FeynArts and FormCalc

Thomas Hahn

Max-Planck-Institut für Physik München

An Introduction is to introduce people, but FeynArts and Friends have already been introduced to you. So this is the opposite. When we asked Pooh what the opposite of an Introduction was, he said "The what of a what?" which didn't help us as much as we had hoped, but luckily Owl kept his head and told us that the Opposite of an Introduction, my dear Pooh, was a Contradiction.

... actually, a Distinction:

FeynArts/FormCalc	FeunHiggs
Generic answer to an arbitrary question	Concrete answer to a specific question
Paint \& brush	Finished painting
Symbolic part (Mathematica)	Numerical program (hand-tuned Fortran)
Numerical part (generated Fortran)	Mathematica interface

Plan: Walk through the general setup of these programs and show some perhaps non-standard applications.

Diagram Generation:

- Create the topologies
- Insert fields
- Apply the Feynman rules
- Paint the diagrams

Algebraic Simplification:

- Contract indices
- Calculate traces
- Reduce tensor integrals
- Introduce abbreviations

Numerical Evaluation:

- Convert Mathematica output to Fortran code
- Supply a driver program
- Implementation of the integrals

Symbolic manipulation (Computer Algebra) for the structural and algebraic operations.

Compiled high-level
language (Fortran) for the numerical evaluation.
$|\mathcal{M}|^{2} \longrightarrow$ Cross-sections, Decay rates,...

Paint [ins]
amp $=$ CreateFeynAmp [ins]

amp >> PhotonSelfEnergy.amp

The amplitudes output by FeynArts so far are in no good shape for direct numerical evaluation. Some objects must/should be handled symbolically, e.g. tensorial objects, Dirac traces, dimension (D vs. 4).

- contract indices as far as possible,
- evaluate fermion traces,
- perform the tensor reduction,
- add local terms arising from D.(divergent integral),
- simplify open fermion chains,
- simplify and compute the square of SU(N) structures,
- "compactify" the results as much as possible.


```
In[1]:= << FormCalc`
FormCalc 6.1
by Thomas Hahn
last revised 6 Jul 09
In[2]:= CalcFeynAmp[<< PhotonSelfEnergy .amp]
preparing FORM code in /tmp/m1.frm
> 2 amplitudes with insertions
> 5 amplitudes without insertions
running FORM... ok
Out[2]= Amp[{0} -> {0}][\frac{-3 Alfa Pair1 A0[MW2]}{2 Pi}}
    3 Alfa Pair1 B00[0,MW2, MW2]
    (\frac{Alfa Pair1 A0[MLE2[Gen1]]}{ Pi}}
    Alfa Pair1 A0[MQD2[Gen1]]
    4 Alfa Pair1 A0[MQU2[Gen1]]
    2 Alfa Pair1 B00[0, MLE2[Gen1], MLE2[Gen1]]
    2 Alfa Pair1 B00[0, MQD2[Gen1], MQD2 [Gen1]]
    3 Pi
    8 Alfa Pair1 B00[0, MQU2[Gen1], MQU2[Gen1]]}) 3 Pi **
```

 SumOver[Gen1, 3]]

Cross-sections, Decay rates, Asymmetries...

$$
\begin{aligned}
=\text { FeynAmp }\left[\begin{array}{l}
\text { identifier }, \\
\text { loop momenta, }, \\
\\
\text { generic amplitude, } \\
\text { insertions] }
\end{array}\right.
\end{aligned}
$$

GraphID[Topology == 1, Generic == 1]

= FeynAmp [identifier, generic amplitude, insertions]

Integral [q1]

= FeynAmp [identifier, loop moment. generic amplitude, insertions]
\{ Mass [S [Gen3]], Mass [S[Gen4]], $\mathrm{G}_{\mathrm{SsV}}^{(0)}[(\operatorname{Mom}[1]-\operatorname{Mom}[2])[\mathrm{KI1}[3]]]$, $\mathrm{G}_{\text {SSV }}^{(0)}[(\operatorname{Mom}[1]-\operatorname{Mom}[2])[K I 1[3]]]$, RelativeCF \} ->
Insertions [Classes] [\{MW, MW, I EL, -I EL, 2\}]

```
\begin{feynartspicture}(150,150)(1,1)
\FADiagram{}
\FAProp(6.,10.)(14., 10.)(0.8,){/ScalarDash}{-1}
\FALabel(10. ,5.73)[t]{$G$}
\FAProp(0., 10.)(6., 10.)(0.,){/Sine}{0}
\FALabel(3., 8.93)[t]{$\gamma$}
```

\backslash FAVert (6., 10.) \{0\}
\FAVert (14., 10.) \{0\}
\end\{feynartspicture\} }

Technically: uses its own PostScript prologue.

