SUSY: From the Basics to Phenomenology

Sven Heinemeyer, IFCA (CSIC, Santander)

Dubna, 07/2009

- 1. SUSY Lagrangian and algebra
- 2. The MSSM and simplified versions
- 3. The Higgs sector of the MSSM
- 4. SUSY at the LHC and the ILC

SUSY: From the Basics to Phenomenology

Sven Heinemeyer, IFCA (CSIC, Santander)

Dubna, 07/2009

- 1. SUSY Lagrangian and algebra
- 2. The MSSM and simplified versions
- 3. The Higgs sector of the MSSM
- 4. SUSY at the LHC and the ILC

Literature:

1. Drees, Godbole, Roy: "Theory and Phenomenology of Sparticles"

2. Martin: "A Supersymmetry Primer" arXiv.org/abs/hep-ph/9709356

3. Signer: "ABC of SUSY" arXiv.org/abs/0905.4630

4. . . .

SUSY lectures (I): SUSY Lagrangian and algebra

Sven Heinemeyer, IFCA (CSIC, Santander)

Dubna, 07/2009

- 1. Motivation for SUSY
- 2. Symmetry and Algebra
- 3. Superfields and Superspace
- 4. Supersymmetric Lagrangians

1. Motivation for SUSY

The Standard Model (SM) cannot be the ultimate theory

- The SM does not contain gravity
- Further problems: Hierarchy problem

Up to which energy scale Λ can the SM be valid?

- $\wedge < M_{\text{Pl}}$: inclusion of gravity effects necessary
- stability of Higgs potential:
- Hierarchy problem : Higgs mass unstable w.r.t. quantum corrections $\delta M_H^2 \sim \Lambda^2$ (but what does this mean?)

Mass is what determines the properties of the free propagation of a particle

Free propagation: H = H = H = I inverse propagator: $i(p^2 - M_H^2)$

Loop corrections: $H \longrightarrow H \longrightarrow H$ inverse propagator: $i(p^2 - M_H^2 + \Sigma_H^f)$

QM: integration over all possible loop momenta k dimensional analysis:

$$\Sigma_H^f \sim N_f \lambda_f^2 \int d^4k \left(\frac{1}{k^2 - m_f^2} + \frac{2m_f^2}{(k^2 - m_f^2)^2} \right)$$

for
$$\Lambda \to \infty$$
: $\Sigma_H^f \sim N_f \, \lambda_f^2 \left(\, \, \underbrace{\int \frac{d^4 k}{k^2}}_{\sim \, \Lambda^2} \, + \, 2 m_{\rm f}^2 \underbrace{\int \frac{d k}{k}}_{\sim \, \ln \Lambda} \, \right)$

⇒ quadratically divergent!

For $\Lambda = M_{\text{Pl}}$:

$$\Sigma_H^f pprox \delta M_H^2 \sim M_{
m Pl}^2 \quad \Rightarrow \quad \delta M_H^2 pprox 10^{30}\,M_H^2$$
 (for $M_H \lesssim 1$ TeV)

- no additional symmetry for $M_H = 0$
- no protection against large corrections

→ Hierarchy problem is instability of small Higgs mass to large corrections in a theory with a large mass scale in addition to the weak scale

E.g.: Grand Unified Theory (GUT): $\delta M_H^2 \approx M_{\rm GUT}^2$

Note however: there is another fine-tuning problem in nature, for which we have no clue so far — cosmological constant

Supersymmetry:

Symmetry between fermions and bosons

$$Q|\mathsf{boson}\rangle = |\mathsf{fermion}\rangle$$

 $Q|\mathsf{fermion}\rangle = |\mathsf{boson}\rangle$

Effectively: SM particles have SUSY partners (e.g. $f_{L,R} \to \tilde{f}_{L,R}$)

SUSY: additional contributions from scalar fields:

tional contributions from scalar fields:
$$\tilde{f}_{L,R}$$
 H
 $\tilde{f}_{L,R}$
 H
 $\tilde{f}_{L,R}$
 $\tilde{f}_{L,R}$

$$\Sigma_H^{\tilde{f}} \sim N_{\tilde{f}} \, \lambda_{\tilde{f}}^2 \int d^4k \left(\frac{1}{k^2 - m_{\tilde{f}_L}^2} + \frac{1}{k^2 - m_{\tilde{f}_R}^2} \right) + \text{ terms without quadratic div.}$$

for
$$\Lambda \to \infty$$
: $\Sigma_H^{\tilde{f}} \sim N_{\tilde{f}} \, \lambda_{\tilde{f}}^2 \, \Lambda^2$

⇒ quadratic divergences cancel for

$$N_{\tilde{f}_L} = N_{\tilde{f}_R} = N_f$$

$$\lambda_{\tilde{f}}^2 = \lambda_f^2$$

complete correction vanishes if furthermore

$$m_{\tilde{f}} = m_f$$

Soft SUSY breaking:
$$m_{\tilde{f}}^2 = m_f^2 + \Delta^2$$
, $\lambda_{\tilde{f}}^2 = \lambda_f^2$
$$\Rightarrow \Sigma_H^{f+\tilde{f}} \sim N_f \; \lambda_f^2 \; \Delta^2 + \dots$$

