The one-loop pentagon to higher orders in epsilon

Claude Duhr
July 17, 2009
Calc09, Dubna

in collaboration with V. Del Duca, E. W. N. Glover, V. A. Smirnov

Outline

- The BDS ansatz \& high-energy limits
- The negative dimension approach in a nutshell
- The scalar massless pentagon in the high-energy limit

The BDS ansatz

- Bern, Dixon and Smirnov conjectured that MHV amplitudes MSYM can be written as:

$$
M_{n}(\epsilon)=1+\sum_{l=1}^{\infty} a^{l} M_{n}^{(l)}(\epsilon)=\exp \sum_{l=0}^{\infty} a^{l}\left[f^{(l)}(\epsilon) M_{n}^{(1)}(l \epsilon)+C^{(l)}+E_{n}^{(l)}(\epsilon)\right],
$$

- The BDS ansatz reproduces correctly the infrared poles of the amplitude.

The BDS ansatz

- In practice, the BDS ansatz implies a tower of iteration formulæ in the number of loops, e.g. for two loops

$$
M_{n}^{(2)}(\epsilon)=\frac{1}{2}\left(M_{n}^{(1)}(\epsilon)\right)^{2}+f^{(2)}(\epsilon) M_{n}^{(1)}(2 \epsilon)+C^{(2)}+\mathcal{O}(\epsilon)
$$

The BDS ansatz

- In practice, the BDS ansatz implies a tower of iteration formulæ in the number of loops, e.g. for two loops

$$
M_{n}^{(2)}(\epsilon)=\frac{1}{2}\left(M_{n}^{(1)}(\epsilon)\right)^{2}+f^{(2)}(\epsilon) M_{n}^{(1)}(2 \epsilon)+C^{(2)}+\mathcal{O}(\epsilon)
$$

Requires the knowledge of the one-loop amplitude to higher orders.

The BDS ansatz

	$\mathrm{n}=4$	$\mathrm{n}=5$	$\mathrm{n}=6$
$\mathrm{l}=2$			
$\mathrm{l}=3$			

The BDS ansatz

	$\mathrm{n}=4$	$\mathrm{n}=5$	$\mathrm{n}=6$
$\mathrm{l}=2$	\checkmark		
$\mathrm{l}=3$	\checkmark		

The BDS ansatz

	$\mathrm{n}=4$	$\mathrm{n}=5$	$\mathrm{n}=6$
$\mathrm{l}=2$	$\sqrt{ }$	(num.)	
$\mathrm{l}=3$	$\sqrt{4}$		

The BDS ansatz

	$\mathrm{n}=4$	$\mathrm{n}=5$	$\mathrm{n}=6$
$\mathrm{l}=2$	$\sqrt{ }$	(num.)	(num.)
$\mathrm{l}=3$	$\sqrt{2}$		

The BDS remainder function

- Modified BDS ansatz, including an arbitrary function of conformal cross-ratios, e.g. for $n=6$,

$$
\begin{aligned}
M_{6}^{(2)}(\epsilon)= & \frac{1}{2}\left(M_{6}^{(1)}(\epsilon)\right)^{2}+f^{(2)}(\epsilon) M_{6}^{(1)}(2 \epsilon)+C^{(2)} \\
& -\mathcal{R}_{6}^{(2)}\left(u_{1}, u_{2}, u_{3}\right) \quad \begin{array}{c}
\text { BDS remainder } \\
\text { function }
\end{array} \\
& +\mathcal{O}(\epsilon)
\end{aligned}
$$

The BDS remainder function

- How can we get a handle on the BDS remainder function?
- Solution I:

Direct analytic computation of the one and two - loop sixpoint amplitudes.
\Rightarrow Needs the analytic evaluation of the one and two-loop scalar hexagon integrals.
\Rightarrow Completely out of reach for the moment!

The BDS remainder function

- How can we get a handle on the BDS remainder function?
- Solution II:

Analytic evaluation of the one and two-loop six-point amplitude in some simplified kinematics.
\Rightarrow Collinear limit: This limit is verified ,by construction'.
\Rightarrow High-energy limit.

- We want to explore what higher point amplitudes looks like, so we start form the simplest non-trivial case, the 5point amplitude in the high-energy limit.

