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Introduction

Forty-five years ago, Regge [1967] proposed that any
Feynman diagram can be understood in terms of a special
class of hypergeometric functions satisfying some system
of differential equations so that the singularity surface of
the relevant hypergeometric function coincides with the
surface of the Landau singularities of the original Feynman
diagram. Based on Regge’s conjecture, explicit systems of
differential equations for particular types of diagrams have
been constructed:
the hypergeometric representation for N -point one-loop
diagrams via a series representation (Appell functions and
Lauricella functions appear here)
(Kershaw, 1973; Wu, 1974; Mano, 1975);
the system of differential equations and its solution in terms
of Lappo-Danilevsky functions (Lappo-Danilevsky, 1934)
has been constructed by (Barucchi,Ponzano, 1973) and
the monodromy structure of some Feynman diagrams has
been studied by (Ponzano, Regge, Speer, Westwater, 1969)
It was known at mid-1970’s that each Feynman diagram
is a function of the “Nilsson class.” This means that
the Feynman diagram is a multivalued analytical function
in complex projective space CPn. The singularities of
this function are described by Landau’s equation. Later,
Kashiwara, Kawai, 1977, showed that any regularized
Feynman integral satisfies some holonomic system of linear
differential equations whose characteristic variety is confined
to the extended Landau variety.
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Hypergeometric Functions: I

Let us recall that there are several different ways to describe
special functions:

• as an integral of the Euler type;

• by a series whose coefficients satisfy certain recurrence
relations;

• as a solution of a system of differential and/or difference
equations (holonomic approach).

These approaches and interrelations between them have
been discussed in series of a papers by
I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky,
Adv. Math. 84 (1990) 255;
I.M. Gel’fand, M.I. Graev, V.S. Retakh,
Russian Math. Surveys 47 (1992) 1;
I.M. Gelfand, M.I. Graev,
Russian Math. Surveys 52 (1997) 639;
Russian Math. Surveys 56 (2001) 615.
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Integral represenation

An Euler integral has the form

Φ(~α, ~β, P ) =

∫

Σ

ΠiPi(x1, · · · , xk)
βixα1

1 · · ·x
αk
k dx1 · · · dxk ,

where Pi is some Laurent polynomial with respect to
variables x1, · · · , xk:
Pi(x1, · · · , xk) =

∑
cω1···ωk

xω1
1 . . . x

ωk
k ,

with ωj ∈ Z, and αi, βj ∈ C.

We assume that the region Σ is chosen such that the

integral exists.
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Holonomic representations

A combination of differential and difference equations can
be found to describe functions of the form

Φ(~z, ~x,W ) =
∞∑

k1,···,kr=0

(

Πm
a=1

1

za +
∑r

b=1 Wabkj

)

Πr
j=1

x
kj

j

kj!
,

where W is an r × m matrix. In particular, this function
satisfies the equations

∂Φ(~z, ~x, W )

∂xj
= Φ(~z + ωj, x, W ) , j = 1, · · · , r,

∂

∂zi



ziΦ +

r∑

j=1

Wixj
∂Φ

∂xj



 = 0 , i = 1, · · · ,m,

where ωj is the jth column of the matrix W .
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Series representation

We will take the Horn definition of the series representation.
In accordance with this definition, a formal (Laurent) power
series in r variables,

Φ(~x) =
∑

C(~m)~xm

≡
∑

m1,m2,···,mr

C(m1, m2, · · · ,mr)x
m1
1 · · ·xmr

r ,

is called hypergeometric if for each i = 1, · · · , r the ratio

C(~m + ~ei)/C(~m)

is a rational function in the index of summation: ~m =
(m1, · · · ,mr), where ~ej = (0, · · · , 0, 1, 0, · · · , 0), is unit
vector with unity in the jth place. Ore[1930], Sato[1990]
found that the coefficients of such a series have the general
form

C(~m) = Πr
i=1λ

mi
i R(~m)

(

ΠN
j=1Γ(µj(~m) + γj + 1)

)−1

,

where N ≥ 0, λj, γj ∈ C are arbitrary complex numbers,
µj : Zr → Z are arbitrary linear maps, and R is an arbitrary
rational function.