- ⇒ correction stays acceptably small if mass splitting is of weak scale
- ⇒ realized if mass scale of SUSY partners

$$M_{
m SUSY} \lesssim 1 \, {
m TeV}$$

⇒ SUSY at TeV scale provides attractive solution of hierarchy problem

2. Symmetry and Algebra

Symmetry: a group of transformations that leaves the Lagrangian invariant Generators of the group fulfill certain algebra

Examples:

- 0. Angular rotation: $\Psi \to \Psi e^{i\theta^a L_a}$ theory is invariant under rotation generators: L_a , algebra: $[L_a, L_b] = i\varepsilon_{abc}L^c$ Quantum numbers: $(\max. spin)^2$, spin [l(l+1), m=+l...-l]
- 1. Internal symmetry: $SU(3) \times SU(2) \times U(1)$ gauge symmetry for the description of the strong and electroweak force generators: T_a , algebra: $[T_a, T_b] = i f_{abc} T^c$ Quantum numbers: color, weak isospin, hyper charge
- 2. Poincaré symmetry (includes rotation) space—time symmetries: Lorentz transformations: $\Lambda^{\mu\nu}$, translations: P^{ρ} Quantum numbers: mass, spin

Lorentz group: Representations of Lorentz group are labeled by two 'spins', $j_1, j_2 = 0$, where $j_1, j_2 = 0, \frac{1}{2}, 1, \dots$

Basic representations M_{α}^{β} act on:

- $(\frac{1}{2},0)$: LEFT-handed 2-component Weyl spinor, ψ_{α}
- $(0,\frac{1}{2})$: RIGHT-handed 2-component Weyl spinor, $\bar{\psi}^{\dot{\alpha}}$

The two component Weyl spinors ψ_{α} (left-handed) and $\bar{\psi}^{\dot{\alpha}}$ (right-handed) transform under Lorentz transformations as follows:

$$\psi'_{\alpha} = M_{\alpha}{}^{\beta}\psi_{\beta}; \qquad \bar{\psi}'_{\dot{\alpha}} = (M^{*})_{\dot{\alpha}}{}^{\dot{\beta}}\bar{\psi}_{\dot{\beta}}$$

$$\psi'^{\alpha} = (M^{-1})_{\beta}{}^{\alpha}\psi^{\beta}; \quad \bar{\psi}'^{\dot{\alpha}} = (M^{*-1})_{\dot{\beta}}{}^{\dot{\alpha}}\bar{\psi}^{\dot{\beta}}$$

where $M=\exp(i\frac{\vec{\sigma}}{2}(\vec{\vartheta}-i\vec{\varphi}))$ and $\vec{\vartheta}$ and $\vec{\varphi}$ are the three rotation angles and boost parameters, respectively

 \Rightarrow spinors with undotted indices (first two components of Dirac spinor) transform according to $(\frac{1}{2},0)$ -representation of Lorentz group, spinors with dotted indices (last two components of Dirac spinor) transform according to $(0,\frac{1}{2})$ -representation

Our world (the SM) is described by:

- internal symmetry: T_a
- Poincaré symmetry: $\Lambda^{\mu\nu}$, P^{ρ}

internal symmetry is a trivial extension of the Poincaré symmetry:

$$[\Lambda^{\mu\nu}, T^a] = 0, \qquad [P^\rho, T^a] = 0$$

⇒ direct product: (Poincaré group) ⊗ (internal symmetry group)

Particle states characterized by maximal set of commuting observables:

$$|\underbrace{m,s;\vec{p},s_3};\ Q,I,I_3,Y,\ldots\rangle$$
 space—time internal quantum numbers

Wanted: extension of the SM

Theorem # 1: No-go theorem [Coleman, Mandula '67]

Any Lie-group containing Poincaré group P and internal symmetry group \tilde{G} must be direct product $P\otimes \tilde{G}$

$$|\underbrace{m,s;\vec{p},s_3};\;\widetilde{g},\ldots\rangle$$
 space—time internal quantum numbers

New group \tilde{G} with generators Q^{α} and

$$[\Lambda^{\mu\nu}, Q^{\alpha}] \neq 0, \quad [P^{\rho}, Q^{\alpha}] \neq 0$$

impossible

Direct product \Rightarrow no irreducible multiplets can contain particles with different mass or different spin

- ⇒ new symmetry must predict new particles with the same mass and spin as in the SM
- \Rightarrow experimentally excluded, no such symmetry possible :-(

Theorem # 2: How-To-Avoid-the-No-go theorem

[Gol'fand, Likhtman '71] [Volkov, Akulov '72] [Wess, Zumino '73]

No go theorem can be evaded if instead of Lie-group (generators fulfill commutator relations):

$$[\ldots,\ldots] o \{\ldots,\ldots\}$$

Anticommutator: $\{A, B\} = AB + BA$

- \Rightarrow Generator Q^{α} is fermionic (i.e. it has spin $\frac{1}{2}$)
- ⇒ Particles with different spin in one multiplet possible

$$Q|\mathsf{boson}\rangle = |\mathsf{fermion}\rangle, \quad Q|\mathsf{fermion}\rangle = |\mathsf{boson}\rangle$$