The high-energy limit

- Multi-Regge kinematics are defined by

$$
\begin{gathered}
y_{3} \gg y_{4} \gg y_{5} \\
\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \simeq\left|p_{5 \perp}\right|
\end{gathered}
$$

- This implies a hierarchy of scales:

$$
\begin{gathered}
s \gg s_{1}, s_{2} \gg-t_{1},-t_{2} \\
s t_{1} \simeq s t_{2} \simeq s_{1} s_{2}
\end{gathered}
$$

[See Del Duca's talk last week]

The scalar massless pentagon

- According to the BDS ansatz, it is enough to know the 5point amplitude to higher orders in ϵ.

$$
\begin{aligned}
M_{n}^{(2)}(\epsilon) & =\frac{1}{2}\left(M_{n}^{(1)}(\epsilon)\right)^{2}+f^{(2)}(\epsilon) M_{n}^{(1)}(2 \epsilon)+C^{(2)}+\mathcal{O}(\epsilon) \\
M_{n}^{(1)}(\epsilon) & =-\frac{1}{2} G(\epsilon) \sum_{\text {cyclic }} s_{12} s_{23} I_{4}^{1 m}(1,2,3,45, \epsilon)-\epsilon G(\epsilon) \epsilon_{1234} I_{5}^{6-2 \epsilon}(\epsilon)
\end{aligned}
$$

[Bern, Dixon, Dunbar, Kosower]

The scalar massless pentagon

- According to the BDS ansatz, it is enough to know the 5point amplitude to higher orders in ϵ.

$$
M_{n}^{(1)}(\epsilon)=-\frac{1}{2} G(\epsilon) \sum_{\text {cyclic }} s_{12 s_{23}} I_{4}^{1 m}(1,2,3,45, \epsilon)-\epsilon G(\epsilon) \epsilon_{1234} I_{5}^{6-2 \epsilon}(\epsilon)
$$

- We performed the computation in two different ways:
\Rightarrow using the Negative Dimension approach (NDIM).
[Halliday, Ricotta]
\Rightarrow using the Mellin-Barnes approach (MB).
[See Riemann's and Smirnov's lectures]

NDIM in a nutshell

- We start from the Schwinger parametrization.

$$
\begin{aligned}
I_{n}^{D}\left(\left\{\nu_{i}\right\} ;\left\{Q_{i}^{2}\right\} ;\left\{M_{i}\right\}\right) & =\int \mathcal{D} \alpha \int \frac{\mathrm{d}^{D} k}{i \pi^{D / 2}} \exp \left(\sum_{i=1}^{n} \alpha_{i} D_{i}\right) \\
& =\int \mathcal{D} \alpha \frac{1}{\mathcal{P}^{D / 2}} \exp (\mathcal{Q} / \mathcal{P}) \exp (-\mathcal{M})
\end{aligned}
$$

with

$$
\int \mathcal{D} \alpha=e^{\gamma_{E} \epsilon} \prod_{i=1}^{n} \frac{(-1)^{\nu_{i}}}{\Gamma\left(\nu_{i}\right)} \int_{0}^{\infty} \mathrm{d} \alpha_{i} \alpha_{i}^{\nu_{i}-1}
$$

- We can now expand the exponentials

$$
\int \mathcal{D} \alpha \sum_{n_{1}, \ldots, n_{n}=0}^{\infty} \int \frac{d^{D} k}{i \pi^{D / 2}} \prod_{i=1}^{n} \frac{\left(\alpha_{i} D_{i}\right)^{n_{i}}}{n_{i}!}=\int \mathcal{D} \alpha \sum_{n=0}^{\infty} \frac{\mathcal{Q}^{n} \mathcal{P}^{-n-\frac{D}{2}}}{n!} \sum_{m=0}^{\infty} \frac{(-\mathcal{M})^{m}}{m!}
$$

NDIM in a nutshell

$\int \mathcal{D} \alpha \sum_{n_{1}, \ldots, n_{n}=0}^{\infty} \int \frac{d^{D} k}{i \pi^{D / 2}} \prod_{i=1}^{n} \frac{\left(\alpha_{i} D_{i}\right)^{n_{i}}}{n_{i}!}=\int \mathcal{D} \alpha \sum_{n=0}^{\infty} \frac{\mathcal{Q}^{n} \mathcal{P}^{-n-\frac{D}{2}}}{n!} \sum_{m=0}^{\infty} \frac{(-\mathcal{M})^{m}}{m!}$,