A series of this type is called a “Horn-type” hypergeometric
series.
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Example

To illustrate difference between series representation and
combination of differential/difference equation, let us
consider the Gauss hypergeometric function 2F1(a, b; c; z)
which we introduce via series representation

2F1(a, b; c; z) =

∞∑

k=0

(a)k(b)k

(c)k

zk

k!
,

where (a)k = Γ(a + k)/Γ(a) is the Pochhammer symbol.
The differential equation is

d

dz

(

z
d

dz
+ c − 1

)

2F1(a, b; c; z) =
(

z
d

dz
+ a

)(

z
d

dz
+ b

)

2F1(a, b; c; z) .

Holonomic definition of Gauss hypergeometric function:

d

dz
2F1(a, b; c; z) = 2F1(a + 1, b + 1; c + 1; z) ,

2F1(a + 1, b; c; z) − z2F1(a + 1, b + 1; c + 1; z) =

a2F1(a, b; c; z) ,

2F1(a, b + 1; c; z) − z2F1(a + 1, b + 1; c + 1; z) =

b2F1(a, b; c; z) ,

2F1(a, b; c − 1; z) − z2F1(a + 1, b + 1; c + 1; z) =

(c − 1)2F1(a, b; c; z) .
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Construction of ε-expansion: Formulation of problem

The elaboration of the algorithm for analytical evaluation
of the higher order terms of the ε-expansion of any
hypergeometric functions of several variables with arbitrary
set of parameters.

There is not universal agreement on what it means to
express a solution in terms of known special functions. One
reasonable answer has been presented by Kitaev, when he
quotes R. Askye’s Forward to the book Symmetries and

Separation of Variables by W. Miller, Jr., which says “One
term which has not been defined so far is ‘special function’.
My definition is simple, but not time invariant. A function
is a special function if it occurs often enough so that it gets
a name”.
Kitaev adds, “... most of the people who apply them
. . . understand, under the notion of special functions, a set
of functions which can be found in one of the well-known
reference books. . . .” To this, we may add “functions which
can be found in one of the well-known computer algebra
systems.”
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Multiple polylogarithms (Hyperlogarithms)

The starting point of our consideration is integral

I(z;ak, ak−1 · · · , a1)

=

∫ z

0

dtk
tk − ak

∫ tk

0

dtk−1

tk−1 − ak−1
· · ·

∫ t2

0

dt1
t1 − a1

=

∫ z

0

dt

t − ak
I(ak−1 · · · , a1; t) ,

where we put that all ak 6= 0. In early consideration by
Kummer, Poincare, Lappo-Danilevky this integral was called
as hyperlogarithms It was treated as analytical functions of
one variable z, the upper limit of integration. Goncharov
has analysed it as multivalued analytical functions on
a1, · · · , ak, z. One of the property of hyperlogarithms is
the scaling invariance:

I(z; a1, · · · , ak) = I
(

1;
a1

z
, · · · ,

ak

z

)

.

By definition, the multiple polylogarithm

Lik1,k2,···,kn(x1, x2, · · · , xn) =

∞∑

mn>···>m1>0

xm1
1

mk1
1

xm2
2

mk2
2

· · ·
xmn

n

mkn
n

,

where weight k = k1 + k2 + · · ·+ kn and depth is equal to
n.
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Multiple polylogarithms II

The multiple polylogarithm is a special case of iterated
integral

Gmn,mn−1,···,m1(z;xn, · · · , x1)

≡ I(z; 0, · · · , 0
︸ ︷︷ ︸

mn−1 times

, xn, · · · , 0, · · · , 0
︸ ︷︷ ︸

m1−1 times

, x1)

= (−1)nLim1,m2,···,mn

(
x2

x1
,
x3

x2
, · · · ,

z

xn

)

.

The inverse relation is

Lik1,k2,···,kn(y1, y2, · · · , yn)

= (−1)nG1;kn,kn−1,···,k2,k1

(
1

yn
,

1

ynyn−1
, · · · ,

1

y1 · · · yn

)

.

The multiple polylogarithms satisfy two Hopf algebras, so
called shuffle and stuffle ones. The first is related with
integral representation, the second one with series.
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Multiple polylogarithms: Particular cases

A particular case of the multiple polylogarithm is the
“generalized polylogarithm” defined by

Lik1,k2,...,kn(z) =
∞∑

mn>mn−1>···>m1>0

zmn

mk1
1 mk2

2 · · ·mkn
n

where |z| < 1 when all ki ≥ 1, or |z| ≤ 1 when kn ≤ 2.