Q changes spin (behavior under spatial rotations) by $\frac{1}{2}$

Simplest case: only one fermionic generator Q_{α} (and conjugate $\bar{Q}_{\dot{\beta}}$)

$$\Rightarrow N = 1 \text{ SUSY algebra:}$$

$$[Q_{\alpha}, P_{\mu}] = [\bar{Q}_{\dot{\beta}}, P_{\mu}] = 0$$

$$[Q_{\alpha}, M^{\mu\nu}] = i(\sigma^{\mu\nu})_{\alpha}^{\ \beta} Q_{\beta}$$

$$\{Q_{\alpha}, Q_{\beta}\} = \{\bar{Q}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}}\} = 0$$

$$\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\} = 2(\sigma^{\mu})_{\alpha\dot{\alpha}} P_{\mu}$$

Energy =
$$H = P_0$$
, $\Rightarrow [Q_\alpha, H] = 0 \Rightarrow$ conserved charge

- \Rightarrow SUSY: symmetry that relates bosons to fermions unique extension of Poincaré group of symmetries of D=4 relativistic QFT
- → A simple quantum mechanical SUSY example

A QM SUSY example

Harmonic oscillator ($\hbar = c = \omega = ... = 1$)

$$[q, p] = i$$

$$a = \frac{1}{\sqrt{2}}(q + ip), \ a^{+} = \frac{1}{\sqrt{2}}(q - ip) \Rightarrow [a, a^{+}] = 1$$

Eigenstates:
$$|n\rangle$$
: $a|n\rangle = \sqrt{n}|n-1\rangle$, $a^{+}|n\rangle = \sqrt{n+1}|n+1\rangle$

Counting operator: $N_B = a^+a$, $N_B|n\rangle = a^+a|n\rangle = \sqrt{n}a^+|n-1\rangle = n|n\rangle$

Hamilton:
$$H_B = \frac{1}{2}(p^2 + q^2) = \dots = N_B + \frac{1}{2} \Rightarrow H_B|n\rangle = (n + \frac{1}{2})|n\rangle$$

Now add a two state system analogous to $|\vec{S}^2, S_z\rangle$ for spin $\frac{1}{2}$

states:
$$|\frac{1}{2}, +\frac{1}{2}\rangle =: |+\rangle$$
, $|\frac{1}{2}, -\frac{1}{2}\rangle =: |-\rangle$

operators: S_x, S_y, S_z : closed Lie algebra: $[S_i, S_y] = i\varepsilon_{ijk}S_k$

$$S_{\pm} := S_x \pm i S_y$$
, $d^+ := S_+$, $d := S_-$

matrix representation:
$$|+\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $|-\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$S_x = \frac{1}{2}\sigma_x = \frac{1}{2}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $S_y = \frac{1}{2}\sigma_y = \frac{1}{2}\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $S_z = \frac{1}{2}\sigma_z = \frac{1}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

$$\Rightarrow (d^+)^2 = d^2 = 0, [d^+, d] = 2S_z$$

 \Rightarrow commutator $[d^+, d]$ <u>leaves</u> the algebra of d, d^+

But what happens with the anticommutator?

$$\{d^+, d\} = \dots = 1, \ \{d, d\} = \{d^+, d^+\} = 0$$

 \Rightarrow anticommutators form a closed algebra

Counting operator: $N_F = d^+d$

Hamilton: $H_F = S_z = ... = N_F - \frac{1}{2}$

$$d^{+}|-\rangle = \dots = |+\rangle, \ d^{+}|+\rangle = \dots = 0,$$

$$d|-\rangle = \ldots = 0, \ d|+\rangle = \ldots = |-\rangle$$

$$N_F|+\rangle = \ldots = |+\rangle$$
, $H_F|+\rangle = \frac{1}{2}|+\rangle$: fermion

$$N_F|-\rangle = d^+d|-\rangle = 0$$
: vacuum

Coupling of the two systems:

$$H := H_B + H_F = N_B + N_F = a^+a + d^+d$$
 $|n, +\rangle := |n\rangle \otimes |+\rangle, \ |n, -\rangle := |n\rangle \otimes |-\rangle$
Spectrum: $H|n, +\rangle = (a^+a + d^+d)(|n\rangle \otimes |+\rangle) = (n+1)|n, +\rangle$
 $H|n, -\rangle = (n+0)|n, -\rangle$

lowest state: $|0,-\rangle$ with E=0, not degenerate all other states are two-fold degenerate:

$$E = 0 : |0, -\rangle$$

$$E = 1 : |1, -\rangle, |0, +\rangle \leftarrow \text{multiplet}$$

$$E = 2 : |2, -\rangle, |1, +\rangle$$

$$E = 3 : |3, -\rangle, |2, +\rangle$$

$$\vdots \quad \vdots \quad , \quad \vdots$$

Operator that acts within one multiplet (i.e. that leaves the energy unchanged?