A typical term in the output looks like

\square	$=$ loop integral \quad = kinematical variables
	$=$ constants
\square	$=$ automatically introduced abbreviations

Outright factorization is usually out of question.

 Abbreviations are necessary to reduce size of expressions.$$
\begin{gathered}
\text { AbbSum29 = Abb2 }+ \text { Abb22 }+ \text { Abb23 }+ \text { Abb3 } \\
\text { Abb22 }=\text { Pair1 Pair3 Pair6 } \\
\text { Pair3 }=\operatorname{Pair}[\mathrm{e}[3], \mathrm{k}[1]]
\end{gathered}
$$

The full expression corresponding to AbbSum29 is

$$
\begin{aligned}
& \text { Pair[e[1], e[2]] Pair[e[3], k[1]] Pair[e[4], k[1]] + } \\
& \text { Pair [e[1], e[2]] Pair[e[3], k[2]] Pair[e[4], k[1]] + } \\
& \text { Pair [e[1], e [2]] Pair [e[3], k[1]] Pair [e[4], k[2]] + } \\
& \text { Pair[e[1], e[2]] Pair[e[3],k[2]] Pair[e[4], k[2]] }
\end{aligned}
$$

- Abbreviations are recursively defined in several levels.
- When generating Fortran code, FormCalc introduces another set of abbreviations for the loop integrals.

In general, the abbreviations are thus costly in CPU time. It is key to a decent performance that the abbreviations are separated into different Categories:

- Abbreviations that depend on the helicities,
- Abbreviations that depend on angular variables,
- Abbreviations that depend only on \sqrt{s}.

Correct execution of the categories guarantees that almost no redundant evaluations are made and makes the generated code essentially as fast as hand-tuned code.

An amplitude containing external fermions has the form

$$
\mathcal{M}=\sum_{i=1}^{n_{F}} c_{i} F_{i} \quad \text { where } \quad F_{i}=(\text { Product of })\langle u| \Gamma_{i}|v\rangle .
$$

$n_{F}=$ number of fermionic structures.
Textbook procedure: Trace Technique

$$
|\mathcal{M}|^{2}=\sum_{i, j=1}^{n_{F}} c_{i}^{*} c_{j} F_{i}^{*} F_{j}
$$

where $\quad F_{i}^{*} F_{j}=\langle v| \bar{\Gamma}_{i}|u\rangle\langle u| \Gamma_{j}|v\rangle=\operatorname{Tr}\left(\bar{\Gamma}_{i}|u\rangle\langle u| \Gamma_{j}|v\rangle\langle v|\right)$.

PRO: Trace technique is independent of any representation.
con: For $n_{F} F_{i}$'s there are $n_{F}^{2} F_{i}^{*} F_{j}$'s.
Things get worse the more vectors are in the game: multi-particle final states, polarization effects . . .
Essentially $n_{F} \sim$ (\# of vectors)! because all combinations of vectors can appear in the Γ_{i}.

Solution: Use Weyl-van der Waerden spinor formalism to compute the F_{i} 's directly.

Define Sigma matrices and 2-dim. Spinors as

$$
\begin{aligned}
& \sigma_{\mu}=(\mathbb{1},-\vec{\sigma}), \\
& \bar{\sigma}_{\mu}=(\mathbb{1},+\vec{\sigma}),
\end{aligned}
$$

$$
\begin{aligned}
\left\langle\left. u\right|_{4 \mathrm{~d}}\right. & \equiv\left(\left\langle\left.u_{+}\right|_{2 \mathrm{~d}},\left\langle\left. u_{-}\right|_{2 \mathrm{~d}}\right),\right.\right. \\
|v\rangle_{4 \mathrm{~d}} & \equiv\binom{\left|v_{-}\right\rangle_{2 \mathrm{~d}}}{\left|v_{+}\right\rangle_{2 \mathrm{~d}}} .
\end{aligned}
$$