Another particular case is a “multiple polylogarithm of a
square root of unity,” defined as

Li“σ1,σ2,···,σn
s1,s2,···,sn

”(z) =
∑

mn>mn−1>···m1>0

zmn
σmn

n · · ·σm1
1

msn
n · · ·ms1

1

.

where ~s = (s1, · · · sn) and ~σ = (σ1, · · · , σn) are multi-
indices and σk belongs to the set of the square roots of unity,
σk = ±1. This particular case of multiple polylogarithms
has been analyzed in detail by Remiddi and Vermaseren,
2000

For the numerical evaluation of multiple polylogarithms:
Vollinga & Weinzierl, 2005;
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Integral & Series representation

In the Euler integral representation, the most important
results are related to the construction of the all-order ε
expansion of Gauss hypergeometric function with special
values of parameters in terms of Nielsen polylogarithms
A.I.Davydychev , Phys.Rev.(1999);
A.I.Davydychev & M.K., Nucl.Phys.Proc.Suppl.89 (2000);
A.I.Davydychev & M.K., Nucl.Phys.B605 (2001)

The series representation is an intensively studied approach.
Particularly impressive results were derived in the framework
of the nested-sum approach for hypergeometric functions
with a balanced set of parameters by
Moch,Uwer,Weinzierl,2002; Weinzierl,2004;
Computer realizations of nested sums approach to expansion
of hypergeometric functions are given in
Weinzierl, 2002; Moch & Uwer, 2006;
Huber & Mâıtre, 2206, 2008

Generating-function approach have been applied to
construction of ε-expansion for hypergeometric functions
with one unbalanced set of parameters
M.K.,Davydychev,2004; M.K.,Ward,Yost,2007; M.K.,Kniehl,2008
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Series representation

The pioneering systematic activity in studying the Laurent
series expansion of hypergeometric functions at particular
values of the argument (z = 1) was started by David
Broadhurst in the context of Euler-Zagier sums (or
multidimensional zeta values). This activity has received
further consideration for another, physically interesting
point, z = 1/4 and also for the “primitive sixth roots
of unity”
Broadhurst, 1999; Borwein, et.al., 1999; Fleischer, M.K.,
1999; M.K., Veretin, 2000; Davydychev, M.K., 2000;
Over time, other types of sums have been analysed in a
several publications:

• harmonic sums

• generalized harmonic sums

• binomial sums

• inverse binomial sums

How to calculate this sums analytically?
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Generating function approach

H.S. Wilf,Generatingfunctionology, Academic Press,
London, 1994.
Let us rewrite an arbitrary series as

Σ ~A(~z) =
∞∑

j=1

~zjη ~A(j) ,

where ~A denote the collective sets of indices, whereas η ~A(j)
is the coefficient of ~zj.

The idea is to find a recurrence relation with respect to j,
for the coefficients ηvecA(j), and then transform it into
a differential equation for the generating function Σ ~A(z).
In this way, the problem of summing the series would be
reduced to solving a differential equation.
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Generating functions approach (II)

M.K.,Ward,Yost, 07 M.K.,Kniehl, 08

∞
X

j=1

1
“

2j
j

”

uj

j
Sa1

(j − 1) · · ·Sak
(j − 1)

˛

˛

˛

˛

˛

˛

˛

u=−(1−y)2
y

=
1 − y

1 + y

X

p,~s

cp,~s ln
p
yLi“~σ

~s

”(y)

∞
X

j=1

1
“

2j
j

”

uj

jc
Sa1(j − 1) · · ·Sak

(j − 1)

˛

˛

˛

˛

˛

˛

˛

u=−(1−y)2
y

=
X

p,~s

c̃p,~s ln
p
yLi“~σ

~s

”(y) , c ≥ 2

∞
X

j=1

„

2j

j

«

ujSa1
(j − 1) · · ·Sak

(j − 1)

˛

˛

˛

˛

˛

˛

u=
χ

(1+χ)2

=
X

p,~s

»

cp,~s

1 − χ
+ dp,~s

–

lnp χ Li“~σ
~s

”(χ) ,

∞
X

j=1

„

2j

j

«

uj

jc
Sa1

(j − 1) · · ·Sak
(j − 1)