$$Q|n,+\rangle \rightarrow |n+1,-\rangle$$
, $Q^+|n+1,-\rangle \rightarrow |n,+\rangle$

$$\Rightarrow Q = a^+ d \cdot c, \ Q^+ = ad^+ \cdot c^*$$

Normalization: ...
$$c = c^* = \frac{1}{\sqrt{2}}$$

$$Q, Q^+$$
 leave energy unchanged $\Rightarrow [H, Q] = [H, Q^+] = 0$

$$Q|\text{vac}\rangle = \ldots = 0$$
, $Q^+|\text{vac}\rangle = \ldots = 0$

$$[N_F, Q] = \dots = -Q, [N_F, Q^+] = \dots = +Q^+,$$

$$[N_B, Q] = \dots = +Q, [N_B, Q^+] = \dots = -Q+$$

$$\{Q, Q^+\} = \dots = \frac{1}{2}H$$

⇒ energy expectation value:

$$\langle n, \pm | H | n, \pm \rangle \sim \langle n, \pm | \{Q, Q^{+}\} | n, \pm \rangle$$

$$= (\langle n, \pm | Q) \left(Q^{+} | n, \pm \rangle \right) + \left(\langle n, \pm | Q^{+} \right) (Q | n, \pm \rangle)$$

$$= (\ldots) + (\ldots)^{+}$$

 \Rightarrow positive definite

$${Q,Q} = 2Q^2 \sim d^2 = 0$$

 ${Q^+,Q^+} = 2(Q^+)^2 \sim (d^+)^2 = 0$

SUSY algebra of the HO:

$$\{Q, Q^{+}\} = \frac{1}{2}H$$

 $\{Q, Q\} = \{Q^{+}, Q^{+}\} = 0$
 $[H, Q] = [H, Q^{+}] = 0$

General structure:

$${F, F} = B, [B, B] = B, [B, F] = F$$

- ⇒ Super-Lie / graded Lie algebra contains commutators and anticommutators
- ⇒ Coleman-Mandula theorem does not apply :-)

→ end of the simple QM example

Can SUSY be an exact symmetry?

Consider fermionic state $|f\rangle$ with mass m

 \Rightarrow there is a bosonic state $|b\rangle = Q_{\alpha}|f\rangle$

$$P^2|f\rangle = m^2|f\rangle$$

$$\Rightarrow P^2|b\rangle = P^2Q_\alpha|f\rangle = Q_\alpha P^2|f\rangle = Q_\alpha m^2|f\rangle = m^2|b\rangle$$

- ⇒ for each fermionic state there is a bosonic state with the same mass
- ⇒ states are paired bosonic ↔ fermionic
- ⇒ still experimentally excluded
- ⇒ SUSY must be broken

Further consequences of the SUSY algebra

$$\begin{aligned} \left\{ Q_{\alpha}, \bar{Q}_{\dot{\beta}} \right\} &= 2\sigma^{\mu}_{\alpha\dot{\beta}} P_{\mu} \\ \Rightarrow \left\{ Q_{\alpha}, \bar{Q}_{\dot{\beta}} \right\} \bar{\sigma}^{\dot{\beta}\alpha}_{\nu} = 2\underbrace{\sigma^{\mu}_{\alpha\dot{\beta}} \bar{\sigma}^{\dot{\beta}\alpha}_{\nu}}_{2g^{\mu}_{\nu}} P_{\mu} = 4P_{\nu} \\ &\underbrace{2g^{\mu}_{\nu}} \end{aligned}$$

$$\nu = 0 \Rightarrow H = P_0 = \frac{1}{4} \left\{ Q_{\alpha}, \bar{Q}_{\dot{\beta}} \right\} \bar{\sigma}_0^{\dot{\beta}\alpha} = \frac{1}{4} \left(\left\{ Q_1, Q_1^{\dagger} \right\} + \left\{ Q_2, Q_2^{\dagger} \right\} \right)$$
 where $\bar{Q}_{\dot{\alpha}} = (Q_{\alpha})^{\dagger}$

 $\left\{Q_i,Q_i^{\dagger}\right\}=Q_iQ_i^{\dagger}+Q_i^{\dagger}Q_i$: hermitian operator, eigenvalues ≥ 0

- \Rightarrow for any state $|\alpha\rangle$: $\langle\alpha|H|\alpha\rangle\geq 0$ spectrum of H is bounded from below, ≥ 0
- \Rightarrow no negative eigenvalues

State with lowest energy: vacuum state |0|

if vacuum state is symmetric, i.e. $Q|0\rangle = 0$, $Q^{\dagger}|0\rangle = 0$ for all Q

 \Rightarrow vacuum has zero energy, $\langle 0|H|0\rangle = E_{\text{vac}} = 0$

For spontaneous symmetry breaking: vacuum state is not invariant

- \Rightarrow If (global) SUSY is spontaneously broken, i.e. $Q_{\alpha}|0\rangle \neq 0$, then $\langle 0|H|0\rangle = E_{\text{Vac}} > 0$
- ⇒ non-vanishing vacuum energy

Further consequences for SUSY multiplets:

$$\left\{\bar{Q}_{\dot{\alpha}},\bar{Q}_{\dot{\beta}}\right\}=0 \Rightarrow \bar{Q}_{\dot{\alpha}}^2=0 \text{ (and } Q_{\alpha}^2=0)$$

Consider multiplet, start with state of lowest helicity λ_0 application of $\bar{Q}_{\dot{\alpha}} \Rightarrow$ one additional state with helicity $\lambda_0 + \frac{1}{2}$ further application of $\bar{Q}_{\dot{\alpha}} \Rightarrow 0$, no further state

⇒ one fermionic + one bosonic state

(N SUSY generators $\Rightarrow 2^{N-1}$ bosonic and 2^{N-1} fermionic states)

