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1. Motivation for SUSY

The Standard Model (SM) cannot be the ultimate theory

— The SM does not contain gravity

— Further problems: Hierarchy problem

Up to which energy scale A can the SM be valid?

— A\ < Mp) @ inclusion of gravity 800.0
effects necessary

600.0

— stability of Higgs potential: =
S
— Hierarchy problem : & 4000 |
Higgs mass unstable = Landau pole

w.r.t. quantum corrections 200.0 |
M3z ~ N?
. Potential bounded from below
(but what does this mean?) 0.0 5 — —s —= —ls
N\ (GeV)
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Mass is what determines the properties of the free propagation of a particle

Free propagation: ~---—-—-——————-—- - inverse propagator: i(p? — M%)
H ! H
Loop corrections: . __ @ _____ inverse propagator: i(pQ—MI%—I—Z{L])
f_'

QM: integration over all possible loop momenta k
dimensional analysis:

2m
f > [ .4 1 f

4
. f 2 d”k o [dk
for A — oo : ZHNNf)\f</k—2-|-2mf/?
e — S —
= quadratically divergent!
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For A\ = MP|Z
SI o~ 6ME ~ M3, = M~ 1030 M3
(for Mg <1 TeV)

— no additional symmetry for My =0

— no protection against large corrections

= Hierarchy problem is instability of small Higgs mass to large corrections
in a theory with a large mass scale in addition to the weak scale

E.g.: Grand Unified Theory (GUT): 6M7 ~ M+

Note however: there is another fine-tuning problem in nature, for which we
have no clue so far — cosmological constant
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Supersymmetry:

Symmetry between fermions and bosons

Q|boson) [fermion)
Q|fermion) = |boson)

Effectively: SM particles have SUSY partners (e.g. fr r — fL,R)

SUSY: additional contributions from scalar fields:

3 fL,R
JL.R 2
H ,~~ H H ' }) H
_____ ¢ ¢ - > @ L
fL.R
st o N2A2 [ d*k t ., 1 + terms without quadratic div
H P Q—m?f kQ—m?f '
L R

. f 2 A2
for A — oc: ZHNNfAfA
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= quadratic divergences cancel for

N =N = N
2 2
)‘f = A7

complete correction vanishes if furthermore

Soft SUSY breaking: m]% — m? + A2 A]% — A%

= I N A AZ 4

= correction stays acceptably small if mass splitting is of weak scale

= realized if mass scale of SUSY partners

MSUSY S 1 TeV

= SUSY at TeV scale provides attractive solution of hierarchy problem
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2. Symmetry and Algebra

Symmetry: a group of transformations that leaves the Lagrangian invariant

Generators of the group fulfill certain algebra

Examples:

0. Angular rotation: W — Wei?“La
theory is invariant under rotation
generators: Lg, algebra: [Lq, Lp] = ie p. L€
Quantum numbers: (max. spin)?, spin  [I(I4+1),m = +1...—1]

1. Internal symmetry: SU(3) x SU(2) x U(1)
gauge symmetry for the description of the strong and electroweak force
generators: Ty, algebra: [Ty, Ty = if 1€
Quantum numbers: color, weak isospin, hyper charge

2. Poincaré symmetry (includes rotation)
space—time symmetries:
Lorentz transformations: A#” | translations: PP
Quantum numbers: mass, spin
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Lorentz group: Representations of Lorentz group are labeled by
two ‘spins’, j1,j2 = 0, where j1,j2 = 0,5,1,...

Basic representations Maﬁ act on:
(%,O): LEFT-handed 2-component Weyl spinor, g
(0,3): RIGHT-handed 2-component Weyl spinor, ¢

The two component Weyl spinors v, (left-handed) and 9% (right-handed)
transform under Lorentz transformations as follows:
wéx — Maﬁwﬁ; 1%)5 — (M*)f%
lov —1\ «o B Il x—1 Oé _B
P = (MTHfYS P = (M
where M = exp(ig(ﬁ— i3)) and 9 and @ are the three rotation angles and
boost parameters, respectively

= spinors with undotted indices (first two components of Dirac spinor)
transform according to (%,O)-representation of Lorentz group,

spinors with dotted indices (last two components of Dirac spinor)
transform according to (O,%)—representation
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Our world (the SM) is described by:
— internal symmetry: 1
— Poincaré symmetry: A#Y, PP

internal symmetry is a trivial extension of the Poincaré symmetry:

