalar functions of q_i annihilates the integrand $j(\mathbf{n})$ identically.

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
000000					
Elimination of L	I identities				
Elimi	nation of L	I identities			
Proof					

$$p_i^{\mu} p_j^{\nu} \sum_{k=1}^{E} p_{k[\mu} \frac{\partial}{\partial p_k^{\nu]}} j(\mathbf{n}) = -p_i^{\mu} p_j^{\nu} \sum_{k=1}^{L} l_{k[\mu} \frac{\partial}{\partial l_k^{\nu]}} j(\mathbf{n}) + p_i^{\mu} p_j^{\nu} \sum_{k=1}^{L+E} q_{k[\mu} \frac{\partial}{\partial q_k^{\nu]}} j(\mathbf{n})$$

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
0000000					
Elimination of L	I identities				
Elimi	nation of L	I identities			
Proof					

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ へ ⊙

$$p_i^{\mu} p_j^{\mathbf{v}} \sum_{k=1}^{E} p_{k[\mu} \frac{\partial}{\partial p_k^{\mathbf{v}]}} j(\mathbf{n}) = -p_i^{\mu} p_j^{\mathbf{v}} \sum_{k=1}^{L} l_{k[\mu} \frac{\partial}{\partial l_k^{\mathbf{v}]}} j(\mathbf{n})$$

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
0000000					
Elimination of L	I identities				
Elimi	nation of L	I identities			
Proof					

$$p_{i}^{\mu}p_{j}^{\mathbf{v}}\sum_{k=1}^{E}p_{k[\mu}\frac{\partial}{\partial p_{k}^{\mathbf{v}]}}j(\mathbf{n}) = -p_{i}^{\mu}p_{j}^{\mathbf{v}}\sum_{k=1}^{L}l_{k[\mu}\frac{\partial}{\partial l_{k}^{\mathbf{v}]}}j(\mathbf{n})$$
$$=\sum_{k=1}^{L}\left[(p_{j}\cdot l_{k})p_{i}\cdot\frac{\partial}{\partial l_{k}}-(p_{i}\cdot l_{k})p_{j}\cdot\frac{\partial}{\partial l_{k}}\right]j(\mathbf{n})$$

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
0000000					
Elimination of L	I identities				
Elimi Proof	nation of L	I identities			

$$p_{i}^{\mu}p_{j}^{\nu}\sum_{k=1}^{E}p_{k[\mu}\frac{\partial}{\partial p_{k}^{\nu]}}j(\mathbf{n}) = -p_{i}^{\mu}p_{j}^{\nu}\sum_{k=1}^{L}l_{k[\mu}\frac{\partial}{\partial l_{k}^{\nu]}}j(\mathbf{n})$$
$$= \sum_{k=1}^{L}\left[(p_{j}\cdot l_{k})p_{i}\cdot\frac{\partial}{\partial l_{k}} - (p_{i}\cdot l_{k})p_{j}\cdot\frac{\partial}{\partial l_{k}}\right]j(\mathbf{n})$$
$$= \sum_{k=1}^{L}\left[\frac{\partial}{\partial l_{k}}\cdot p_{i}(p_{j}\cdot l_{k}) - \frac{\partial}{\partial l_{k}}\cdot p_{j}(p_{i}\cdot l_{k})\right]j(\mathbf{n})$$

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
0000000					
Elimination of L	I identities				
Elimi	nation of L	I identities			
Proof					

$$p_{i}^{\mu}p_{j}^{\nu}\sum_{k=1}^{E}p_{k[\mu}\frac{\partial}{\partial p_{k}^{\nu]}}j(\mathbf{n}) = -p_{i}^{\mu}p_{j}^{\nu}\sum_{k=1}^{L}l_{k[\mu}\frac{\partial}{\partial l_{k}^{\nu]}}j(\mathbf{n})$$
$$=\sum_{k=1}^{L}\left[(p_{j}\cdot l_{k})p_{i}\cdot\frac{\partial}{\partial l_{k}}-(p_{i}\cdot l_{k})p_{j}\cdot\frac{\partial}{\partial l_{k}}\right]j(\mathbf{n})$$
$$=\sum_{k=1}^{L}\left[\frac{\partial}{\partial l_{k}}\cdot p_{i}(p_{j}\cdot l_{k})-\frac{\partial}{\partial l_{k}}\cdot p_{j}(p_{i}\cdot l_{k})\right]j(\mathbf{n})$$

Since the highlighted scalar products can be expressed via D_i , the last line is some linear combination of the IBP identities

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	
	0000				
IBP identities in	operator form				

Operator representation

Introduce the operators, acting on the functions on \mathbb{Z}^N (similar to A, Y, Y^{-1} of(Smirnov and Smirnov 2006)):

Operators $A_1, \ldots, A_N, B_1, \ldots, B_N$

$$(A_{\alpha}f)(n_1,\ldots,n_N) = n_{\alpha}f(n_1,\ldots,n_{\alpha}+1,\ldots,n_N),(B_{\alpha}f)(n_1,\ldots,n_N) = f(n_1,\ldots,n_{\alpha}-1,\ldots,n_N).$$

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	
	• 0 000				
IBP identities in o	operator form				

Operator representation

Introduce the operators, acting on the functions on \mathbb{Z}^N (similar to A, Y, Y^{-1} of(Smirnov and Smirnov 2006)):

Operators $A_1, \ldots, A_N, B_1, \ldots, B_N$

$$(A_{\alpha}f)(n_1,\ldots,n_N) = n_{\alpha}f(n_1,\ldots,n_{\alpha}+1,\ldots,n_N),(B_{\alpha}f)(n_1,\ldots,n_N) = f(n_1,\ldots,n_{\alpha}-1,\ldots,n_N).$$

Commutator
$$[A_{\alpha}, B_{\beta}] = \delta_{\alpha\beta}$$

A and B well suited to sectors

For any polynomial P(A, B) the result of action

$$P(A,B)J(\mathbf{n}) = \sum C_i J(\mathbf{n}_i)$$

contains only integrals of the same and lower sectors as $J(\mathbf{n})$.