˛

˛

˛

˛

˛

˛

u=
χ

(1+χ)2

=
X

p,~s

c̃p,~s ln
p
χLi“~σ

~s

”(χ) , c ≥ 1

where c is a positive integer, cp,~s, c̃p,~s and dp,~s are rational coefficients,

Li“~σ
~s

”(z) is the multiple polylogarithm of a square root of unity and

Sa(j − 1) =

j−1
X

i=1

1

ia
,
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Iterated solution

An approach using the iterated solution of differential equations has

been explored by

Shu Oi, 2004, M.K.,Ward,Yost,2007, M.K.,Kniehl,2008

One of the advantages of the iterated-solution approach over the

series approach is that it provides a more efficient way to calculate

each order of the ε expansion, since it relates each new term to

the previously derived terms, rather than having to work with an

increasingly large collection of independent sums at each order. This

technique includes two steps: (i) the differential-reduction algorithm

(to reduce a generalized hypergeometric function to basic functions);

(ii) iterative solution of the proper differential equation for the basic

functions (equivalent to iterative algorithms for calculating the analytical

coefficients of the ε expansion).
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Iterative solution of first-order differential equation

A system of homogeneous linear differential equations,

d

dt
~u(t) = A(t, ~u(t)) ,

where A is an n × n matrix and ~u is an n-dimensional vector, can be

formally written via Picard’s method of approximation as

~u1 = ~u0 +

Z t

u0

dtA(t, ~u0) ,

~u2 = ~u0 +

Z t

u0

dtA(t, ~u1(t)) ,

· · ·
~un = ~u0 +

Z t

u0

dtA(t, ~un−1(t)) ,

where ~u0 = ~u(t0) is an initial condition. It can be proven that, in the

region where this integral exists, the following properties are satisfied:

(i) as n increases indefinitely, the sequence of functions ~un tends to

a limit which is a continuous function of t; (ii) this limiting function

satisfies the differential equation; (iii) the solution thus defined assumes

the value ~u0 when t = t0 and is the only continuous solution.

Let us introduce the set of functions,

Fp(t) =

Z t

t0

dτA(τ)Fp−1(τ) ,

and write the relations (??) as

~u(t) = F0(t)~u0 + · · · + Fp(t)~u0 + · · · ,

where F0 is the identical transformation, F0 = I. For A(t) =
P

j

Uj
t−αj

, the iterative solution coincides with hyperlogarithms of

configuration αj.
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Differential Equation approach for construction of ε-expansion

Let us consider as basis the Gauss hypergeometric function with the

following set of parameters:

ω(z) = 2F1

„

p1

q1

+ a1ε,
p2

q2

+ a2ε; 1 − p3

q3

+ cε; z

«

; .

It is the solution of the differential equation

»

z
d

dz
+

p1

q1

+ a1ε

– »

z
d

dz
+

p2

q2

+ a2ε

–

ω(z)

=
d

dz

»

z
d

dz
− p3

q3

+ cε

–

ω(z) .

with boundary conditions w(0) = 1 and z d
dzw(z)

˛

˛

z=0
= 0. Due to

analyticity of Gauss hypergeometric function with respect to parameters,

this equation is valid in each order of ε,

w(z) =
∞
X

k=0

wk(z)εk.

In terms of coefficients functions ωk(z), we have

»

(1 − z)
d

dz
−
„

p1

q1

+
p2

q2

«

− 1

z

p3

q3

–„

z
d

dz

«

ωk − p1p2

q1q2

ωk

=

„

a1+a2−
c

z

«„

z
d

dz

«

ωk−1

+

„

a1

p2

q2

+a2

p1

q1

«

ωk−1+a1a2ωk−2 .
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Differential Equation approach for construction of ε-expansion (II)

The main idea is to find a new parametrization (change of variable)

z → ξ(z), and to define a new functions ρk(ξ), related with a first

derivative of original functions ωk(ξ),

ρk(ξ) =
X

j

Γkj(ξ)
d

dξ
ωj(ξ) ,

so that original equation can be rewritten as system of linear differential

equations of the first order with an rational coefficients:

d

dξ
wk(ξ) = ρk(ξ)

X

j

Aj

ξ − αj

,

d

dξ
ρk(ξ) = ρk−1(ξ)

X

j

Bj

ξ − βj

+ωk−1(ξ)
X

j

Cj

ξ − γj

+ ωk−2(ξ)
X

j

Dj

ξ − σj

,

where Aj, Bj, Cj, Dj, αj, βj, γj, σj Then the iterative solution of this

system can be constructed. Under condition, ω0(z) = 1(ρ0 = 0),

this solution are expressible in terms of hyperlogarithms depending on

parameters αj, βj, γj, σj, (possible) times on powers of logarithms.
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Iterative solution of Gauss hypergeometric function

M.K.,Ward,Yost, JHEP, 07.