[AFY, T = 0, [PP, T%] =0
= direct product: (Poincaré group) ® (internal symmetry group)

Particle states characterized by maximal set of commuting observables:

|In’78;ﬁ783;; 9717]37Y7";>

Space—time internal
quantum numbers
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Wanted: extension of the SM

Theorem # 1: No-go theorem [Coleman, Mandula '67]

Any Lie-group containing Poincaré group F and
internal symmetry group G must be direct product P ® G

~

| m, s, D, 53; g_,)
space—time internal
quantum numbers

New group G with generators Q% and

[NV, Q%]#0, [PPQY]#0

iImpossible

Direct product = no irreducible multiplets can contain particles with

different mass or different spin

= new symmetry must predict new particles with the same mass and spin

as in the SM
= experimentally excluded, no such symmetry possible :-(
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Theorem # 2: How-To-Avoid-the-No-go theorem
[Gol’'fand, Likhtman '71] [Volkov, Akulov '72] [Wess, Zumino '73]

No go theorem can be evaded if instead of Lie-group (generators fulfill
commutator relations):

Anticommutator: {A,B} = AB+ BA

= Generator Q% is fermionic (i.e. it has spin %)

= Particles with different spin in one multiplet possible

Q|boson) = |fermion), @Q|fermion) = |boson)

() changes spin (behavior under spatial rotations) by %

E.g.: spin 2 — spin% — spin 1
graviton gravitino photon
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Simplest case: only one fermionic generator Q. (and conjugate QB)

= N = 1 SUSY algebra:
[Qa, Pu] = [@B’PM]
[Qa, M) = i(c")Qp
{Qa Qs = {Qa @y} = ©
{Qa @y}

O

Q(Uu)adPh

Energy = H = Py, = [Qua,H] =0 = conserved charge

= SUSY: symmetry that relates bosons to fermions

unique extension of Poincaré group of symmetries of D =4
relativistic QFT

— A simple quantum mechanical SUSY example
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A QM SUSY example

Harmonic oscillator (h=c=w=...=1)

lg,p] =1
— 1 ' + =1 (/5_ +1 =
a=75(g+1p), a = 75(¢—1ip) = [a,aT] =1
Eigenstates: |n): a|n) = /njn—1), aT|n) =+v/n F 1jn+ 1)
Counting operator: Nz =ata, Ngln) = aTaln) = /naT|n — 1) = n|n)

Hamilton: Hg = 3(p®> +¢?) =...= N+ 5 = Hpln) = (n + 3)|n)
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Now add a two state system analogous to |52, S;) for spin 5

11 : 1 1 :
states: |5,+5) = |[+), |5, —5) = |—-)
operators: Sy, Sy, S; : closed Lie algebra: [S;, Syl = ig;;1Sk

St =Sy +iSy, dT =S5y, d:=S_

matrix representation: |+) = (

0O 1 0O —2 1 O
1 — 1 — 1 — 1 — 1 — 1
Sx_QO.x_Q(lO)’Sy_QO-y_Q(i O)’ z—QO'z—Q(O_l)

= (dt)2=d?=0, [dT,d] =285,

o =
N~ —
1
I
-~
= O
N~ —

= commutator [dT,d] leaves the algebra of d,d™T
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But what happens with the anticommutator?

{dT,dy=...=1, {d,d} ={dT,dT} =0
= anticommutators form a closed algebra

Counting operator;: Np = dTd

Hamilton: Hp =S, =...= Np— 3
dt|=Y=...=|4), dT|+)=... =0,
d—=)=...=0,d4+)=...=|-)

Np|+) =...=|4), Hp|+) = 3|4): fermion

Np|—) = dtd|—) = 0: vacuum
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Coupling of the two systems:

H:=Hp+ Hpr = Ng+ Np = a7

n,+) = n) @ |+), [n, =) =

a-+dtd

n) ®[=)

Spectrum: H|n,+) = (ata 4+ dTd)(jn) @ |+)) = (n + 1)|n, +)
H‘na _> — (n + O)|n7 _>

lowest state: |0, —) with £ = 0, not degenerate

all other states are two-fold degenerate:

E=0:
E=1:
E=2:
E =3

w N =

Y

Y

Y

=)
-)
-)
>

Y

Y

Y

Y

0,+)
1,4+)
2,+)

«— multiplet
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Operator that acts within one multiplet
(i.e. that leaves the energy unchanged?