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	
	• 0 000				
IBP identities in	operator form				

Operator representation

Introduce the operators, acting on the functions on \mathbb{Z}^N (similar to A, Y, Y^{-1} of(Smirnov and Smirnov 2006)):

Operators $A_1, \ldots, A_N, B_1, \ldots, B_N$

$$(A_{\alpha}f)(n_1,\ldots,n_N) = n_{\alpha}f(n_1,\ldots,n_{\alpha}+1,\ldots,n_N), (B_{\alpha}f)(n_1,\ldots,n_N) = f(n_1,\ldots,n_{\alpha}-1,\ldots,n_N).$$

$$[A_{\alpha}, B_{\beta}] = \delta_{\alpha\beta}$$

Operator representation

IBP identity

$$-\int d^{\mathscr{D}}l_{1}\dots d^{\mathscr{D}}l_{N}O_{ij}j(\mathbf{n}) = -\int d^{\mathscr{D}}l_{1}\dots d^{\mathscr{D}}l_{N}\frac{\partial}{\partial l_{i}}\cdot q_{j}j(\mathbf{n}) = 0$$

can be rewritten in terms of operators $A_1, \ldots, A_N, B_1, \ldots, B_N$:

 $\left(\tilde{O}_{ij}\left(A,B\right)J\right)\left(\mathbf{n}\right)=0$

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook			
	00000						
IBP identities in	IBP identities in operator form						
Opera	Operator representation						

Example

When acting on the integrand in

$$J(n_1, n_2) = \int \frac{d^{\mathscr{D}}l}{[l^2 - 1]^{n_1} \left[(l - p)^2 - 1 \right]^{n_2}}$$

by the operator $\frac{\partial}{\partial l} \cdot l$, we obtain the following identity

IBP identity

$$(\mathscr{D} - 2n_1 - n_2) J(n_1, n_2) - n_2 J(n_1 - 1, n_2 + 1) + n_2 (p^2 - 2) J(n_1, n_2 + 1) - 2n_1 J(n_1 + 1, n_2) = 0$$

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook				
	0000							
IBP identities in	operator form							
Opera	Operator representation							
Example								

When acting on the integrand in

$$J(n_1, n_2) = \int \frac{d^{\mathscr{D}}l}{[l^2 - 1]^{n_1} \left[(l - p)^2 - 1 \right]^{n_2}}$$

by the operator $\frac{\partial}{\partial l} \cdot l$, we obtain the following identity

IBP identity

In terms of index shifting "operators" \mathbf{I}^{\pm} :

$$\left[\mathscr{D} - 2n_1 - n_2 - n_2 \mathbf{1}^- \mathbf{2}^+ + n_2 \left(p^2 - 2\right) \mathbf{2}^+ - 2n_1 \mathbf{1}^+\right] J(n_1, n_2) = 0$$

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	
	00000				
IBP identities in	operator form				
Opera	tor represe	entation			

Example

When acting on the integrand in

$$J(n_1, n_2) = \int \frac{d^{\mathscr{D}}l}{\left[l^2 - 1\right]^{n_1} \left[\left(l - p\right)^2 - 1\right]^{n_2}}$$

by the operator $\frac{\partial}{\partial l} \cdot l$, we obtain the following identity

IBP identity

In terms of index shifting "operators" \mathbf{I}^{\pm} :

$$\left[\mathscr{D} - 2n_1 - n_2 - n_2 \mathbf{1}^- \mathbf{2}^+ + n_2 \left(p^2 - 2\right) \mathbf{2}^+ - 2n_1 \mathbf{1}^+\right] J(n_1, n_2) = 0$$

In terms of the operators $A_1, \ldots, A_N, B_1, \ldots, B_N$:

$$(\mathscr{D} - 2A_1B_1 - A_2B_2 - A_2B_1 + (p^2 - 2)A_2 - 2A_1)J = 0$$

Very similar notation, but not the same.

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook				
	00000							
IBP identities in	operator form							
Opera	Operator representation							
Example								

When acting on the integrand in

$$J(n_1, n_2) = \int \frac{d^{\mathscr{D}}l}{[l^2 - 1]^{n_1} \left[(l - p)^2 - 1 \right]^{n_2}}$$

by the operator $\frac{\partial}{\partial l} \cdot l$, we obtain the following identity

IBP identity

Acting from the left is not allowed:

$$\mathbf{1}^{+} \left[\mathscr{D} - 2n_1 - n_2 - n_2 \mathbf{1}^{-} \mathbf{2}^{+} + n_2 \left(p^2 - 2 \right) \mathbf{2}^{+} - 2n_1 \mathbf{1}^{+} \right] J(n_1, n_2) \neq 0$$

In terms of the operators $A_1, \ldots, A_N, B_1, \ldots, B_N$:

$$(\mathscr{D} - 2A_1B_1 - A_2B_2 - A_2B_1 + (p^2 - 2)A_2 - 2A_1)J = 0$$

Very similar notation, but not the same.

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	
	00000				
IBP identities in	operator form				
Operator representation					

Example

When acting on the integrand in

$$J(n_1, n_2) = \int \frac{d^{\mathscr{D}}l}{[l^2 - 1]^{n_1} \left[(l - p)^2 - 1 \right]^{n_2}}$$

by the operator $\frac{\partial}{\partial l} \cdot l$, we obtain the following identity

IBP identity

Acting from the left is not allowed:

$$\mathbf{1}^{+} \left[\mathscr{D} - 2n_1 - n_2 - n_2 \mathbf{1}^{-} \mathbf{2}^{+} + n_2 \left(p^2 - 2 \right) \mathbf{2}^{+} - 2n_1 \mathbf{1}^{+} \right] J(n_1, n_2) \neq 0$$

Acting from the left is allowed:

$$A_1(\mathscr{D} - 2A_1B_1 - A_2B_2 - A_2B_1 + (p^2 - 2)A_2 - 2A_1)J = 0$$

Very similar notation, but not the same.
	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	
	00000				
Ideal of the IBP	identities				
Opera	tor represe	entation			
General IE	BP constraint in ope	erator form			

$$F(\mathbf{n}) = M(A,B)F(1,\ldots,1),$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

where M(A, B) is some monomial.