2F1(a1ε, a2ε; 1 + cε; z)

Starting equation is

(1−z)
d

dz

„

z
d

dz

«

wk(z)

=

„

a1+a2−
c

z

«„

z
d

dz

«

wk−1(z)+a1a2wk−2(z) .

Let us introduce a new function: and rewrite original equation as

(1 − z)
d

dz
ρi(z) =

„

a1+a2−
c

z

«

ρi−1(z)+a1a2wi−2(z) ,

z
d

dz
wi(z) = ρi(z) .

The solution of this system can be presented in an iterated form:

ρi(z) = (a1+a2−c)

Z z

0

dt

1 − t
ρi−1(t)

+a1a2

Z z

0

dt

1 − t
wi−2(t)−cwi−1(z) , i ≥ 1 ,

wi(z) =

Z z

0

dt

t
ρi(t) , i ≥ 1 .
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Iterative solution of Gauss hypergeometric function: II

2F1

„

1 + a1ε, 1 + a2ε

2 + cε

˛

˛

˛

˛

z

«

=
1 + cε

z

0

@− ln(1 − z)

−ε

8

<

:

c − a1 − a2

2
ln

2
(1 − z) + cLi2(z)

9

=

;

+ε2

8

<

:

h

(a1 + a2)c−c2−2a1a2

i

S1,2(z)

+
h

(a1 + a2)c−c2−a1a2

i

ln(1 − z)Li2(z)

+c
2
Li3(z) − 1

6
(c − a1 − a2)

2
ln

3
(1 − z)

9

=

;

−ε
3

8

<

:

c
h

(a1 + a2)c−c
2−2a1a2

i

S2,2(z)

+c
h

(a1 + a2)c−c2−a1a2

i

ln(1 − z)Li3(z)

+(c−a1)(c−a2)(c−a1−a2)

×
»

ln(1−z)S1,2(z)+
1

2
ln2(1−z)Li2(z)

–

+
1

24
(c − a1 − a2)

3 ln4(1 − z)

+c(c−a1−a2)
2
S1,3(z) + c

3
Li4(z)

9

=

;

+ O(ε
4
)

1

A ,

Coincides with

Fleischer,Kotikov,Veretin, 1999
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Iterative solution of Gauss hypergeometric function: III

2F1

„

a1ε, a2ε
1
2+fε

z

«

.

Original equation is

»

(1 − z)
d

dz
− 1

2z

–„

z
d

dz

«

wi(z)

=

»

(a1+a2)−
f

z

–„

z
d

dz

«

wi−1(z)+a1a2wi−2(z) .

Let us introduce the new variable y

y =
1 −

q

z
z−1

1 +
q

z
z−1

, z = −(1 − y)2

4y
,

and define a set of a new functions ρi(y)

y
d

dy
ρi(y) = (a1+a2)

1 − y

1 + y
ρi−1(y)

+2f

„

1

1 − y
− 1

1 + y

«

ρi−1(y)+a1a2wi−2(y) ,

y
d

dy
wk(y) = −ρk(y) .

The solution of these differential equations has the form

ρi(y) =

Z y

1

dt

»

2f
1

1 − t
−2(a1+a2−f)

1

1 + t

–

ρi−1(t)

−(a1+a2) [wi−1(y)−wi−1(1)]

+a1a2

Z y

1

dt

t
wi−2(t) , i ≥ 1 ,

wi(y) = −
Z y

1

dt

t
ρi(t) , i ≥ 1 .
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Iterative solution of Gauss hypergeometric function: IV

Davydychev,M.K.2004; M.K.,06; M.K.,Ward,Yost,06

2F1

„

1 + a1ε, 1 + a2ε
3
2 + fε

˛

˛

˛

˛

z

«

=
(1 + 2fε)

2z

1 − y

1 + y

0

@ln y

+ε

8

<

:

2(f−a1−a2) [Li2(−y)+ln y ln(1 + y)]

−2f [Li2(y)+ln y ln(1 − y)]

+
1

2
(a1 + a2) ln

2
y + ζ2(3f − a1 − a2)

9

=

;

+O(ε2)

1

A , (1)
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Algebraic relations

M.K., JHEP 06.