Qln,+) —[n+1,-), QT ln+1,-) — [n,+)
= Q=aTd ¢, QT =adt-¢*

Normalization: ...c=c* = —

Q, Q7T leave energy unchanged = [H,Q] = [H,QT] =0

Qlvac)=...=0, QT|vac)=... =0
[Np,Ql=...=-Q, [Np,QT] = ... =4QT,
[Ng,Ql=...=+4Q, [Ng,QT] =... = —Q+
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QT =...=3H

= energy expectation value:

<n7 j:|H|n7 j:> ~ <n7 il{Qv Q+}|n7 j:>
= ((n, £|Q) (QT|n, ) + ((n, £|QT) (QIn, £))
= (. )+ (C.D)T

= positive definite

{Q,Q} =2Q%~d?=0
(T, QT =2(QT)°2~(dT)?2=0
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SUSY algebra of the HO:

1

{Q,Q}={QT,QT}=0
[H,Q] = [H,QT]=0

General structure:
{F,F}=B, [B,B]=B, [B,F]=F

— Super-Lie / graded Lie algebra
contains commutators and anticommutators

= Coleman-Mandula theorem does not apply :-)

— end of the simple QM example
13.-18.07.2009 I/20
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Can SUSY be an exact symmetry?

Consider fermionic state |f) with mass m
= there is a bosonic state |b) = Qu|f)

P2|f) = m?|f)
= P2|b> — PQQO¢|f> — QaP2|f> — Qam2|f> — m2|b>
= for each fermionic state there is a bosonic state with the same mass

= states are paired bosonic «+ fermionic
= still experimentally excluded

= SUSY must be broken
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Further consequences of the SUSY algebra

{Qa,Q4} = 207 4 Pu
= {Qu, @y} 50" = 20" 50 B, = 4P,
NS
24g",
v=0= H="FP = %{QQ,QB} 550‘ =z ({QLQH + {QQ,QED
where Qg4 = (Qa)T

{Qi,QI} = QZ-Q,:-r + QZQZ-: hermitian operator, eigenvalues > O

= for any state |a): (a|H|a) > 0
spectrum of H is bounded from below, >0

= NO negative eigenvalues
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State with lowest energy: vacuum state |0)
if vacuum state is symmetric, i.e. Q|0) = 0, QT|0) = 0 for all Q

= vacuum has zero energy, (0O|H|0) = Eyac =0

For spontaneous symmetry breaking: vacuum state is not invariant

= If (global) SUSY is spontaneously broken, i.e. Q,|0) # O,
then (O|H|0) = Evac > 0O

= non-vanishing vacuum energy
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Further consequences for SUSY multiplets:

{Qa,Qy} =0 = Q2 =0 (and Q2 =0)

Consider multiplet, start with state of lowest helicity \g
application of Qd = one additional state with helicity \g —I—%

further application of Qd = 0, no further state

= one fermionic + one bosonic state

(N SUSY generators = 2¥~1 pbosonic and 2V—1 fermionic states)

SUSY multiplet contains equal nhumber of bosonic and fermionic state
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Most relevant multiplets (possess also CPT conjugate ‘mirrors’):

e chiral supermultiplet: —3,0

Weyl fermion (quark, lepton, ...) + complex scalar (squark, slepton)

e vector supermultiplet: —1, 3

Gauge boson (massless vector) + Weyl fermion (gaugino)

e graviton supermultiplet: —2, —

NI

graviton -+ gravitino
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3. Superfields and Superspace

Translation transformation: P, , parameter: =¥

SUSY transformation: Q., @, , parameter: 6,0 — anticommuting c-numbers
(" Grassmann variables')

= EXxtension of 4-dim. space—time by coordinates 6%, oo superspace

Point in superspace: X = (zt, 8%, %), Superfield: ¢(zH, 0%, 9%)

Sven Heinemeyer — CALC'09 — SUSY: from the basics to phenomenology 13.-18.07.2009 I/26