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
	00000				
Ideal of the IBP	identities				
Opera	tor represe	entation			
General IE	3P constraint in ope	erator form			

In particular,

$$\tilde{O}_{ij}J(\mathbf{4},-\mathbf{1},\mathbf{0},\ldots)=0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
	00000				
Ideal of the IBP	identities				
Opera	tor represe	entation			
General IE	3P constraint in ope	erator form			

In particular,

$$\frac{A_1^3}{3!}\tilde{O}_{ij}J(1,-1,0,\ldots)=0$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
	00000				
Ideal of the IBP	identities				
Opera	tor represe	entation			
General IE	3P constraint in ope	erator form			

In particular,

$$B_2^2 \frac{A_1^3}{3!} \tilde{O}_{ij} J(1, 1, 0, \ldots) = 0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
	00000				
Ideal of the IBP	identities				
Opera	tor represe	entation			
General IE	3P constraint in ope	erator form			

In particular,

$$B_3 B_2^2 \frac{A_1^3}{3!} \tilde{O}_{ij} J(1, -1, 1, \ldots) = 0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
	00000				
Ideal of the IBP	identities				
Opera	tor represe	entation			
General IE	3P constraint in ope	erator form			

In particular,

$$B_3 B_2^2 \frac{A_1^3}{3!} \tilde{O}_{ij} J(1, -1, 1, \ldots) = 0$$

General IBP constraint

$$\left[\left(\sum_{i=1}^{L}\sum_{j=1}^{L+E}C_{ij}\left(A,B\right)\tilde{O}_{ij}\left(A,B\right)\right)J\right](1,\ldots,1)=0,$$

 $C_{i,j}(A,B)$ — some polynomials.

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
	00000				
Ideal of the IBP	identities				
Opera	tor represe	entation			
General IE	3P constraint in ope	erator form			

In particular,

$$B_3 B_2^2 \frac{A_1^3}{3!} \tilde{O}_{ij} J(1, -1, 1, \ldots) = 0$$

General IBP constraint

$$\left[\left(\sum_{i=1}^{L}\sum_{j=1}^{L+E}C_{ij}\left(A,B\right)\tilde{O}_{ij}\left(A,B\right)\right)J\right](1,\ldots,1)=0,$$

 $C_{i,j}(A,B)$ — some polynomials. Another way of saying the same:

$$LJ(1,\ldots,1)=0,$$

where $L \in \mathscr{L}$ and \mathscr{L} is the left ideal generated by $\tilde{O}_{ii}(A, B)$.

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	
	00000				
Ideal of the IBP	identities				
Opera	tor represe	entation			
Basic idea	of the reduction(St	mirnov and Smirnov 2006)			

Suppose we know how to reduce any monomial M modulo \mathcal{L} .

Division with the remainder by $\mathcal L$

$$M = L + r, \quad L \in \mathscr{L},$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

r is the remainder (simplest possible)

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	
	00000				
Ideal of the IBP i	dentities				
Opera	tor represe	ntation			

Basic idea of the reduction(Smirnov and Smirnov 2006)

Suppose we know how to reduce any monomial M modulo \mathcal{L} .

Division with the remainder by \mathscr{L}

$$M = L + r, \quad L \in \mathscr{L},$$

r is the remainder (simplest possible)

Then we can reduce $J(n_1, \ldots, n_N)$:

Reduction of $J(\mathbf{n})$:

$$J(\mathbf{n}) = MJ(1,...,1)$$

= $LJ(1,...,1) + rJ(1,...,1) = rJ(1,...,1)$

(ロ) (型) (主) (主) (三) の(C)

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook					
	00000								
Ideal of the IBP i	Ideal of the IBP identities								
Opera	tor represe	entation							

Basic idea of the reduction(Smirnov and Smirnov 2006)

Suppose we know how to reduce any monomial M modulo \mathcal{L} .

Division with the remainder by \mathscr{L}

$$M = L + r, \quad L \in \mathscr{L},$$

r is the remainder (simplest possible)

Then we can reduce $J(n_1, \ldots, n_N)$:

Reduction of $J(\mathbf{n})$:

$$J(\mathbf{n}) = MJ(1,...,1)$$

= $LJ(1,...,1) + rJ(1,...,1) = rJ(1,...,1)$

The algorithm is known

Buchberger algorithm allows one to construct a Groebner basis, suitable for "division with the remainder".

Does not work appropriately (the reduction is not satisfactory).

The spoiler

For any function holds $B_i A_i f(1,...,1) = 0$. In general, Rf(1,...,1) = 0, where *R* belongs to the right ideal \mathscr{R} , generated by $B_1 A_1,...,B_N A_N$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	
	00000				
Ideal of the IBP i	identities				
Opera	tor represe	entation			
Disappoint	tment				

Does not work appropriately (the reduction is not satisfactory).

The spoiler

For any function holds $B_i A_i f(1,...,1) = 0$. In general, Rf(1,...,1) = 0, where *R* belongs to the right ideal \mathscr{R} , generated by $B_1 A_1,...,B_N A_N$.

Need: Division with the remainder by $\mathscr{L} \oplus \mathscr{R}$

$$M = L + R + r, \quad L \in \mathscr{L}, R \in \mathscr{R},$$

The algorithm is not known

In practice, the algorithm useful for many cases suggested in (Smirnov and Smirnov 2006). In some cases, it is inefficient (Smirnov and Smirnov 2007).

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
		0000			
Commutation rel	ations				

Commutation relations

The differential operators $O_{ij} = \frac{\partial}{\partial l_i} \cdot q_j$ (and the corresponding operators $\tilde{O}_{ij}(A,B)$) form a closed Lie-algebra

Commutation relations

$$[O_{ij}, O_{kl}] = \delta_{il}O_{kj} - \delta_{kj}O_{il}$$

These properties of the IBP operators were not used so far

・ロト・(四)・(日)・(日)・(日)・(日)

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References
		0000			
Commutation relations					

Commutation relations

The differential operators $O_{ij} = \frac{\partial}{\partial l_i} \cdot q_j$ (and the corresponding operators $\tilde{O}_{ij}(A,B)$) form a closed Lie-algebra

Commutation relations

$$[O_{ij}, O_{kl}] = \delta_{il}O_{kj} - \delta_{kj}O_{il}$$

These properties of the IBP operators were not used so far

The algebra is the same as if O_{ij} denotes a matrix with 1 in *i*-th row, *j*-th column, and zero everywhere else.

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	
		0000			
Commutation relations					

Commutation relations

The differential operators $O_{ij} = \frac{\partial}{\partial l_i} \cdot q_j$ (and the corresponding operators $\tilde{O}_{ij}(A,B)$) form a closed Lie-algebra

Commutation relations

$$[O_{ij}, O_{kl}] = \delta_{il}O_{kj} - \delta_{kj}O_{il}$$

These properties of the IBP operators were not used so far

Linear changes of variables (LCV)

$$l_i \rightarrow l'_i = M_{ij}q_j$$
, where *M* is $L \times (L+E)$ matrix.