SUSY multiplet contains equal number of bosonic and fermionic state

Most relevant multiplets (possess also CPT conjugate 'mirrors'):

- chiral supermultiplet: $-\frac{1}{2}$, 0 Weyl fermion (quark, lepton, ...) + complex scalar (squark, slepton)
- vector supermultiplet: $-1, -\frac{1}{2}$ Gauge boson (massless vector) + Weyl fermion (gaugino)
- graviton supermultiplet: $-2, -\frac{3}{2}$ graviton + gravitino

3. Superfields and Superspace

Translation transformation: P_{μ} , parameter: x^{μ}

SUSY transformation: $Q_{\alpha}, \bar{Q}_{\dot{\alpha}}$, parameter: $\theta, \bar{\theta} \to \text{anticommuting c-numbers}$ ("Grassmann variables")

 \Rightarrow Extension of 4-dim. space—time by coordinates θ^{α} , $\bar{\theta}^{\dot{\alpha}}$: superspace

Point in <u>superspace</u>: $X = (x^{\mu}, \theta^{\alpha}, \bar{\theta}^{\dot{\alpha}}),$ <u>Superfield</u>: $\phi(x^{\mu}, \theta^{\alpha}, \bar{\theta}^{\dot{\alpha}})$

Grassmann variables:

SUSY transformation: $Q_{\alpha}, \bar{Q}_{\dot{\alpha}}$, parameter: $\theta, \bar{\theta} \rightarrow \text{anticommuting c-numbers}$ ("Grassmann variables")

Without spinor index:

$$\{\theta,\theta\} = 0 \Rightarrow \theta\theta = 0$$

With two-component spinor index (as it is our case):

$$\theta\theta \equiv \theta^{\alpha}\theta_{\alpha} = \epsilon_{\alpha\beta}\theta^{\alpha}\theta^{\beta} \Rightarrow \theta\theta \neq 0, (\theta^{1}\theta_{2} \neq 0)$$

Taylor expansion in Grassmann variable: $\theta^{\alpha}\theta^{\beta}\theta^{\gamma} = 0 \ (\alpha, \beta, \gamma = 1, 2)$

 \Rightarrow Taylor expansion terminates after second term, i.e. $\phi(\theta) = a + \theta \psi + \theta \theta f$

Integration: $\int d\theta = 0$, $\int d\theta \theta = 1$

$$d^2\theta = -\frac{1}{4}\epsilon_{\alpha\beta}d\theta^{\alpha}d\theta^{\beta}$$

$$\Rightarrow \int d^2\theta \,\phi(\theta) = \int d^2\theta (a + \theta\psi + \theta\theta \,f) = f$$

Group element of finite SUSY transformation:

$$S(y,\xi,\bar{\xi}) = \exp i \left(\xi Q + \bar{\xi}\bar{Q} - y^{\mu}P_{\mu} \right)$$

in analogy to group elements for Lie-groups ξ , $\bar{\xi}$ are independent of y^{μ} : global SUSY transformation

Transformation of superfield: $S(y, \xi, \bar{\xi})\phi(x, \theta, \bar{\theta})$

$$\Rightarrow S(y,\xi,\bar{\xi})\phi(x,\theta,\bar{\theta}) = \phi(x^{\mu} + y^{\mu} - i\xi\sigma^{\mu}\bar{\theta} + i\theta\sigma^{\mu}\bar{\xi},\xi + \theta,\bar{\xi} + \bar{\theta})$$

representations of generators obtained from infinitesimal transformation of superfield

$$\Rightarrow P_{\mu} = i\partial_{\mu}, \quad Q_{\alpha} = -i\partial_{\alpha} + (\sigma^{\mu}\bar{\theta})_{\alpha}\partial_{\mu}, \quad \bar{Q}_{\dot{\alpha}} = i\partial_{\dot{\alpha}} - (\theta\sigma^{\mu})_{\dot{\alpha}}\partial_{\mu}$$
 with $\partial_{\alpha} = \frac{\partial}{\partial\theta^{\alpha}}$, $\bar{\partial}_{\dot{\alpha}} = \frac{\partial}{\partial\bar{\theta}^{\dot{\alpha}}}$

Definition of covariant derivatives:

$$D_{\alpha} = -i \,\partial_{\alpha} - (\sigma^{\mu} \bar{\theta})_{\alpha} \partial_{\mu}, \quad \bar{D}_{\dot{\alpha}} = i \,\bar{\partial}_{\dot{\alpha}} + (\theta \sigma^{\mu})_{\dot{\alpha}} \partial_{\mu}$$

General superfield in component form

Most general form of field depending on x, θ , $\bar{\theta}$:

$$\Phi(x,\theta,\bar{\theta}) = \varphi(x) + \theta\psi(x) + \bar{\theta}\bar{\chi}(x) + \theta\theta F(x) + \bar{\theta}\bar{\theta}H(x) + \theta\sigma^{\mu}\bar{\theta}A_{\mu}(x) + (\theta\theta)\bar{\theta}\bar{\lambda}(x) + (\bar{\theta}\bar{\theta})\theta\xi(x) + (\theta\theta)(\bar{\theta}\bar{\theta})D(x)$$

Further terms vanish because of $\theta\theta\theta = \bar{\theta}\bar{\theta}\bar{\theta} = 0$

Components (can be complex):

 φ , F, H, D: scalar fields

 A_{μ} : vector field

 ψ , $\bar{\chi}$, $\bar{\lambda}$, ξ : Weyl-spinor fields

- \Rightarrow Too many components in 4-dim. for irreducible representation of SUSY with spin ≤ 1 (chiral or vector multiplet)
- ⇒ representation is reducible (not all component fields mix with each other under SUSY transf.)