- For negative D , we could use the binomial theorem for

$$
\begin{aligned}
& \mathcal{P}^{-n-D / 2} \\
& \int \mathcal{D} \alpha \sum_{\substack{n_{1}, \ldots, n_{n}=0}}^{\infty} I_{n}^{D}\left(-n_{1}, \ldots,-n_{n} ;\left\{Q_{i}^{2}\right\},\left\{M_{i}^{2}\right\}\right) \prod_{i=1}^{n} \frac{\alpha_{i}^{n_{i}}}{n_{i}!}= \\
& \int \mathcal{D} \alpha \sum_{\substack{p_{1}, \ldots, p_{n}=0 \\
\text { and } \\
m_{1}, \ldots, m_{n}=0}}^{\infty} \frac{\mathcal{Q}_{1}^{q_{1}} \ldots \mathcal{Q}_{q}^{q_{q}}}{q_{1}!\ldots q_{q}!} \frac{\alpha_{1}^{p_{1}} \ldots \alpha_{n}^{p_{n}}}{p_{1}!\ldots p_{n}!} \frac{\left(-\alpha_{1} M_{1}^{2}\right)^{m_{1}}}{m_{1}!} \ldots \frac{\left(-\alpha_{n} M_{n}^{2}\right)^{m_{n}}}{m_{n}!}\left(p_{1}+\ldots+p_{n}\right)!,
\end{aligned}
$$

- We can now match the powers of the Schwinger parameters...

NDIM in a nutshell

- ... and obtain a series representation of the Feynman integral

$$
\begin{aligned}
I_{n}^{D}\left(\left\{\nu_{i}\right\} ;\left\{Q_{i}^{2}\right\} ;\left\{M_{i}\right\}\right) & \equiv e^{\gamma_{E} \epsilon} \sum_{\substack{p_{1}, \ldots, p_{n}=0 \\
q_{1}, \ldots, q_{q}=0 \\
m_{1}, \ldots, m_{n}=0}}^{\infty}\left(Q_{1}^{2}\right)^{q_{1}} \ldots\left(Q_{q}^{2}\right)^{q_{q}}\left(-M_{1}^{2}\right)^{m_{1}} \ldots\left(-M_{n}^{2}\right)^{m_{n}} \\
& \times\left(\prod_{i=1}^{n} \frac{\Gamma\left(1-\nu_{i}\right)}{\Gamma\left(1+m_{i}\right) \Gamma\left(1+p_{i}\right)}\right)\left(\prod_{i=1}^{q} \frac{1}{\Gamma\left(1+q_{i}\right)}\right) \Gamma\left(1+\sum_{k=1}^{n} p_{k}\right)
\end{aligned}
$$

- In general, more than one solution might be obtained, and the Feynman integral is a combination of hypergeometric series.

NDIM in a nutshell

- Caveat: Some of the series are only convergent in a given region of phase space!
E.g., in the four point case

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{(a)_{n}}{n!}\left(\frac{s}{t}\right)^{n}={ }_{2} F_{1}(a, b, b ; s / t), \quad \text { if } s<t \\
& \sum_{n=0}^{\infty} \frac{(a)_{n}}{n!}\left(\frac{t}{s}\right)^{n}={ }_{2} F_{1}(a, b, b ; t / s), \quad \text { if } t<s
\end{aligned}
$$

- Recipe: Only the convergent series contirbute to a given region.
- The different regions are linked by analytic continuation:

$$
{ }_{2} F_{1}(a, b, b ; t / s)=\left(-\frac{s}{t}\right)^{a}{ }_{2} F_{1}(a, b, b ; s / t)
$$

The pentagon from NDIM

- For the pentagon in general kinematics, we find 125 4-fold hypergeometric sums:

$$
\begin{aligned}
& F\left(a, b, c, d, e, f ; x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& \qquad=\sum_{n_{1}, n_{2}, n_{3}, n_{4}=0}^{\infty} \frac{(a)_{n_{1}+n_{2}+n_{3}+n_{4}}(b)_{n_{1}+n_{2}+n_{3}}(c)_{n_{2}+n_{3}+n_{4}}}{(d)_{n_{1}+n_{2}}(e)_{n_{2}+n_{3}}(f)_{n_{3}+n_{4}}} \frac{x_{1}^{n_{1}}}{n_{1}!} \frac{x_{2}^{n_{2}}}{n_{2}!} \frac{x_{3}^{n_{3}}}{n_{3}!} \frac{x_{4}^{n_{4}}}{n_{4}!}
\end{aligned}
$$

- After imposing multi-Regge kinematics, the sums reduce to double sums.