Representation

 O_{ij} corresponds to the infinitesimal transformation $l_i \rightarrow l'_i = l_i + \varepsilon q_j$

$$f(l' \cdot q')d^{\mathscr{D}}l'_1 \dots d^{\mathscr{D}}l'_L = \left\{f(l \cdot q) + \varepsilon \left[O_{ij}f(l \cdot q)\right]\right\}d^{\mathscr{D}}l_1 \dots d^{\mathscr{D}}l_L.$$

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References			
		0000						
Criterion of zero	Criterion of zero sectors							
Criterion of zero sectors								

Definition

Scaleless integral is the integral, which gains non-unity factor under some LCV transformation(s). In dimensional regularization it is zero.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References		
		0000					
Criterion of zero	Criterion of zero sectors						
Criterion of zero sectors							

Definition

Scaleless integral is the integral, which gains non-unity factor under some LCV transformation(s). In dimensional regularization it is zero.

Example

The integral

$$J = \int \frac{d^{\mathscr{D}} l_1 d^{\mathscr{D}} l_2}{l_1^2 l_2^2 (l_1 - l_2)^2}$$

is scaleless since it transforms as

$$J \rightarrow \alpha^{2\mathscr{D}-6} J$$

under the transformation

$$l_{1,2} \rightarrow \alpha l_{1,2}$$

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook		
		0000				
Criterion of zero	sectors					
Criterion of zero sectors						

Definition

Scaleless integral is the integral, which gains non-unity factor under some LCV transformation(s). In dimensional regularization it is zero.

Zero sector criterion

Solve IBP identities in the corner point $(\theta_1, \ldots, \theta_N)$ of the sector. Iff the identity

$$J(\boldsymbol{\theta}) = J(\boldsymbol{\theta}_1,\ldots,\boldsymbol{\theta}_N) = 0$$

comes out, the sector is zero.

Proof.

By the condition, $J(\theta)$ can be represented as the action of some linear combination of O_{ik} on $J(\theta)$. These operators are generators of the LCV transformation $\Rightarrow J(\theta)$ is scaleless \Rightarrow whole sector is zero.

Introduction Operator representation Group of linear changes of variables and IBP Criteria of redundancy Conclusion & Outlook References OooO Criterion of zero sectors Using the commutation relations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Demonstration

$$\mathscr{P}_1 = [\mathscr{P}_2, \mathscr{P}_3]$$

ntroduction Operator representation

Group of linear changes of variables and IBP

Criteria of redundancy

Conclusion & Outlook Referen

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Criterion of zero sectors

Using the commutation relations

$$\mathcal{P}_1 = [\mathcal{P}_2, \mathcal{P}_3]$$

ntroduction Operator representation

Group of linear changes of variables and IBP

Criteria of redundancy

Conclusion & Outlook Refere

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Criterion of zero sectors

Using the commutation relations

$$\mathcal{P}_1 = [\mathcal{P}_2, \mathcal{P}_3]$$

Group of linear changes of variables and IBP 0000

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Criterion of zero sectors

Using the commutation relations Demonstration

$$\mathscr{P}_1 = [\mathscr{P}_2, \mathscr{P}_3]$$

atroduction Operator representation

Group of linear changes of variables and IBP

Criteria of redundancy

Conclusion & Outlook Refer

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Criterion of zero sectors

Using the commutation relations

Demonstration

$$\mathscr{P}_1 = [\mathscr{P}_2, \mathscr{P}_3]$$

atroduction Operator representation

Group of linear changes of variables and IBP

Criteria of redundancy

Conclusion & Outlook Refer

Criterion of zero sectors

Using the commutation relations

Commutator:

 $\mathcal{P}_1 = [\mathcal{P}_2, \mathcal{P}_3]$

Therefore

Any identity, generated by \mathscr{P}_1 is a linear combination of the i identities, generated by \mathscr{P}_2 and \mathscr{P}_3 .

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook			
		0000					
Criterion of zero	Criterion of zero sectors						
Reduced set of IBPs Simple application							

One can use the smaller set of the IBP identities, generated by

Reduced set of IBP operators

$$L+E+1 \quad \begin{cases} \frac{\partial}{\partial l_i} \cdot l_{i+1}, & i=1,\dots,L, \quad l_{L+1} \equiv l_1 \\ \sum_{i=1}^{L} \frac{\partial}{\partial l_i} \cdot l_i, & \frac{\partial}{\partial l_1} \cdot p_j, \quad j=1,\dots,E \end{cases}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook			
		0000					
Criterion of zero	Criterion of zero sectors						
Reduced set of IBPs Simple application							

One can use the smaller set of the IBP identities, generated by

Reduced set of IBP operators

$$L+E+1 \quad \begin{cases} \frac{\partial}{\partial l_i} \cdot l_{i+1}, & i=1,\dots,L, \quad l_{L+1} \equiv l_1 \\ \sum_{i=1}^{L} \frac{\partial}{\partial l_i} \cdot l_i, & \frac{\partial}{\partial l_1} \cdot p_j, \quad j=1,\dots,E \end{cases}$$

Other identities are linear combinations of these. Reason: other IBP operators are commutators of the chosen ones.

Example

$$\frac{\partial}{\partial l_1} \cdot l_3 = \left[\frac{\partial}{\partial l_2} \cdot l_3, \frac{\partial}{\partial l_1} \cdot l_2\right]$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	
0000000	00000	0000		

Criterion of redundancy I

Preconditions

- Identities, generated by the operators $\{\mathscr{P}_1, \ldots, \mathscr{P}_k\}$, have been solved.
- The operator \$\mathcal{P}\$ "almost commutes" with {\$\mathcal{P}_1, \ldots \mathcal{P}_k\$}, i.e. its commutator with any \$\mathcal{P}_i\$ is a linear combination of \$\mathcal{P}_i\$:

$$[\mathscr{P},\mathscr{P}_i] = \sum_{j=1}^k C_i^j \mathscr{P}_j$$

Criterion

If for some point $\mathbf{n} \in \mathbb{Z}^N$ the integral $J(\mathbf{n})$ can be reduced by $\{\mathscr{P}_1, \ldots, \mathscr{P}_k\}$ to simpler integrals, then the identity $\mathscr{P}J(\mathbf{n})$ can also be reduced to simpler identities and thus can be discarded.