⇒ Irreducible superfields (smallest building blocks) from imposing conditions on general superfield conditions need to be invariant under SUSY transformations:

 $\bar{D}_{\dot{\alpha}}\Phi = 0$: left-handed chiral superfield (LH χ SF)

 $D_{\alpha}\Phi = 0$: right-handed chiral superfield (RH χ SF)

 $\Phi = \Phi^{\dagger}$: vector superfield

 \Rightarrow chiral superfields describe left- or right-handed component of SM fermion + scalar partner

simplified LH χ SF in components:

$$\phi(x,\theta) = \varphi(x) + \sqrt{2}\theta \psi(x) - (\theta\theta)F(x)$$

 φ , F: scalar fields , ψ : Weyl-spinor field

→ Explicit evaluation for the simplified case

Example: simplified left-handed chiral superfield

$$\phi_L(x,\theta) = \varphi(x) + \sqrt{2}\theta \psi(x) - (\theta\theta)F(x)$$

mass dimensions: $[\varphi] = 1$, $[\psi] = \frac{3}{2}$, [F] = 2

$$\theta\theta = \varepsilon^{\alpha\beta}\theta_{\alpha}\theta_{\beta}, \quad \theta^{\alpha}\theta_{\alpha} = -\theta_{1}\theta_{2} + \theta_{2}\theta_{1}$$

Infinitesimal SUSY transformations: (ε infinitesimal)

$$\begin{array}{l} \theta^{\alpha} \rightarrow \theta^{\alpha} + \varepsilon^{\alpha} \\ x^{\mu} \rightarrow x^{\mu} + 2i\theta\sigma^{\mu}\bar{\varepsilon} \end{array}$$

$$\Rightarrow \delta\phi_{L} = \left(\varepsilon\frac{\partial}{\partial\theta} + \bar{\varepsilon}\frac{\partial}{\partial\bar{\theta}} + 2i\theta\sigma^{\mu}\bar{\varepsilon}\partial_{\mu}\right)\phi_{L}$$

NR:
$$\varepsilon^{\alpha} \frac{\partial}{\partial \theta^{\alpha}} \theta^{\beta} \varepsilon_{\beta \gamma} \theta^{\gamma} = \dots = 2 \varepsilon^{\alpha} \theta_{\alpha}$$
 (*)

$$\begin{split} \delta\phi_L &= 2i\theta\sigma^{\mu}\bar{\varepsilon}\partial_{\mu}\varphi \\ &+ \sqrt{2}\varepsilon^{\alpha}\psi_{\alpha} + \sqrt{2}2i\theta\sigma^{\mu}\bar{\varepsilon}\partial_{\mu}\theta^{\alpha}\psi_{\alpha} \\ &+ (*) 2\varepsilon^{\alpha}\theta_{\alpha}F + \mathcal{O}\left(\theta^3\right) \end{split}$$

NR:
$$\theta^{\beta}(\sigma^{\mu})_{\beta\dot{\beta}}\bar{\varepsilon}^{\dot{\beta}}\theta^{\alpha} = \dots = -\frac{1}{2}\theta\theta(\sigma^{\mu})^{\alpha}_{\dot{\beta}}\bar{\varepsilon}^{\dot{\beta}}$$
 (**)

$$\begin{split} \delta\phi_L &= 2i\theta\sigma^{\mu}\bar{\varepsilon}\partial_{\mu}\varphi \\ &+ \sqrt{2}\varepsilon^{\alpha}\psi_{\alpha} - {}^{(**)}\sqrt{2}i(\theta\theta)(\sigma^{\mu})^{\alpha}_{\dot{\beta}}\bar{\varepsilon}^{\dot{\beta}}\partial_{\mu}\psi_{\alpha} \\ &+ 2\varepsilon^{\alpha}\theta_{\alpha}F + \mathcal{O}\left(\theta^3\right) \\ &\stackrel{!}{=} \delta\varphi + \sqrt{2}\theta^{\alpha}\delta\psi_{\alpha} + (\theta\theta)\delta F \end{split}$$

SUSY transformation of a LH χ SF should yield a LH χ SF!

Comparison of θ components:

$$\theta^0:\delta\varphi=\sqrt{2}\varepsilon\psi$$

boson → fermion

$$\theta^1 : \delta \psi_{\alpha} = \sqrt{2} \varepsilon_{\alpha} F + i \sqrt{2} (\sigma^{\mu})_{\alpha \dot{\alpha}} \bar{\varepsilon}^{\dot{\alpha}} \partial \varphi$$

fermion → boson

$$\theta^2 : \delta F = -i\sqrt{2}\partial \left((\sigma^{\mu})^{\alpha}_{\dot{\beta}} \,\bar{\varepsilon}^{\dot{\beta}} \psi_{\alpha} \right)$$

total derivative!