Grassmann variables:

SUSY transformation: Qq, Q , parameter: §,0 — anticommuting c-numbers
(" Grassmann variables™)

Without spinor index:

(6,0} =0 = 600=0

With two-component spinor index (as it is our case):
00 = 0%00 = e,50°0° = 00 # 0, (005 # 0)

Taylor expansion in Grassmann variable: §20°97 =0 (a, 8,7 = 1,2)

— Taylor expansion terminates after second term, i.e. ¢(6) = a+60vy+ 60 f

Integration: [d0 =0, [dOO =1
d?0 = —ze,3d0*d6°

N /d29¢(9) =/d28(a+9¢+99f) — f
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SUSY transformations: (Lagrangian should be invariant!)

Group element of finite SUSY transformation:

S(y,&,8) = expi (¢Q +EQ — y"Py)

in analogy to group elements for Lie-groups

&, £ are independent of y#: global SUSY transformation

Transformation of superfield: S(y,&,&)o(x,0,0)
=  S,§8¢(x,0,0) = ¢(at + y* — ilot0 + 100, €+ 0,6 4 0)

representations of generators obtained from infinitesimal transformation of
superfield

With 8o = 59z, 05 = 52
Definition of covariant derivatives:
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General superfield in component form

Most general form of field depending on x, 6, 9:

®(z,0,0) = o(2)+ 0¢(z) + 0x(x) + 00F (z) + 00H (x) + 0510 Au(x)
+ (80)0X(z) + (00)0€(x) + (00)(80) D(z)

Further terms vanish because of 860 = 600 = O

Components (can be complex):

o, F', H, D: scalar fields

Ay vector field

Y, X, A\, & Weyl-spinor fields

= To00 many components in 4-dim. for irreducible representation of SUSY
with spin < 1 (chiral or vector multiplet)

= representation is reducible
(not all component fields mix with each other under SUSY transf.)
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— Irreducible superfields (smallest building blocks) from imposing
conditions on general superfield
conditions need to be invariant under SUSY transformations:

D;,® = 0: left-handed chiral superfield (LHxSF)
Dqo® = 0: right-handed chiral superfield (RHxSF)

& = dT: vector superfield

= chiral superfields describe left- or right-handed component of SM fermion
-+ scalar partner

simplified LHxSF in components:

d(z,0) = o)+ V20¢(x) — (06)F(x)

@, F'. scalar fields , ¥: Weyl-spinor field

— EXxplicit evaluation for the simplified case
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Example: simplified left-handed chiral superfield

¢r(z,0) = @(x) 4+ V20 (x) — (00)F(x)

mass dimensions: [p] = 1, [¢] = 3, [F] =2
00 = 0405, 0o = —0102 + 0201

Infinitesimal SUSY transformations: (e infinitesimal)

0% — 0% 4 &©
ot — x4 2i00HE

= §¢; = (5— 4+ z 5— + 2@00’“68,“) o1

NR: ¢ 89a9665797 = = 2e%0,

(*)
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5¢L — 27)90“5(%@
+ V2%, + V22i00+£0,,0%)q,
+ () o P+ O (93)

NR: 09(o#) 55570% = ... = —3600(c") 5" (%)

5¢L p— 2’1,90'“58”@
+ V2 =) V/2i(00) (o) 3500yt
+ 2e%0,F + O (93)

= 5 4 V200 4 (00)6F

SUSY transformation of a LHxSF should yield a LHxSF!
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Comparison of 6 components:
00 : 5o = V2e1 boson — fermion

ol - dthe = V2eoF + i\@(a“)wgdago fermion — boson

02 : 5F = —i\/20 ((a“)g 55@0@) total derivative!