Introduction	Operator representation	Group of linear changes of variables and IBP 0000	Criteria of redundancy	Conclusion & Outlook	Refe

Criterion of redundancy I Proof

Proof.

What does reducibility of $J(\mathbf{n})$ mean? The following

 $J(\mathbf{n}) = o(\mathbf{n}) + Q_i \mathscr{P}_i J(\mathbf{1}),$

where $o(\mathbf{n})$ contains integrals simpler than $J(\mathbf{n})$, and Q are some polynomials of A, B. Substituting $J \to \mathscr{P}J$ and using $[\mathscr{P}, \mathscr{P}_i] = C_i^j \mathscr{P}_j$, we obtain

 $\mathscr{P}J(\mathbf{n}) = \mathscr{P}o(\mathbf{n}) + Q_i \mathscr{P}_i \mathscr{P}J(\mathbf{1}) = \mathscr{P}o(\mathbf{n}) + \left(Q_j C_j^i - Q_i \mathscr{P}\right) \mathscr{P}_i J(\mathbf{1}).$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction	Operator representation 00000	Group of linear changes of variables and IBP 0000	Criteria of redundancy	Conclusion & Outlook	
Criter	ion of redu	indancy I			

Proof

Proof.

What does reducibility of $J(\mathbf{n})$ mean? The following

 $J(\mathbf{n}) = o(\mathbf{n}) + Q_i \mathscr{P}_i J(\mathbf{1}),$

where $o(\mathbf{n})$ contains integrals simpler than $J(\mathbf{n})$, and Q are some polynomials of A, B. Substituting $J \to \mathscr{P}J$ and using $[\mathscr{P}, \mathscr{P}_i] = C_i^j \mathscr{P}_j$, we obtain

$$\mathscr{P}J(\mathbf{n}) = \mathscr{P}o(\mathbf{n}) + Q_i \mathscr{P}_i \mathscr{P}J(\mathbf{1}) = \mathscr{P}o(\mathbf{n}) + \left(Q_j C_j^i - Q_i \mathscr{P}\right) \mathscr{P}_i J(\mathbf{1}).$$

The first term in r.-h.s. contains the indentities (generated by \mathscr{P}) in simpler points

Introduction	Operator representation 00000	Group of linear changes of variables and IBP 0000	Criteria of redundancy	Conclusion & Outlook	

Criterion of redundancy I Proof

Proof.

What does reducibility of $J(\mathbf{n})$ mean? The following

 $J(\mathbf{n}) = o(\mathbf{n}) + Q_i \mathscr{P}_i J(\mathbf{1}),$

where $o(\mathbf{n})$ contains integrals simpler than $J(\mathbf{n})$, and Q are some polynomials of A, B. Substituting $J \to \mathscr{P}J$ and using $[\mathscr{P}, \mathscr{P}_i] = C_i^j \mathscr{P}_j$, we obtain

$$\mathscr{P}J(\mathbf{n}) = \mathscr{P}o(\mathbf{n}) + Q_i \mathscr{P}_i \mathscr{P}J(\mathbf{1}) = \mathscr{P}o(\mathbf{n}) + \left(\underline{Q_j}C_j^i - \underline{Q_i}\mathscr{P}\right) \mathscr{P}_i J(\mathbf{1}).$$

The first term in r.-h.s. contains the indentities (generated by \mathscr{P}) in simpler points, the second contains the identities already solved.

Criteria of redundancy

Criterion of redundancy I Illustration

Solve first identity.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Introduction Operator representation
0000000 00000

ation Group of line: 0000

roup of linear changes of variables and IBF

Criteria of redundancy

Conclusion & Outlook Refere

Criterion of redundancy I

- Solve first identity.
- The integrals on some hyperplanes are left unexpressed.

イロト 不得 とうほう イヨン

э.

Criteria of redundancy

Criterion of redundancy I Illustration

- Solve first identity.
- The integrals on some hyperplanes are left unexpressed.
- Consider next identity (if there is one satisfying preconditions) only on these hyperplanes.

イロト イポト イヨト イヨト

Introduction Operator representation 0000000 00000

Group of linear change 0000

f linear changes of variables and IBP

Criteria of redundancy

Conclusion & Outlook Refere

Criterion of redundancy I

- Solve first identity.
- The integrals on some hyperplanes are left unexpressed.
- Consider next identity (if there is one satisfying preconditions) only on these hyperplanes.
- Use already obtained rules.

Criteria of redundancy

Conclusion & Outlook

Criterion of redundancy I Illustration

- Solve first identity.
- The integrals on some hyperplanes are left unexpressed.
- Onsider next identity (if there is one satisfying preconditions) only on these hyperplanes.
- Use already obtained rules.
- Solve obtained IBP.

イロト イポト イヨト イヨト

Introduction Operator representation 0000000 00000 Group of linear changes of variables and IE

Criteria of redundancy

Conclusion & Outlook Refere

Criterion of redundancy I

- Solve first identity.
- The integrals on some hyperplanes are left unexpressed.
- Consider next identity (if there is one satisfying preconditions) only on these hyperplanes.
- Use already obtained rules.
- Solve obtained IBP.

イロト イポト イヨト イヨト

6 Loop from 2.
Introduction Operator representation 0000000 00000

Group of linear changes of
OOOO

linear changes of variables and IBP

Criteria of redundancy

onclusion & Outlook Referen

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Criterion of redundancy I Idea of application

On each step of the above procedure the dimension of the hyperplanes decreases by one. Will we be able to continue the process to finish with the finite number of the master integrals (zero "dimension" hyperplane)?

Is it possible to find a suitable sequence of length N = L(L+1)/2 + LE?

The second operator should *almost commute* with the first one. The third operator should *almost commute* with the first two, etc.

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	
0000000	00000	0000			

Criterion of redundancy I Idea of application

Suitable sequence

$$\{\mathscr{P}_1,\ldots,\mathscr{P}_N\} = \left\{\tilde{O}_{1,L+E},\ldots,\tilde{O}_{1,1},\tilde{O}_{2,L+E},\ldots,\tilde{O}_{2,2},\ldots,\tilde{O}_{L,L+E},\ldots,\tilde{O}_{L,L}\right\}$$

For any *k* the operator \mathscr{P}_{k+1} almost commutes with the set $\{\mathscr{P}_1, \ldots, \mathscr{P}_k\}$.