The pentagon from NDIM

- For the pentagon there are three regions of convergence:

\[

\]

- The three regions are connected by analytic continuation.

The pentagon from NDIM

$$
\begin{aligned}
& \mathcal{I}_{\mathrm{ND}}^{(I I a)}\left(s, s_{1}, s_{2}, t_{1}, t_{2}\right) \\
& =-\frac{1}{\epsilon^{3}} y_{2}^{-\epsilon} \Gamma(1-2 \epsilon) \Gamma(1+\epsilon)^{2} F_{4}\left(1-2 \epsilon, 1-\epsilon, 1-\epsilon, 1-\epsilon ;-y_{1}, y_{2}\right) \\
& +\frac{1}{\epsilon^{3}} \Gamma(1+\epsilon) \Gamma(1-\epsilon) F_{4}\left(1,1-\epsilon, 1-\epsilon, 1+\epsilon ;-y_{1}, y_{2}\right) \\
& -\frac{1}{\epsilon^{2}} y_{1}^{\epsilon} y_{2}^{-\epsilon}\left\{\left[\ln y_{1}+\psi(1-\epsilon)-\psi(-\epsilon)\right] F_{4}\left(1,1-\epsilon, 1+\epsilon, 1-\epsilon ;-y_{1}, y_{2}\right)\right. \\
& \left.+\frac{\partial}{\partial \delta} F_{0,2}^{2,1}\left(\begin{array}{cc|ccc|}
1+\delta & 1+\delta-\epsilon & 1 & - & - \\
- & - & - & - \\
1+\delta & 1-\epsilon & 1+\epsilon+\delta & -y_{1}, y_{2}
\end{array}\right)_{\mid \delta=0}\right\} \\
& +\frac{1}{\epsilon^{2}} y_{1}^{\epsilon}\left\{\left[\ln y_{1}+\psi(1+\epsilon)-\psi(-\epsilon)\right] F_{4}\left(1,1+\epsilon, 1+\epsilon, 1+\epsilon ;-y_{1}, y_{2}\right)\right. \\
& \left.+\frac{\partial}{\partial \delta} F_{0,2}^{2,1}\left(\begin{array}{cc|ccc|}
1+\delta & 1+\delta+\epsilon & 1 & - & - \\
- & - & - & -y_{1}, y_{2}
\end{array}\right)_{\mid \delta=0}\right\}
\end{aligned}
$$

The pentagon from NDIM

- Appell function:

$$
F_{4}(a, b, c, d ; x, y)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(a)_{m+n}(b)_{m+n}}{(c)_{m}(d)_{n}} \frac{x^{m}}{m!} \frac{y^{n}}{n!}
$$

- Kampé de Fériet function:

$$
F_{p^{\prime}, q^{\prime}}^{p, q}\left(\begin{array}{c}
\alpha_{i} \\
\alpha_{k}^{\prime}
\end{array}\left|\begin{array}{c}
\beta_{j} \\
\gamma_{j} \\
\beta_{\ell}^{\prime} \\
\gamma_{\ell}^{\prime}
\end{array}\right| x, y\right)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{\prod_{i}\left(\alpha_{i}\right)_{m+n} \prod_{j}\left(\beta_{j}\right)_{m}\left(\gamma_{j}\right)_{n}}{\prod_{k}\left(\alpha_{k}^{\prime}\right)_{m+n} \prod_{\ell}\left(\beta_{\ell}^{\prime}\right)_{m}\left(\gamma_{\ell}^{\prime}\right)_{n}} \frac{x^{m}}{m!} \frac{y^{n}}{n!}
$$

The pentagon from NDIM

- After expansion in ϵ, we find an expression for the pentagon in terms of new transcendental functions:

$$
\mathcal{M}\left(\vec{\imath}, \vec{\jmath}, \vec{k} ; x_{1}, x_{2}\right)=\sum_{n_{1}=0}^{\infty} \sum_{n_{2}=0}^{\infty}\binom{n_{1}+n_{2}}{n_{1}}^{2} S_{\bar{\imath}}\left(n_{1}\right) S_{\vec{\jmath}}\left(n_{2}\right) S_{\vec{k}}\left(n_{1}+n_{2}\right) x_{1}^{n_{1}} x_{2}^{n_{2}}
$$

- In simple cases we could resum these series, but we could not do it in general.