Using the chiral representation it is easy to show that every chiral 4 -dim. Dirac chain can be converted to a single 2-dim. sigma chain:

$$
\begin{aligned}
\langle u| \omega_{-} \gamma_{\mu} \gamma_{\nu} \cdots|v\rangle & =\left\langle u_{-}\right| \bar{\sigma}_{\mu} \sigma_{\nu} \cdots\left|v_{ \pm}\right\rangle, \\
\langle u| \omega_{+} \gamma_{\mu} \gamma_{\nu} \cdots|v\rangle & =\left\langle u_{+}\right| \sigma_{\mu} \bar{\sigma}_{\nu} \cdots\left|v_{\mp}\right\rangle .
\end{aligned}
$$

With the Fierz identities for sigma matrices it is possible to remove all Lorentz contractions between sigma chains, e.g.

$$
\langle A| \sigma_{\mu}|B\rangle\langle C| \bar{\sigma}^{\mu}|D\rangle=2\langle A \mid D\rangle\langle C \mid B\rangle
$$

- Objects (arrays): $\quad\left|u_{ \pm}\right\rangle \sim\binom{u_{1}}{u_{2}}, \quad(\sigma \cdot k) \sim\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
- Operations (functions):

$$
\begin{array}{rlr}
\langle u \mid v\rangle & \sim\left(\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right) \cdot\binom{v_{1}}{v_{2}} & \mathrm{SxS} \\
(\bar{\sigma} \cdot k)|v\rangle & \sim\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{v_{1}}{v_{2}} & \mathrm{VxS}, \mathrm{BxS}
\end{array}
$$

Sufficient to compute any sigma chain:
$\langle u| \sigma_{\mu} \bar{\sigma}_{\nu} \sigma_{\rho}|v\rangle k_{1}^{\mu} k_{2}^{\nu} k_{3}^{\rho}=\operatorname{SxS}\left(u, \operatorname{VxS}\left(k_{1}, \operatorname{BxS}\left(k_{2}, \operatorname{VxS}\left(k_{3}, v\right)\right)\right)\right)$

- Polarization does not 'cost' extra:
= Get spin physics for free.
- Better numerical stability because components of k^{μ} are arranged as 'small' and 'large' matrix entries, viz.

$$
\sigma_{\mu} k^{\mu}=\left(\begin{array}{cc}
k_{0}+k_{3} & k_{1}-\mathrm{i} k_{2} \\
k_{1}+\mathrm{i} k_{2} & k_{0}-k_{3}
\end{array}\right)
$$

Large cancellations of the form $\sqrt{k^{2}+m^{2}}-\sqrt{k^{2}}$ when $m \ll k$ are avoided: better precision for mass effects.

The new turns the generated

 stand-alone Fortran code into a Mathematica function for evaluating the cross-section or decay rate as a function of user-selected model parameters.The benefits of such a function are obvious, as the whole instrumentarium of Mathematica commands can be applied to them. Just think of

```
FindMinimum[sigma[TB, MAO], {{TB, 5}, {MAO, 250}}]
ContourPlot[sigma[TB, MA0], {{TB, 5}, {MAO, 250}}]
```


The changes to the code are minimal.

Example line in run. F for Stand-alone Fortran code:

$$
\text { \#define LOOP1 do } 1 \mathrm{~TB}=5,50,5
$$

Change for the Mathematica Interface:

```
\#define LOOP1 call MmaGetReal (TB)
```

The variable TB is 'imported' from Mathematica now, i.e. the cross-section function in Mathematica becomes a function of TB hereby.

The user has full control over which variables are 'imported' from Mathematica and which are set in Fortran.

Similar to the MmaGetReal invocations, the Fortran program can also 'export' variables to Mathematica.

For example, the line that prints a parameter in the stand-alone code is

```
\#define PRINT1 SHOW "TB", TB
```

becomes

> \#define PRINT1 call MmaPutReal("TB", TB)
for the Mathematica Interface and transmits the value of TB to Mathematica.

Once the changes to run.F are made, the program run is compiled as usual:

```
./configure make
```

It is then loaded in Mathematica with
Install["run"]
Now a Mathematica function of the same name, run, is available. There are two ways of invoking it:
Compute a differential cross-section at $\sqrt{s}=\mathrm{sqrtS}$: run[sqrtS, arg1, arg2, ...]