Sequence length= # of denominators

Total number of operators in the sequence is

$$N = E + L + E + L - 1 + \dots + E + 1$$

= L(L+1)/2 + LE,

イロト 不得 とくほ とくほとう

э.

i.e., equal to the number of denominators.

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook
0000000	00000	0000		

References

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Criterion of redundancy II

Preconditions

Let for some IBP operator \mathscr{P}_0 and for all **n** in some sector holds

$$\mathscr{P}_{0}J(\mathbf{n}) = J(\tilde{\mathbf{n}}) + o(\tilde{\mathbf{n}}), \quad \tilde{\mathbf{n}} \succ \mathbf{n}$$

Other IBP identities can be discarded in all points $\tilde{\mathbf{n}}$

Identity $\mathscr{P}J(\tilde{\mathbf{n}}) = 0$ is linear combination of some identities in simpler points and identities generated by \mathscr{P}_0 .

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	
0000000	00000	0000		

Criterion of redundancy II

Preconditions

Let for some IBP operator \mathscr{P}_0 and for all **n** in some sector holds

$$\mathscr{P}_{0}J(\mathbf{n}) = J(\tilde{\mathbf{n}}) + o(\tilde{\mathbf{n}}), \quad \tilde{\mathbf{n}} \succ \mathbf{n}$$

Other IBP identities can be discarded in all points $\tilde{\mathbf{n}}$

Identity $\mathscr{P}J(\tilde{\mathbf{n}}) = 0$ is linear combination of some identities in simpler points and identities generated by \mathscr{P}_0 .

Proof.

Similar to the proof of Criterion I

$$\mathcal{P}J(\tilde{\mathbf{n}}) = -\mathcal{P}o(\tilde{\mathbf{n}}) + \mathcal{P}_0 \mathcal{P}J(\mathbf{n}) = \mathcal{P}'J(\mathbf{n}) - \mathcal{P}o(\tilde{\mathbf{n}}) + \mathcal{P}\mathcal{P}_0J(\mathbf{n}),$$
$$\mathcal{P}' = [\mathcal{P}_0, \mathcal{P}]$$

Outlool

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	
0000000	00000	0000		

Criterion of redundancy II

Preconditions

Let for some IBP operator \mathscr{P}_0 and for all **n** in some sector holds

$$\mathscr{P}_{0}J(\mathbf{n}) = J(\tilde{\mathbf{n}}) + o(\tilde{\mathbf{n}}), \quad \tilde{\mathbf{n}} \succ \mathbf{n}$$

Other IBP identities can be discarded in all points $\tilde{\mathbf{n}}$

Identity $\mathscr{P}J(\tilde{\mathbf{n}}) = 0$ is linear combination of some identities in simpler points and identities generated by \mathscr{P}_0 .

Proof.

Similar to the proof of Criterion I

$$\mathcal{P}J(\tilde{\mathbf{n}}) = -\mathcal{P}o(\tilde{\mathbf{n}}) + \mathcal{P}_0 \mathcal{P}J(\mathbf{n}) = \mathcal{P}'J(\mathbf{n}) - \mathcal{P}o(\tilde{\mathbf{n}}) + \mathcal{P}\mathcal{P}_0J(\mathbf{n}),$$
$$\mathcal{P}' = [\mathcal{P}_0, \mathcal{P}]$$

The first term in r.-h.s. contains the indentities (generated by \mathscr{P} and \mathscr{P}') in simpler points

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	
0000000	00000	0000		

Criterion of redundancy II

Preconditions

Let for some IBP operator \mathscr{P}_0 and for all **n** in some sector holds

$$\mathscr{P}_{0}J(\mathbf{n}) = J(\tilde{\mathbf{n}}) + o(\tilde{\mathbf{n}}), \quad \tilde{\mathbf{n}} \succ \mathbf{n}$$

Other IBP identities can be discarded in all points $\tilde{\mathbf{n}}$

Identity $\mathscr{P}J(\tilde{\mathbf{n}}) = 0$ is linear combination of some identities in simpler points and identities generated by \mathscr{P}_0 .

Proof.

Similar to the proof of Criterion I

$$\mathcal{P}J(\tilde{\mathbf{n}}) = -\mathcal{P}o(\tilde{\mathbf{n}}) + \mathcal{P}_0 \mathcal{P}J(\mathbf{n}) = \mathcal{P}'J(\mathbf{n}) - \mathcal{P}o(\tilde{\mathbf{n}}) + \mathcal{P}\mathcal{P}_0J(\mathbf{n}),$$
$$\mathcal{P}' = [\mathcal{P}_0, \mathcal{P}]$$

The first term in r.-h.s. contains the indentities (generated by \mathscr{P} and \mathscr{P}') in simpler points, the second contains the identities already solved.

n & Outlook

	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	
0000000	00000	0000			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Criterion of redundancy II Application

(Broadhurst 1992)

Introduction Operator representation 0000000 00000

tation Group of lin

roup of linear changes of variables and IBI

Criteria of redundancy

Conclusion & Outlook Referen

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Criterion of redundancy II Application

(Broadhurst 1992)