The pentagon from NDIM

- We can easily perform the analytic continuation to the physical region, because the hypergeometric functions stay real.
\Rightarrow The convergence criterion is $\sqrt{\left|y_{1}\right|}+\sqrt{\left|y_{2}\right|}<1$
$\Rightarrow y 1$ and $y 2$ change sign, but not in absolute value.
\Rightarrow So the only imaginary parts come form the coefficients.

$$
\begin{aligned}
& \mathcal{I}_{\mathrm{ND}}^{(I I a)}\left(s, s_{1}, s_{2}, t_{1}, t_{2}\right) \\
& \quad=-\frac{1}{\epsilon^{3}} y_{2}^{-\epsilon} \Gamma(1-2 \epsilon) \Gamma(1+\epsilon)^{2} F_{4}\left(1-2 \epsilon, 1-\epsilon, 1-\epsilon, 1-\epsilon ;-y_{1}, y_{2}\right) \\
& \quad+\frac{1}{\epsilon^{3}} \Gamma(1+\epsilon) \Gamma(1-\epsilon) F_{4}\left(1,1-\epsilon, 1-\epsilon, 1+\epsilon ;-y_{1}, y_{2}\right)
\end{aligned}
$$

The pentagon from MB

- The pentagon in general kinematics can be written as a four-fold MB integral.
[Bern et al.]
- After imposing multi-Regge kinematics, the 4-fold integral reduces to a double integral, e.g. in Region II(a):

$$
\begin{gathered}
\mathcal{I}_{\mathrm{MB}}^{(I I a)}\left(\kappa, t_{1}, t_{2}\right)=\frac{-y_{1}^{\epsilon}}{\Gamma(1+\epsilon) \Gamma(1-\epsilon)^{2}} \frac{1}{(2 \pi i)^{2}} \int_{-i \infty}^{+i \infty} \mathrm{~d} z_{1} \mathrm{~d} z_{2} y_{1}^{z_{1}} y_{2}^{z_{2}} \Gamma\left(-\epsilon-z_{1}\right) \Gamma\left(-z_{1}\right)^{2} \\
\times \Gamma\left(z_{1}+1\right) \Gamma\left(-\epsilon-z_{2}\right) \Gamma\left(-z_{2}\right) \Gamma\left(z_{1}+z_{2}+1\right) \Gamma\left(\epsilon+z_{1}+z_{2}+1\right),
\end{gathered}
$$

- Closing the contours, and taking residues, we exactly reproduce the NDIM result.

The pentagon from MB

- In this case we can do more!
- We can exchange one MB integral for an Euler integral:

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{-i \infty}^{+i \infty} \mathrm{~d} z_{1} \Gamma\left(-z_{1}\right) \Gamma\left(c-z_{1}\right) \Gamma\left(b+z_{1}\right) \Gamma\left(a+z_{1}\right) X^{z_{1}} \\
& \quad=\Gamma(a) \Gamma(b+c) \int_{0}^{1} \mathrm{~d} v v^{b-1}(1-v)^{a+c-1}(1-(1-X) v)^{-a}
\end{aligned}
$$

- The remaining MB integral now becomes trivial, and we obtain an Euler integral representation for the pentagon.

The pentagon from MB

- The Euler integral can be completely solved in terms of Goncharov's multiple polylogarithm

$$
M\left(a_{1}, a_{2}, \ldots ; z\right)=\int_{0}^{z} \frac{d x}{x-a_{1}} M\left(a_{2}, \ldots ; x\right)=\int_{0}^{z} \frac{d x}{x-a_{1}} \int_{0}^{x} \frac{d y}{y-a_{2}} \ldots
$$