Compute a total cross-section for sqrtSfrom $\leqslant \sqrt{s} \leqslant$ sqrtSto: run[\{sqrtSfrom, sqrtSto\}, arg1, arg2, ...]

The output of the function run is an integer which indicates how many records have been transferred. For example:

```
Para[1] = {TB -> 5., MAO -> 250.}
Data[1] = {DataRow[{500.}, {0.0539684, 0.}, {2.30801 10^-21, 0.}],
    DataRow[{510.}, {0.0515943, 0.}, {4.50803 10^-22, 0.}]}
```

Para contains the parameters exported from the Fortran code. Data contains:

- the independent variables, here e.g. $\{500\}=.\{\sqrt{s}\}$,
- the cross-sections,
here e.g. $\{0.0539684,0\}=.\left\{\sigma_{\text {tot }}^{\text {tree }}, \sigma_{\text {tot }}^{\text {H-loop }}\right\}$, and
- the integration errors, here e.g. $\left\{2.3080110^{\wedge}-21,0.\right\}=\left\{\Delta \sigma_{\text {trot }}^{\text {tree }}, \Delta \sigma_{\text {tot }}^{\text {-loop }}\right\}$.

FormCalc's code-generation functions are now public and disentangled from the rest of the code. They can be used to write out an arbitrary Mathematica expression as optimized Fortran code:

- handle = OpenFortran["file.F"]
opens file.F as a Fortran file for writing,
- WriteExpr [handle, \{var -> expr, ...\}] writes out Fortran code which calculates expr and stores the result in var,
- Close [handle]
closes the file again.
- Expressions too large for Fortran are split into parts, as in

$$
\begin{aligned}
& \text { var }=\text { part } 1 \\
& \text { var }=\text { var }+ \text { part } 2
\end{aligned}
$$

- High level of optimization, e.g. common subexpressions are pulled out and computed in temporary variables.
- Many ancillary functions, e.g.

PrepareExpr, OnePassOrder, SplitSums, \$Prefix, CommonDecl, SubroutineDecl, etc. make code generation versatile and highly automatable, such that the resulting code needs few or no changes by hand.

Generic level, e.g. F, F, S

$$
C\left(F_{1}, F_{2}, S\right)=G_{-} \omega_{-}+G_{+} \omega_{+}
$$

Kinematical structure completely fixed, most algebraic simplifications (e.g. tensor reduction) can be carried out.

Classes level, e.g. -F[2], F [1] , S [3]
$\bar{\ell}_{i} \nu_{j} G: \quad G-=-\frac{i e m_{l_{i}}}{\sqrt{2} \sin \theta_{w} M_{w}} \delta_{i j}, \quad G_{+}=0$
Coupling fixed except for i, j (can be summed in do-loop).
Particles level, e.g. -F [$2,\{1\}], \mathrm{F}[1,\{1\}], \mathrm{S}[3]$
insert fermion generation $(1,2,3)$ for i and j

One has to set up, once and for all, a

- Generic Model File (seldomly changed) containing the generic part of the couplings,

Example: the FFS coupling

$$
C(F, F, S)=G_{-} \omega_{-}+G_{+} \omega_{+}=\vec{G} \cdot\binom{\omega_{-}}{\omega_{+}}
$$

```
AnalyticalCoupling[s1 F[j1, p1], s2 F[j2, p2], s3 S[j3, p3]]
== G[1][s1 F[j1], s2 F[j2], s3 S[j3]].
    { NonCommutative[ ChiralityProjector[-1] ],
        NonCommutative[ ChiralityProjector[+1] ] }
```


One has to set up, once and for all, a

- Classes Model File (for each model) declaring the particles and the allowed couplings

Example: the $\bar{\ell}_{i} \nu_{j} G$ coupling in the Standard Model

$$
\begin{aligned}
& \vec{G}\left(\bar{\ell}_{i}, \nu_{j}, G\right)=\binom{G_{-}}{G_{+}}=\binom{-\frac{\mathrm{iem} \ell_{\ell, i}}{\sqrt{2} \sin \theta_{w} M_{W}} \delta_{i j}}{0} \\
& \mathrm{C}[-\mathrm{F}[2,\{\mathrm{i}\}], \mathrm{F}[1,\{\mathrm{j}\}], \mathrm{S}[3]] \\
& ==\left\{\begin{array}{c}
\{-\mathrm{I} \operatorname{EL} \operatorname{Mass}[\mathrm{~F}[2,\{\mathrm{i}\}]] /(S q r t[2] \text { SW MW) IndexDelta[i, j]\}, } \\
\{0\}\}
\end{array}\right.
\end{aligned}
$$

Or, How to efficiently make changes in an existing model file.