IBP operators

$$\begin{split} & P_{11} = -\mathscr{D} + 2A_3 + 2A_6 + A_1B_1 - A_6B_2 + A_1B_3 + 2A_3B_3 + A_6B_3 - A_1B_4 + A_6B_6 \,, \\ & P_{12} = -A_3B_1 + A_3B_3 + A_3B_4 + 2A_3 + 2A_6 - A_1B_1 - A_6B_1 - A_6B_2 + A_1B_3 + A_6B_3 - A_1B_4 + A_6B_5 \,, \\ & P_{13} = -A_3B_1 - A_3B_2 + A_3B_4 + A_3B_6 + 2A_3 + 2A_6 - A_1B_1 - A_6B_1 - A_1B_5 + A_6B_5 + A_1B_6 + A_6B_6 \,, \\ & P_{21} = -\mathcal{A}_4B_1 + A_4B_3 + A_4B_4 + 2A_4 - 2A_6 - A_1B_1 + A_2B_2 + A_6B_2 - A_1B_3 + A_2B_3 - A_6B_3 + A_1B_4 - A_2B_5 - A_6B_5 \,, \\ & P_{22} = -\mathscr{D} + 2A_4 - 2A_6 + A_1B_1 + A_6B_1 + A_2B_2 + A_6B_2 - A_1B_3 + A_2B_3 - A_6B_3 + A_1B_4 - A_2B_5 - A_6B_5 \,, \\ & P_{23} = -\mathcal{A}_4B_2 + A_4B_4 + A_4B_5 + 2A_4 - 2A_6 + A_1B_1 + A_6B_1 - A_2B_2 - A_2B_3 + A_1B_5 - A_2B_5 - A_6B_5 - A_1B_6 - A_6B_6 \,, \\ & P_{31} = -A_5B_1 - A_5B_2 + A_5B_4 + A_5B_5 + 2A_5 + 2A_6 - A_2B_2 - A_6B_2 - A_2B_3 + A_6B_3 + A_2B_6 + A_6B_6 \,, \\ & P_{32} = -A_2B_2 + A_5B_4 + A_5B_5 + 2A_5 + 2A_6 - A_6B_1 - A_2B_2 - A_2B_3 + A_6B_3 + A_2B_6 + A_6B_6 \,, \\ & P_{32} = -A_2B_2 + A_5B_4 + A_5B_5 + 2A_5 + 2A_6 - A_6B_1 - A_2B_2 - A_2B_3 + A_6B_3 + A_2B_6 + A_6B_6 \,, \\ & P_{33} = -\mathscr{D} + 2A_5 + 2A_6 - A_6B_1 + A_2B_2 - A_2B_4 + A_2B_5 + A_6B_5 \,, \\ & P_{33} = -\mathscr{D} + 2A_5 + A_5B_4 + A_5B_5 + 2A_5 + 2A_6 - A_6B_1 - A_2B_2 - A_2B_3 + A_6B_3 + A_2B_4 + A_2B_5 + A_6B_5 \,, \\ & P_{33} = -\mathscr{D} + 2A_5 + A_6B_6 \,, \\ & P_{34} = -A_5B_4 + A_5B_5 + 2A_5 + 2A_6 - A_6B_1 - A_2B_2 - A_2B_3 + A_6B_3 + A_2B_4 + A_2B_5 + A_6B_5 \,, \\ & P_{33} = -\mathscr{D} + 2A_5 + A_6 - A_6B_1 + A_2B_2 - A_2B_4 + A_2B_5 + A_6B_5 \,, \\ & P_{33} = -\mathscr{D} + A_5 + A_5$$

Criterion of redundancy II Application

(Broadhurst 1992)

IBP operators

$$\begin{split} P_{11} &= -\mathscr{P} + 2A_3 + 2A_6 + A_1B_1 - A_6B_2 + A_1B_3 + 2A_3B_3 + A_6B_3 - A_1B_4 + A_6B_6 \;, \\ P_{12} &= -A_3B_1 + A_3B_3 + A_3B_4 + 2A_3 + 2A_6 - A_1B_1 - A_6B_1 - A_6B_2 + A_1B_3 + A_6B_3 - A_1B_4 + A_6B_5 \;, \\ P_{13} &= -A_3B_1 - A_3B_2 + A_3B_4 + A_3B_6 + 2A_3 + 2A_6 - A_1B_1 - A_6B_1 - A_1B_5 + A_6B_5 + A_1B_6 + A_6B_6 \;, \\ P_{21} &= -A_4B_1 + A_4B_3 + A_4B_4 + 2A_4 - 2A_6 - A_1B_1 + A_2B_2 + A_6B_2 - A_1B_3 + A_2B_3 - A_6B_3 + A_1B_4 - A_2B_6 - A_6B_6 \;, \\ P_{22} &= -\mathscr{P} + 2A_4 - 2A_6 + A_1B_1 + A_6B_1 + A_2B_2 + A_6B_2 - A_1B_3 + A_2B_3 - A_6B_3 + A_1B_4 - A_2B_6 - A_6B_6 \;, \\ P_{23} &= -A_4B_2 + A_4B_4 + A_4B_5 + 2A_4 - 2A_6 + A_1B_1 + A_6B_1 - A_2B_2 + A_2B_4 + A_1B_5 - A_2B_5 - A_6B_5 - A_1B_6 - A_6B_6 \;, \\ P_{31} &= -A_5B_1 - A_5B_2 + A_5B_4 + A_5B_6 + 2A_5 + 2A_6B_2 - A_2B_2 - A_6B_2 - A_2B_3 + A_6B_3 + A_2B_4 + A_2B_6 + A_6B_6 \;, \\ P_{32} &= -A_5B_2 + A_5B_4 + A_5B_5 + 2A_4 - 2A_6 - A_1B_1 - A_3B_2 - A_6B_2 - A_4B_3 + A_2B_4 + A_2B_5 - A_6B_6 \;, \\ P_{32} &= -A_5B_2 - A_5B_2 + A_5B_4 + A_5B_5 + 2A_6 + 2A_6 - A_2B_2 - A_6B_2 - A_2B_3 - A_2B_3 + A_2B_4 + A_2B_5 - A_6B_6 \;, \\ P_{33} &= -\mathscr{P} + 2A_5 + 2A_6 - A_6B_1 + 2A_2B_2 - A_2B_5 + 2A_5B_5 + A_6B_5 + A_5B_5 \;, \\ P_{33} &= -\mathscr{P} + 2A_5 + 2A_6 - A_6B_1 + 2A_2B_2 - A_2B_5 + 2A_5B_5 + A_6B_5 + A_6B_5 \;, \\ P_{33} &= -\mathscr{P} + 2A_5 + 2A_6 - A_6B_1 + 2A_2B_2 - A_2B_5 + 2A_5B_5 + A_6B_5 \;, \\ P_{33} &= -\mathscr{P} + 2A_5 + 2A_6 - A_6B_1 + 2A_2B_2 - A_2B_5 + 2A_5B_5 + A_6B_5 \;, \\ P_{33} &= -\mathscr{P} + 2A_5 + 2A_6 - A_6B_1 + 2A_2B_2 - A_2B_5 + 2A_5B_5 + A_6B_5 \;, \\ P_{33} &= -\mathscr{P} + 2A_5 + 2A_6 - A_6B_1 + 2A_2B_2 - A_2B_5 + 2A_5B_5 + A_6B_5 \;, \\ P_{33} &= -\mathscr{P} + 2A_5 + 2A_6 - A_6B_1 + 2A_2B_2 - A_2B_5 + 2A_5B_5 + A_6B_5 \;, \\ P_{33} &= -\mathscr{P} + 2A_5 + 2A_6 - A_6B_1 + 2A_2B_2 - A_2B_5 + 2A_5B_5 + A_6B_5 \;, \\ P_{33} &= -\mathscr{P} + 2A_5 + 2A_6 - A_6B_1 + 2A_2B_2 - A_2B_5 + 2A_5B_5 + A_6B_5 \;, \\ P_{33} &= -\mathscr{P} + 2A_5 + 2A_6 - A_6B_1 + 2B_2 - A_2B_5 + 2A_5B_5 + A_6B_5 \;, \\ P_{33} &= -\mathscr{P} + 2A_5 + 2A_6 - A_6B_1 + 2B_2 - A_2B_5 + 2A_5B_5 + A_6B_5 \;, \\ P_{33} &= -\mathscr{P} + 2A_$$