- F transforms as total derivative
- F is the component with the highest power in heta
- \Rightarrow Construction of $\mathcal L$ (invariant under SUSY transformations) with highest component

→ end of example

⇒ Irreducible superfields (smallest building blocks) from imposing conditions on general superfield conditions need to be invariant under SUSY transformations:

 $\bar{D}_{\dot{\alpha}}\Phi = 0$: left-handed chiral superfield (LH χ SF)

 $D_{\alpha}\Phi = 0$: right-handed chiral superfield (RH χ SF)

 $\Phi = \Phi^{\dagger}$: vector superfield

⇒ chiral superfields describe left- or right-handed component of SM fermion
+ scalar partner

LH χ SF in components:

$$\phi(x,\theta,\bar{\theta}) = \varphi(x) + \sqrt{2}\theta\psi(x) - i\theta\sigma^{\mu}\bar{\theta}\partial_{\mu}\varphi(x) + \frac{i}{\sqrt{2}}(\theta\theta)(\partial_{\mu}\psi(x)\sigma^{\mu}\bar{\theta})$$
$$-\frac{1}{4}(\theta\theta)(\bar{\theta}\bar{\theta})\partial^{\mu}\partial_{\mu}\varphi(x) - (\theta\theta)F(x)$$

 φ , F: scalar fields , ψ : Weyl-spinor field

LH χ SF: Transf. of component fields with infinitesimal SUSY param. $\xi, \bar{\xi}$:

$$\delta\phi(x,\theta,\bar{\theta}) = i(\xi Q + \bar{\xi}\bar{Q})\phi(x,\theta,\bar{\theta})$$

Comparison with

$$\delta\phi(x,\theta,\bar{\theta}) = \delta\varphi(x) + \sqrt{2}\theta\delta\psi(x) - i\theta\sigma^{\mu}\bar{\theta}\partial_{\mu}\delta\varphi(x) + \frac{i}{\sqrt{2}}(\theta\theta)(\partial_{\mu}\delta\psi(x)\sigma^{\mu}\bar{\theta})$$
$$-\frac{1}{4}(\theta\theta)(\bar{\theta}\bar{\theta})\partial^{\mu}\partial_{\mu}\delta\varphi(x) - (\theta\theta)\delta F(x)$$

 \Rightarrow determination of $\delta \varphi$, $\delta \psi$, δF :

$$\delta \varphi = \sqrt{2} \xi \psi$$
 boson \to fermion $\delta \psi_{\alpha} = -\sqrt{2} F \xi_{\alpha} - i \sqrt{2} (\sigma^{\mu} \bar{\xi})_{\alpha} \partial_{\mu} \varphi$ fermion \to boson $\delta F = \partial_{\mu} (-i \sqrt{2} \psi \sigma^{\mu} \bar{\xi})$ $F \to \text{total derivative}$

 $RH\chi SF$: analogously

Vector superfield in components:

$$V(x,\theta,\bar{\theta}) = c(x) + i\theta\chi(x) - i\bar{\theta}\bar{\chi}(x) + \theta\sigma^{\mu}\bar{\theta}v_{\mu}(x)$$

$$+ \frac{i}{2}(\theta\theta)(M(x) + iN(x)) - \frac{i}{2}(\bar{\theta}\bar{\theta})(M(x) - iN(x))$$

$$+ i(\theta\theta)\bar{\theta}\left(\bar{\lambda}(x) + \frac{i}{2}\partial_{\mu}\chi(x)\sigma^{\mu}\right) - i(\bar{\theta}\bar{\theta})\theta\left(\lambda(x) - \frac{i}{2}\sigma^{\mu}\partial_{\mu}\bar{\chi}(x)\right)$$

$$+ \frac{1}{2}(\theta\theta)(\bar{\theta}\bar{\theta})\left(D(x) - \frac{1}{2}\partial^{\mu}\partial_{\mu}c(x)\right)$$

Number of components can be reduced by SUSY gauge transformation:

Wess-Zumino gauge:
$$\chi(x) = c(x) = M(x) = N(x) \equiv 0$$

Vector SF:
$$V(x, \theta, \bar{\theta}) = \dots + i(\theta\theta)\bar{\theta}\bar{\lambda}(x) - i(\bar{\theta}\bar{\theta})\theta\lambda(x) + \frac{1}{2}(\theta\theta)(\bar{\theta}\bar{\theta})D(x) + \dots$$

$$\delta D = -\xi\sigma^{\mu}\partial_{\mu}\bar{\lambda}(x) - \partial_{\mu}\lambda(x)\sigma^{\mu}\bar{\xi} \qquad D \to \text{total derivative}$$

4. Supersymmetric Lagrangians

Aim: construct an action that is invariant under SUSY transformations:

$$\delta \int d^4x \mathcal{L}(x) = 0$$

Satisfied if $\mathcal{L} \longrightarrow \mathcal{L} +$ total derivative

F and D terms (the terms with the largest number of θ and $\bar{\theta}$ factors) of chiral and vector superfields transform into a total derivative under SUSY transformations