F transforms as total derivative

F'is the component with the highest power in 0

— Construction of £ (invariant under SUSY transformations)
with highest component

— end of example
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— Irreducible superfields (smallest building blocks) from imposing
conditions on general superfield
conditions need to be invariant under SUSY transformations:

D;® = 0: left-handed chiral superfield (LHxSF)
Dqo® = 0: right-handed chiral superfield (RHxSF)

& = dT: vector superfield

= chiral superfields describe left- or right-handed component of SM fermion
-+ scalar partner

LHxSF in components:

6(2,0.0) = o(a) +V200(2) = 80" T0up(@) + =(00) Dy (2)7"D)

— %(99)(55)6“%@(:1:) — (60)F(z)

@, F': scalar fields , ¥: Weyl-spinor field
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LHYxSF: Transf. of component fields with infinitesimal SUSY param. &, &:

0p(z,0,0) = i(6Q + £Q)¢(x, 0,0)

Comparison with

56(x.0.0) = (5g0(:13)—|—\/595w(x)—i@a”gﬁﬂ&o(az)—I—%(GH)(GM&b(a:)a“g)

_ 2(99)(55)(9#3”5@(@ — (09)5F ()

= determination of dp, o, OF"

S =V 2€ boson — fermion
Stha = —V2F ¢y — iV2(0"E)aluyp fermion — boson
OF = 0,(—iv2¢poHE) F — total derivative

RHxSF: analogously
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Vector superfield in components:
c(z) + i0x(z) — i0x(x) + 00" 0v, ()
S(00)(M (@) +iN(2)) = S (00) (M () — iN(x))

V(x,0,0)

i(00)7 (X(az) n %aux(@aﬁb) —i(B8)0 (A(@ _ %J“@M)z(w))

+ + o+

1 — 1
—(00) (@) (D(w) _ 58“@w(az)>

Number of components can be reduced by SUSY gauge transformation:

Wess-Zumino gauge: x(z) = c(x) = M(x) = N(x) =0

Vector SF: V(x,0,8) = ... + i(00)0A(z) — i(@0)0A(z) + 3(00)(80) D(x) + ...
6D = —EatoN(x) — OuA(x)oHE D — total derivative
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4. Supersymmetric Lagrangians

Aim: construct an action that is invariant under SUSY transformations:
5 / FPrl(z) =0
Satisfied if L — L + total derivative

F and D terms (the terms with the largest number of 8 and @ factors) of
chiral and vector superfields transform into a total derivative under SUSY
transformations

— Use F-terms (LHxSF, RHxSF) and D-terms (Vector SF) to construct
an invariant action:

S = /d4x (/d20ﬁp+/d29d2§£D>

If ® isa LHYSF = ®" is also a LHxSF (since D;,®" =0 for D;,® = 0)

= products of chiral superfields are chiral superfields, products of vector
superfields are vector superfields
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F-term Lagrangian:

1 1
ijk
Terms of higher order in ®; lead to non-renormalizable Lagrangians

= F-term Lagrangian contains mass terms, scalar—fermion interactions
(— superpotential), but no kinetic terms

D-term Lagrangian:
Lp = /d29d2§v

= D-term Lagrangian contains kinetic terms
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Example: the Wess—Zumino Lagrangian

Construction of Lagrangian from chiral superfields ®;
— CDZ', Cbicbj, CDZ(DJ(Dk

CDICDZ-: vector superfield, (CD;-fCDZ-)Jr — CDICDZ'

@0, = FIF 4+ (0u0") (0" + L (00t — D) + u(-..)

Auxiliary field F' can be eliminated via equations of motion

| i oy o
= Lp = %(%U“fh% — (Ourpi)otap;) — Emz’j(wiw]’ + ¥iv;)
0

1 1
+ (Oupi ) (OFpi) — ) |a; + 5P T ZNijkP P

1

— AijkPiViVYr — Azijpff?ZﬂZk
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Auxiliary fields are eliminated via equations of motions:

* % 2
me" + g
o) 9G (SOI(TG)G%')
a

(internal indices of 1, ; suppressed)

abelian : F
non-abelian, gauge group G DG

= Lp =FF*—|—%ZDG(DG)T—|—...
G

Lagrangian for scalar fields ¢; and spinor fields ; with the same mass my;

contains couplings of type hff and hff with the same strength

= SUSY implies relations between masses and couplings
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L can be rewritten as Kinetic part 4+ contribution of superpotential V :

1 1
V(pi) = a;p; + 5Mij i + gAiijOiSOjSOk

= L = %(%0“%@ — (Bpabi)atah;) + (Ouw; ) (0Hw;)

1 9%V 1 02V* _
wz% o EW%%

Y determines all interactions and mass terms

Without proof:

characteristics of YV = characteristics of L

Special case a; = 0: Wess—Zumino model
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