Let us consider a Gauss hypergeometric functions with integer or half-

integer values of ε-independent parameters. We will call these basis

functions as functions of type A, B, C, D, E, F. For each type the

values of a, b, c, parameters of our basis, are presented in Table I:

2F1

„

a, b

c
z

«

Table I

A B C D E F

a a1ε aε aε 1
2 + b1ε a1ε

1
2 + b1ε

b a2ε
1
2 + bε 1

2 + bε 1
2 + b2ε a2ε

1
2 + b2ε

c 1
2 + fε 1 + cε 1

2 + fε 1
2 + fε 1 + cε 1 + cε

The number of independent basis hypergeometric functions, enumerated

in Table I, can be reduced by help of the Kummer transformations of

variable z.

z → 1

z
, 1 − z,

1

1 − z
,

−z

1 − z
, 1 − 1

z

With respect to this transformations the functions of type A, B, C, D

are transformed into each other. This allows us to reduce the number

of independent hypergeometric functions. The functions of type E, F

transform into functions of the same type.
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Algebraic relations (II)

M.K., JHEP 06.

Let us illustrate how functions of type B, C, D can be expressed in

terms of functions of type A:

D-type:

2F1

„

1
2+b1ε, 1

2+b2ε
1
2+fε

˛

˛

˛

˛

z

«

=
(1 − z)(f−b1−b2)ε

(1 − z)1/2 2F1

„

(f−b1)ε, (f−b2)ε
1
2+fε

˛

˛

˛

˛

z

«

,

C-type:

2F1

„

1
2+b, aε
1
2+fε

˛

˛

˛

˛

z

«

=
1

(1 − z)aε 2F1

„

aε, (f−b)ε
1
2+fε

˛

˛

˛

˛

− z

1 − z

«

B-type:

2F1

„

1
2+bε, aε

1+cε

˛

˛

˛

˛

z

«

=

Γ(1+cε)Γ
`

−1
2−(c − a − b)ε

´

Γ(aε)Γ
`

1
2 + bε

´

(1 − z)1/2+(c−a−b)ε

z1−(a−c)ε

2F1

„

1 + (c−a)ε, 1−aε
3
2+(c−a−b)ε

˛

˛

˛

˛

1 − 1

z

«

+
1

zaε

Γ(1+cε)Γ
`

1
2+(c−a−b)ε

´

Γ(1 + (c − a)ε)Γ
`

1
2+(c−b)ε

´

2F1

„

aε, (a − c)ε
1
2+(a + b − c)ε

˛

˛

˛

˛

1 − 1

z

«

As a result, we get the following statement:

Any functions of type A, B, C, D can be expressed in an algebraic way

in terms of just one of these types.

Mikhail Kalmykov 25



Generalized hypergeometric functions

The generalized hypergeometric function can be written as series

PFQ

„

{A1 + a1ε}, {A2 + a2ε}, · · · {AP + aPε}
{B1 + b1ε}, {B2 + b2ε}, · · · {BQ + bqε}

z

«

=
∞
X

j=0

zj

j!

ΠP
s=1(As + asε)j

ΠQ
r=1(Br + brε)j

,

where (α)j ≡ Γ(α + j)/Γ(α) is the Pochhammer symbol.

We want to construct the ε-expansion of this series.

PFQ =

8

<

:

P ≤ Q converges for all finite z

P = Q + 1 converges for all |z| < 1

P > Q + 1 diverges for all z 6= 0

Reduction of hypergeometric function

It is well known that any function

pFp−1(~a + ~m;~b + ~k; z)

is expressible in terms of p other functions of the same type:

Rp+1(~a,~b, z)pFp−1(~a + ~m;~b + ~k; z) =
p
X

k=1

Rk(~a,~b, z)pFp−1(~a + ~ek;~b + ~Ek; z) ,

where ~m,~k, ~ek, and ~Ek are lists of integers and Rk are polynomials in

parameters ~a,~b, and z.
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Construction of all-order ε-expansion via Differential equation

M.K.,Ward,Yost, JHEP, 07.