- A small sample:

$$
\begin{gathered}
\frac{1}{\sqrt{\lambda_{K}}}\left\{\left(\frac{1}{2} \ln ^{2} x_{2}+\frac{\pi^{2}}{2}\right) M\left(\lambda_{1}\right)+\left(-\frac{1}{2} \ln ^{2} x_{2}-\frac{\pi^{2}}{2}\right) M\left(\lambda_{2}\right)-\ln x_{2} M\left(\lambda_{1}, 0\right)-\right. \\
\ln x_{2} M\left(\lambda_{1}, 1\right)+\ln x_{2} M\left(\lambda_{1}, \lambda_{3}\right)+\ln x_{2} M\left(\lambda_{2}, 0\right)+\ln x_{2} M\left(\lambda_{2}, 1\right)-\ln x_{2} M\left(\lambda_{2}, \lambda_{3}\right)+ \\
M\left(\lambda_{1}, 0,0\right)+M\left(\lambda_{1}, 0,1\right)-M\left(\lambda_{1}, 0, \lambda_{3}\right)+M\left(\lambda_{1}, 1,0\right)+M\left(\lambda_{1}, 1,1\right)-M\left(\lambda_{1}, 1, \lambda_{3}\right)- \\
\lambda_{1}=\frac{1}{2}\left(1+x_{1}-x_{2}-\sqrt{\lambda_{K}}\right) \quad \lambda_{K}=\lambda\left(x_{1}, x_{2},-1\right) \\
\lambda_{2}=\frac{1}{2}\left(1+x_{1}-x_{2}+\sqrt{\lambda_{K}}\right) \quad
\end{gathered}
$$

What did we learn?

- We used different representations to get different kinds of information
\Rightarrow NDIM: Hypergeometric functions, analytic continuation.
\Rightarrow MB: Closed form in terms of generalized polylog's.
- New mathematical structures can appear beyond $\mathcal{O}\left(\epsilon^{0}\right)$
\Rightarrow Kampé de Fériet functions
- Goncharov's polylogarithms

What did we learn?

- We used different representations to get different kinds of information
\Rightarrow NDIM: Hypergeometric functions, analytic continuation.
\Rightarrow MB: Closed form in terms of generalized polylog's.
- Switching between different representations can give a valuable insight

The five-point amplitude

- We have now all the ingredients to build the five-point two-loop amplitude (in MRK).
\Rightarrow The BDS iteration

$$
M_{n}^{(2)}(\epsilon)=\frac{1}{2}\left(M_{n}^{(1)}(\epsilon)\right)^{2}+f^{(2)}(\epsilon) M_{n}^{(1)}(2 \epsilon)+C^{(2)}+\mathcal{O}(\epsilon)
$$

\Rightarrow The one-loop amplitude to higher orders in ϵ

$$
M_{n}^{(1)}(\epsilon)=-\frac{1}{2} G(\epsilon) \sum_{\text {cyclic }} s_{12} s_{23} I_{4}^{1 m}(1,2,3,45, \epsilon)-\epsilon G(\epsilon) \epsilon_{1234} I_{5}^{6-2 \epsilon}(\epsilon)
$$

Conclusion

- We studied for the first time the analytic structure of 5point one-loop amplitudes to higher orders in ϵ.
- New mathematical structures appear beyond the finite part:
\Rightarrow Kampé de Fériet functions
- Goncharov's polylogarithms
- As a byproduct, we computed the two-loop 5-point amplitude in MSYM in simplified kinematics.

The BDS remainder function

- The remainder function vanishes for $n<6$:

$$
\mathcal{R}_{4}=\mathcal{R}_{5}=0
$$

- The remainder function is a function of conformal crossratios only.
- The remainder function is a symmetric function in the conformal cross-ratios.
- Collinear limits:

$$
\mathcal{R}_{n} \longrightarrow \mathcal{R}_{n-1}
$$

In particular, this implies

$$
\mathcal{R}_{6} \longrightarrow 0
$$

The high-energy limit

- In the high-energy limit, the amplitude is conjectured to factorize,

Determined by the four-point amplitude
We can now
 extract the Lipatov vertex

The high-energy limit

- In the high-energy limit, the amplitude is conjectured to factorize,

$$
\begin{gathered}
s C\left(p_{2}, p_{3} ; \epsilon, \tau\right) \frac{1}{t_{2}}\left(\frac{-s_{2}}{\tau}\right)^{\alpha\left(t_{2}\right)} \\
V\left(q_{2} ; p_{4} ; q_{1} ; \epsilon, \tau\right) \\
\frac{1}{t_{1}}\left(\frac{-s_{1}}{\tau}\right)^{\alpha\left(t_{1}\right)} C\left(p_{5}, p_{5} ; \epsilon, \tau\right)
\end{gathered}
$$

\Rightarrow The impact factor C
\Rightarrow The Regge trajectory

\Rightarrow The Lipatov vertex V
[See Del Duca's talk last week]