Bad: Copy the model file, modify the copy. - Why?

- It is typically not very transparent what has changed.
- If the original model file changes (e.g. bug fixes), these do not automatically propagate into the derivative model file.

Better: Create a new model file which reads the old one and modifies the particles and coupling tables.

- M\$ClassesDescription = list of particle definitions,
- M\$CouplingMatrices = list of couplings.

Example: Introduce for the $b-\bar{b}-h_{0}$ and $b-\bar{b}-H_{0}$ Yukawa couplings in the MSSM.

```
LoadModel["MSSM"]
```

```
EnhCoup[(lhs:C[F[4,{g_,_}], -F[4,_], S[h:1|2]]) == rhs_ ] :=
    lhs == Hff[h,g] rhs
EnhCoup[other_] = other
M$CouplingMatrices = EnhCoup/@ M$CouplingMatrices
```

To see the effect, make a printout with the WriteTeXFile utility of FeynArts.

The Hff $[\mathrm{h}, \mathrm{g}]$ can be defined to include e.g. resummation effects, as in double precision $\operatorname{Hff}(2,3)$
data Hff /6*1/
$\operatorname{Hff}(1,3)=1-\mathrm{CA} /(S A * T B) * D e l t a M B$
$\operatorname{Hff}(2,3)=1+\mathrm{SA} /(\mathrm{CA} * \mathrm{~TB}) * \operatorname{DeltaMB}$

Or, How to get things the Standard Setup won't give you. Example: extract the Wilson coefficients for $b \rightarrow s \gamma$.

```
tops = CreateTopologies[1, 1 -> 2]
ins = InsertFields[tops, F[4,{3}] -> {F[4,{2}], V[1]}]
vert = CalcFeynAmp[CreateFeynAmp[ins], FermionChains -> Chiral]
mat[p_Plus] := mat/@ p
mat[r_. DiracChain[s2_Spinor, om_, mu_, s1:Spinor[p1_, m1_, _]]] :=
    I/(2 m1) mat[r DiracChain[sigmunu[om]]] +
    2/m1 r Pair[mu, p1] DiracChain[s2, om, s1]
mat[r_. DiracChain[sigmunu[om_]], SUNT[Col1, Col2]] :=
    r 07[om]/(EL MB/(16 Pi^2))
mat[r_. DiracChain[sigmunu[om_]], SUNT[Glu1, Col2, Col1]] :=
    r 08[om]/(GS MB/(16 Pi^2))
coeff = Plus@@ vert //. abbr /. Mat -> mat
```

c7 = Coefficient[coeff, 07[6]]
c8 = Coefficient[coeff, 08[6]]

Using FormCalc's output functions it is also pretty straightforward to generate your own Fortran code:

```
file = OpenFortran["bsgamma.F"]
WriteString[file,
    SubroutineDecl["bsgamma(C7,C8)"] <>
    "\tdouble complex C7, C8\n" <>
    "#include \"looptools.h\"\n"]
WriteExpr[file, {C7 -> c7, C8 -> c8}]
WriteString[file, "\tend\n"]
Close[file]
```

- Serious perturbative calculations these days can generally no longer be done by hand:
- Required accuracy, Models with many particles, ...
- Hybrid programming techniques are necessary:
- Computer algebra is an indispensable tool because many manipulations must be done symbolically.
- Fast number crunching can only be achieved in a compiled language.
- Software engincering and further development of the existing packages is a must:
- As we move on to ever more complex computations (more loops, more legs), the computer programs must become more "intelligent," i.e. must learn all possible tricks to still be able to handle the expressions.

Using FeynArts and FormCalc is a lot like driving a car:

- You have to decide where to go (this is often the hardest decision).
- You have to turn the ignition key, work gas and brakes, and steer.
- But you don't have to know, say, which valve has to open at which time to keep the motor running.
- On the other hand, you can only go where there are roads. You can't climb a mountain with your car.