ω(z) = pFp−1(~aε;~1 +~bε; z)

Defining the coefficients functions wk(z) at each order by

ω(z) =

∞
X

k=0

wk(z)ε
k
,

The differential equation is

»

(1−z)
d

dz

–„

z
d

dz

«p−1

wk(z)

=

p−1
X

i=1

»

Pi(~a)−1

z
Qi(~b)

–„

z
d

dz

«p−i

wk−i(z) + Pp(~a)wk−p(z) ,

where Pj(~a) and Qj(~b) are polynomials of order j depending on

vectors ~a and ~b, respectively.

z
d

dz
ρ

(j)
k (z) = ρ

(j+1)
k (z) , j = 0, 1, · · · , p − 1

(1 − z)
d

dz
ρ

(p−1)
k (z) =

p
X

i=1

»

Pi(~a)−1

z
Qi(~b)

–

ρ
(p−i)
k−i (z) ,

The solution is iterated integral:

ρ
(p−1)
k (z) =

p
X

i=1

h

Pi(~a)−Qi(~b)
i

Z z

0

dt

1 − t
ρ

(p−i)
k−i (t)

−
p−2
X

i=1

Qi(~b)ρ
(p−i−1)
k−i (z)

−Qp−1(~b)[wk−p+1(z)−δ0,k−p+1] ,

ρ
(j−1)
k (z) =

Z z

0

dt

t
ρ

(j)
k (t) , k ≥ 1 , j = 1, 2, · · · , p−1 ,
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Results

Here, we will mention some of the existing results.

• If I1, I2, I3 are arbitrary integers, the Laurent expansions of the

Gauss hypergeometric functions

2F1(I1 + aε, I2 + bε; I3 + p
q + cε; z) ,

2F1(I1 + p
q + aε, I2 + p

q + bε; I3 + p
q + cε; z) ,

2F1(I1 + p
q + aε, I2 + bε; I3 + cε; z) ,

2F1(I1 + p
q + aε, I2 + bε; I3 + p

q + cε; z)

are expressible in terms of multiple polylogarithms of arguments

being powers of q-roots of unity and a new variable, that is

an algebraic function of z, with coefficients that are ratios of

polynomials.

• If ~A, ~B are lists of integers and I, p, q are integers, the Laurent

expansions of the generalized hypergeometric functions

pFp−1( ~A + ~aε, p
q + I; ~B +~bε; z) ,

pFp−1( ~A + ~aε; ~B +~bε, p
q + I; z)

are expressible in terms of multiple polylogarithms of arguments that

are powers of q-roots of unity and a new variable that is an algebraic

function of z, with coefficients that are ratios of polynomials.
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Results: II

• If ~A, ~B are lists of integers, the Laurent expansion of the generalized

hypergeometric function

pFp−1( ~A + ~aε; ~B +~bε; z)

are expressible via generalized polylogarithms.

• If p, q, Ik are any integers and ~A, ~B are lists of integers, the

generalized hypergeometric function

pFp−1({p
q + ~A+~aε}r, ~I1+~cε; {p

q + ~B+~bε}r, ~I2+~dε; z)

is expressible in terms of multiple polylogarithms of arguments that

are powers of q-roots of unity and the new variable z1/q, with

coefficients that are ratios of polynomials.

• the coefficients of the ε expansion of the hypergeometric functions

p+1Fp

 

~A+ r
q +~aε

~B+ r
q+

~bε
z

!

, p+1Fp

 

~A+~aε
~B+~bε, I+ r

q +cε
z

!

,

p+1Fp

 

I+ r
q +cε, ~A+~aε

~B+~bε
z

!

,

where ~A, ~B,~a,~b, c and I are all integers, are related to each other.
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Conclusion

At the present moment it is unclear is there some limitation on the

type of functions generated by Feynman diagrams or a zoo of a new

functions is artifact of using technique? In particular, the statement

that results of calculations can be written in terms of restricted set of

special functions will allow to use the restricted set of programs for

numerical evaluation of physical results. Another application is related

with evaluation of so called single scale diagrams, where an explicit

prediction of possible transcendental constants can be done.