Sharpening the system

"Sharpening" the system of IBP operators stands for the Gauss triangularization with respect to the most complex monomials.

Criterion of redundancy II Application

(Broadhurst 1992)

IBP operators

 $P_{33} - P_{32}$ no masters $P_{11} - P_{12}$ no masters $P_{33} - P_{32}$ no masters

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction Operator representation Group of linear changes of variables and IBP Criteria of redundancy Conclusion & Outlook Refer 0000000 00000 0000 0000

Criterion of redundancy II Application

The most complex subtopology for the reduction:

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Criterion of redundancy II Application

The most complex subtopology for the reduction:

IBP operators (sharpened)

Conclusion & Outlook

Criterion of redundancy II Application

The most complex subtopology for the reduction:

IBP operators (sharpened)					
$n_4 = 1$ \wedge	$(n_6=1 \lor n_5=0) \land$	$(n_2=1 \lor n_3=0)$			
$\mathscr{P}_1 = A_4 + \dots,$	$\mathscr{P}_2 = A_6 B_5 + \dots ,$	$\mathscr{P}_3 = A_2 B_3 + \dots,$			
$\mathscr{P}_4 = A_2 B_5 + \dots,$	$\mathscr{P}_5 = A_1 B_5 + \dots ,$	$\mathscr{P}_6 = A_6 B_3 + \dots,$			
$\mathscr{P}_7 = A_4 B_3 + \ldots ,$	$\mathscr{P}_8 = A_4 B_5 + \dots ,$	$\mathscr{P}_9 = A_1 B_3 + \dots$			
$\mathscr{P}_1, \mathscr{P}_2, \mathscr{P}_3$ give reduction everywhere, except the hyperplanes on which all					
conditions hold.					

Simplifications due to Criterion II:

- Identities generated by $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3$ need not be considered anymore. Rather, the corresponding rules need to be applied.
- Identities generated by \mathcal{P}_{4-6} should be considered only on the above hyperplanes. For Laporta this means running over 3-parametric space rather than over original 6-parametric.

Introduction Operator representation 0000000 00000 Group of linear changes of variables and

Criteria of redundancy

Conclusion & Outlook Refere

▲□▶▲□▶▲□▶▲□▶ □ のQで

Criterion of redundancy II General case

In general case the situation is similar

We can find [N/2] identities satisfying Criterion II. They reduce the number of free parameters by half and other identities should be considered only on the reduced set of points.

Introduction 0000000	Operator representation	Group of linear changes of variables and IBP 0000	Criteria of redundancy	Conclusion & Outlook	References
Concl	lusion& Oi	ıtlook			

- Huge redundancy of the IBP identities can be dramatically reduced using the group properties of the IBP reduction.
- Criteria of redundancy suggest an algorithm for the effective reduction procedure. In particular, Criterion II has been implemented in recent algorithm FIRE (Smirnov 2008).
- Lorentz-invarance identities can be completely discarded. All information contained in LIs is already contained in IBPs.
- The problem of the reduction can be reformulated as that of division with the remainder by the sum of the left and right ideal.
- The computer program partly based on the above ideas has been used in 4-loop and 3-loop calculations (Kirilin and Lee 2009, Grozin and Lee 2009)

Introduction	Operator representation	Group of linear changes of variables and IBP	Criteria of redundancy	Conclusion & Outlook	References

References

- Baikov, P.: 1997, Explicit solutions of the multiloop integral recurrence relations and its application., NIM in Phys. Res. A 389, 347.
- Broadhurst, D. J.: 1992, Three-loop on-shell charge renormalization without integration: to four loops, Z. Phys. C 54(4), 599. URL: http://dx.doi.org/10.1007/BF01559486
- Chetyrkin, K. G. and Tkachov, F. V.: 1981, Integration by Parts: The Algorithm to Calculate beta Functions in 4 Loops, Nucl. Phys. B192, 159-204.
- Gehrmann, T. and Remiddi, E.: 2000, Differential Equations for Two-Loop Four-Point Functions, Nucl. Phys. B 580, 485.
- Grozin, A. G. and Lee, R. N.: 2009, Three-loop hqet vertex diagrams for b₀ B₀ mixing, Journal of High Energy Physics 0902(02), 047. URL: http://stacks.iop.org/1126-6708/2009/i=02/a=047
- Kirilin, G. G. and Lee, R. N.: 2009, $(Z\alpha)^4$ order of the polarization operator in Coulomb field at low energy, *Nucl. Phys. B* 807, 73.
- Laporta, S.: 2000, High precision calculation of multiloop feynman integrals by difference equations., Int. J. Mod. Phys. A 15, 5087.
- Smirnov, A. V.: 2008, Algorithm FIRE Feynman Integral REduction, JHEP 10, 107.
- Smirnov, A. V. and Smirnov, V. A.: 2006, Applying gröbner bases to solve reduction problems for feynman integrals, JHEP 01(01), 001. URL: http://stacks.iop.org/1126-6708/2006/i=01/a=001
- Smirnov, A. V. and Smirnov, V. A.: 2007, On the reduction of feynman integrals to master integrals.
- Tkachov, F. V.: 1981, A theorem on analytical calculability of 4-loop renormalization group functions, *Physics Letters B* 100(1), 65–68. URL: http://www.sciencedirect.com/science/article/B6TVN-46YSNNV-109/1/886c25adc81acf1d171b80d7b1e7cb7f

30