 \Rightarrow Use F-terms (LH χ SF, RH χ SF) and D-terms (Vector SF) to construct an invariant action:

$$S = \int d^4x \left(\int d^2\theta \mathcal{L}_F + \int d^2\theta d^2\bar{\theta} \mathcal{L}_D \right)$$

If Φ is a LH χ SF \Rightarrow Φ^n is also a LH χ SF (since $\bar{D}_{\dot{\alpha}}\Phi^n=0$ for $\bar{D}_{\dot{\alpha}}\Phi=0$)

⇒ products of chiral superfields are chiral superfields, products of vector superfields are vector superfields *F*-term Lagrangian:

$$\mathcal{L}_F = \int d^2\theta \sum_{ijk} \left(a_i \Phi_i + \frac{1}{2} m_{ij} \Phi_i \Phi_j + \frac{1}{3} \lambda_{ijk} \Phi_i \Phi_j \Phi_k \right) + \text{ h.c.}$$

Terms of higher order in Φ_i lead to non-renormalizable Lagrangians

 \Rightarrow F-term Lagrangian contains mass terms, scalar—fermion interactions (\rightarrow superpotential), but no kinetic terms

D-term Lagrangian:

$$\mathcal{L}_D = \int d^2\theta d^2\bar{\theta} V$$

 \Rightarrow D-term Lagrangian contains kinetic terms

Example: the Wess-Zumino Lagrangian

Construction of Lagrangian from chiral superfields Φ_i

$$\Rightarrow \Phi_i, \ \Phi_i \Phi_j, \ \Phi_i \Phi_j \Phi_k$$

$$\Phi_i^{\dagger} \Phi_i: \ \text{vector superfield}, \ (\Phi_i^{\dagger} \Phi_i)^{\dagger} = \Phi_i^{\dagger} \Phi_i$$

$$\left[\Phi_i^{\dagger} \Phi_i \right]_{\theta \theta \overline{\theta} \overline{\theta}} = F^{\dagger} F + (\partial_{\mu} \varphi^*) (\partial^{\mu} \varphi) + \frac{i}{2} (\psi \sigma^{\mu} \partial_{\mu} \overline{\psi} - \partial_{\mu} \psi \sigma^{\mu} \overline{\psi}) + \partial_{\mu} (\dots)$$

Auxiliary field F can be eliminated via equations of motion

$$\Rightarrow \mathcal{L}_{D} = \frac{i}{2} (\psi_{i} \sigma^{\mu} \partial_{\mu} \bar{\psi}_{i} - (\partial_{\mu} \psi_{i}) \sigma^{\mu} \bar{\psi}_{i}) - \frac{1}{2} m_{ij} (\psi_{i} \psi_{j} + \bar{\psi}_{i} \bar{\psi}_{j})$$

$$+ (\partial_{\mu} \varphi_{i}^{*}) (\partial^{\mu} \varphi_{i}) - \sum_{i} \left| a_{i} + \frac{1}{2} m_{ij} \varphi_{j} + \frac{1}{3} \lambda_{ijk} \varphi_{j} \varphi_{k} \right|^{2}$$

$$- \lambda_{ijk} \varphi_{i} \psi_{j} \psi_{k} - \lambda_{ijk}^{\dagger} \varphi_{i}^{*} \bar{\psi}_{j} \bar{\psi}_{k}$$

Auxiliary fields are eliminated via equations of motions:

abelian :
$$F=m\varphi^*+g\varphi^{*2}$$
 non-abelian, gauge group G : $D^G=\dots\sum_a g_G\left(\varphi_i^\dagger(T_G)^a\varphi_i\right)$ (internal indices of T_G,φ_i suppressed)

$$\Rightarrow \mathcal{L}_D = F F^* + \frac{1}{2} \sum_G D^G (D^G)^{\dagger} + \dots$$

Lagrangian for scalar fields φ_i and spinor fields ψ_i with the same mass m_{ii} contains couplings of type $hf\bar{f}$ and $\tilde{h}\tilde{f}\bar{f}$ with the same strength

⇒ SUSY implies relations between masses and couplings

 ${\mathcal L}$ can be rewritten as kinetic part + contribution of superpotential ${\mathcal V}$:

$$\mathcal{V}(\varphi_i) = a_i \varphi_i + \frac{1}{2} m_{ij} \varphi_i \varphi_j + \frac{1}{3} \lambda_{ijk} \varphi_i \varphi_j \varphi_k$$

$$\Rightarrow \mathcal{L} = \frac{i}{2} (\psi_i \sigma^\mu \partial_\mu \bar{\psi}_i - (\partial_\mu \psi_i) \sigma^\mu \bar{\psi}_i) + (\partial_\mu \varphi_i^*) (\partial^\mu \varphi_i)$$
$$- \sum_i \left| \frac{\partial \mathcal{V}}{\partial \varphi_i} \right|^2 - \frac{1}{2} \frac{\partial^2 \mathcal{V}}{\partial \varphi_i \partial \varphi_j} \psi_i \psi_j - \frac{1}{2} \frac{\partial^2 \mathcal{V}^*}{\partial \varphi_i^* \partial \varphi_j^*} \bar{\psi}_i \bar{\psi}_j$$

 ${\cal V}$ determines all interactions and mass terms

Without proof:

characteristics of \mathcal{V} = characteristics of \mathcal{L}

Special case $a_i = 0$: Wess–Zumino model