The strategy of such kind analysis is well know in theory of

special functions and analytical theory of differential equations. As

well know, any Feynman diagram satisfy to the system of linear

differential/difference equations with the polynomial equation. At the

modern mathematical language, such system can be associated with the

Gelfand-Karpanov-Zelevinskii functions or D-modules. So, any question

about “zoo” of special functions generated by ε-expansion of Feynman

diagrams could be reduced to the problem of construction of Laurent

expansion of D-modules around some values of their parameters.

Since the power of propagator is an integer number in a covariant

gauge and any (irreducible) numerator are expressible in terms of

integral of the same topology with a shifted powers which is again

integer number. it is enough to consider an hypergeometric functions

of several variables (in general, the number of variables of equal to

number of kinematic invariants minus one) with integer values of

parameters only. Fortunately, when some of the kinematic invariants

are proportional (or equal) to each other, the number of variables in

the proper hypergeometric series could be reduced. But price of this

reduction is rational values of parameters. All known exactly solvable

cases. has confirmed this statement. Typically, only integer and half-

integer values of parameters are generated and only recently the inverse

cubic values have been detected.
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Special values of argument

M.K. & Davydychev 99/05.

It is evident that some (or all, if the basis is complete) of the alternating

or non-alternating multiple Euler-Zagier sums (or multiple zeta values)

can be written in terms of multiple (inverse) binomial sums of special

values of arguments. Two arguments where such a representation is

possible are trivially obtained by setting the arguments of the harmonic

polylogarithms y, χ to ±1:

u = 4 , y = −1 ,

u =
1

4
, χ = 1 .

Another such point is “golden ratio”,

u = −1 , y =
3 −

√
5

2

has been discussed intensively in the context of Apéry-like expressions

for Riemann zeta functions. For two other points

u = 1 , y = exp

„

i
π

3

«

,

u = 2 , y = i ,

the relation between multiple inverse binomial sums and multiple zeta

values was analysed mainly by the method of experimental mathematics.

Let us make a few comments about harmonic polylogarithms of a

complex argument. For the case 0 ≤ u ≤ 4, the variable y belongs

to a complex unit circle, y = exp(iθ). In this case, the colored

polylogarithms of a square root of unity can be split into real and

imaginary parts and generalized log-sine functions are generated.
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Application to Feynman diagrams

The case of one-loop Feynman diagrams has been studied the most.

The hypergeometric representations for N-point one-loop diagrams with

arbitrary powers of propagators and an arbitrary space-time dimension

have been derived for non-exceptional kinematics by

Davydychev & Boos, 1991; Davydychev 1991

His approach is based on the Mellin-Barnes technique.

An alternative hypergeometric representation for one-loop diagrams has

been derived recently by Fleischer, Jegerlehner, Tarasov, 2003 using

a difference equation in the space-time dimension. In this approach,

the one-loop N -point function was shown to be expressible in terms of

hypergeometric functions of N−1 variables. One remarkable feature of

the derived results is a one-to-one correspondence between arguments

of the hypergeometric functions and Gram and Cayley determinants,

which are two of the main characteristics of diagrams.
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Application to Feynman diagrams: construction ε-expansion

The program of constructing the analytical coefficients of the ε-

expansion is a more complicated matter. The finite parts of one-loop

diagrams in d = 4 dimension are expressible in terms of the Spence

dilogarithm function

Hooft, Veltman, 1979; Denner, Nierste, Scharf, 1991

Only partial results for higher-order terms in the ε-expansion are known

at one loop. The all-order ε-expansion of the one-loop propagator

with an arbitrary values of masses and external momentum has been

constructed in terms of Nielsen polylogarithms:

A.I.Davydychev, 1999; A.I.Davydychev & M.K., 2000, 2001;

The term linear in ε for the one-loop vertex diagram with non-

exceptional kinematics has also been constructed in terms of Nielsen

polylogarithms

Nierste, Müller, Böhm, 1993

The all-order ε expansion for the one-loop vertex with non-exceptional

kinematics is expressible in terms of multiple polylogarithms of two

variables:

Davydychev, 2006; Tarasov, 2008

Beyond these examples, the situation is less complete. The term linear

in ε for the box diagram is still under construction. Some cases for

particular masses have been analyzed

Fleischer, Riemann, Tarasov, 2003; Körner, Merebashvili, Rogal,

2005,2006; Tarasov, Kniehl, 2009;

Many physically interesting particular cases have been considered beyond

one loop.
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