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Outline

• The BDS ansatz & high-energy limits

• The negative dimension approach in a nutshell

• The scalar massless pentagon in the high-energy limit
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The BDS ansatz

• Bern, Dixon and Smirnov conjectured that MHV 
amplitudes MSYM can be written as:

9.1. The ABDK/BDS ansatz 92
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The quantities c1 and c2 are expected to be rational numbers, but they cannot be determined from

the computation of the three-loop four-point amplitude, because they cancel in the final result. BDS

then extended the iteration formulæ (9.1) and (9.5) and formulated an ansatz for a generic n-point

MHV amplitude in MSYM. This all-orders ansatz reads

Mn(ε) = 1 +
∞
∑

l=1

al M (l)
n (ε) = exp

∞
∑

l=0

al

[

f (l)(ε)M (1)
n (lε) + C(l) + E(l)

n (ε)

]

, (9.7)

The only kinematical dependence in the right-hand side of Eq. (9.7) is in the one-loop amplitude

M (1)
n (lε). The quantities f (l)(ε) and C(l) are universal and are independent of the kinematics and

the number of external particles. f (l)(ε) is expected to be a polynomial of degree two in ε, and

C(l) to be a polynomial of uniform transcendental weight in Riemann ζ values. The values of these

functions for l = 2, 3 are given in Eqs. (9.2) and (9.6). The functions E(l)
n (ε) are additional O(ε)

contributions. It is easy to see that we must have f (1)(ε) = C(1) = E(1)
n (ε) = 0 in order to reproduce

the one-loop result. Expanding the exponential in Eq. (9.7) and collecting powers of the coupling

constant a, the BDS ansatz reproduces the two and three-loop iteration formulæ (9.1) and (9.5).

Using the normalisation of Eq. (8.12) in terms of the rescaled coupling ḡ2, Eq. (9.7) can be written

in the equivalent form,
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∞
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]
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The BDS ansatz was first shown to fail by Alday and Maldacena in the limit of a large number

of gluons using the ADS/CFT correspondence [11]. This result was backed up by the computation

of the six-edge Wilson loop and using the conjecture that the n-edged Wilson loop can be related

to scattering amplitudes in MSYM [94]. The question was settled in Ref. [12] with the explicit

numerical computation of the two-loop six-point amplitude, which confirmed the Wilson loop result

and demonstrated the breakdown of the BDS ansatz for l = 2 and n = 6 in the finite contribution of

the parity-even part. Recently, also the seven and eight-edged Wilson loops have been computed [13].

Assuming that the duality between Wilson loops and MSYM scattering amplitudes holds even

beyond n = 6, the conclusion is that the BDS ansatz fails for n = 7 and 8 as well. The breakdown

of the ansatz can be quantified by the remainder function R(2)
n , defined as the difference between

the left and right-hand sides of the ABDK ansatz,

R(2)
n ≡ M (2)

n (ε) − 1

2

(

M (1)
n (ε)

)2 − f (2)(ε)M (1)
n (2ε) − C(2). (9.9)

The previous results can then be summarized by the statement that R(2)
n #= 0 for n ≥ 6, and

R(2)
n is a constant with respect to ε. Since the computation of Ref. [12] was numerical, we ignore at

• The BDS ansatz reproduces correctly the infrared poles of 
the amplitude.
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The BDS ansatz

• In practice, the BDS ansatz implies a tower of iteration 
formulæ in the number of loops, e.g. for two loops

Chapter 9

The BDS ansatz and multi-Regge
kinematics

9.1 The ABDK/BDS ansatz

In Ref. [9], Anastasiou, Bern, Dixon and Kosower (ABDK) formulated an ansatz for the two-loop

n-point MHV amplitude in MSYM, which expresses the two-loop amplitude in terms of the one-loop

amplitude,

M (2)
n (ε) =

1

2

(

M (1)
n (ε)

)2
+ f (2)(ε)M (1)

n (2ε) + C(2) + O(ε), (9.1)

where

f (2)(ε) =
ψ(1 − ε) + γE

ε
and C(2) = −5

4
ζ4. (9.2)

Note that because of the infrared poles in 1/ε2 in the one-loop amplitude, the one-loop amplitude

must be known through O(ε2). The origin of this ansatz goes back to the computation by the same

people of the two-loop splitting function in MSYM, which was shown to satisfy an iteration relation

very similar to Eq. (9.1),

r(2)
S (ε) =

1

2

(

r(1)
S (ε)

)2
+ f (2)(ε) r(1)

S (2ε), (9.3)

where r(l)
S denotes the l-loop splitting function, rescaled by the tree-level result. Indeed, in the

collinear limit the one and two-loop n-point MHV amplitudes must factorise according to

M (1)
n → M (1)

n−1 + r(1)
S ,

M (2)
n → M (2)

n−1 + M (1)
n−1 r(1)

S + r(2)
S ,

(9.4)

and it is easy to see that the ABDK ansatz (9.1) is the only iteration which is compatible with both

the iteration of the two-loop splitting amplitude, Eq. (9.3) and the collinear factorisation (9.4). The

ansatz was backed up by comparing the iteration to the two-loop four-point amplitude in MSYM.

In Ref. [92] the ABDK ansatz was shown to hold also in the case of the five-point amplitude, which

has been computed numerically.

Bern, Dixon and Smirnov (BDS) computed the three-loop four-point MSYM amplitude [10], and

showed that it satisfies an iteration formula similar to the ABDK ansatz for the two-loop amplitude,

M (3)
4 (ε) = −1

3

(

M (1)
4 (ε)

)3
+ M (1)

4 (ε)M (2)
4 (ε) + f (3)(ε)M (1)

4 (3ε) + C(3) + O(ε), (9.5)
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The BDS ansatz

• In practice, the BDS ansatz implies a tower of iteration 
formulæ in the number of loops, e.g. for two loops

Requires the knowledge of 
the one-loop amplitude to 

higher orders.

Chapter 9

The BDS ansatz and multi-Regge
kinematics

9.1 The ABDK/BDS ansatz

In Ref. [9], Anastasiou, Bern, Dixon and Kosower (ABDK) formulated an ansatz for the two-loop

n-point MHV amplitude in MSYM, which expresses the two-loop amplitude in terms of the one-loop
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4
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Note that because of the infrared poles in 1/ε2 in the one-loop amplitude, the one-loop amplitude

must be known through O(ε2). The origin of this ansatz goes back to the computation by the same

people of the two-loop splitting function in MSYM, which was shown to satisfy an iteration relation

very similar to Eq. (9.1),
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(9.4)

and it is easy to see that the ABDK ansatz (9.1) is the only iteration which is compatible with both

the iteration of the two-loop splitting amplitude, Eq. (9.3) and the collinear factorisation (9.4). The

ansatz was backed up by comparing the iteration to the two-loop four-point amplitude in MSYM.

In Ref. [92] the ABDK ansatz was shown to hold also in the case of the five-point amplitude, which

has been computed numerically.

Bern, Dixon and Smirnov (BDS) computed the three-loop four-point MSYM amplitude [10], and

showed that it satisfies an iteration formula similar to the ABDK ansatz for the two-loop amplitude,
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The BDS remainder function

• Modified BDS ansatz, including an arbitrary function of 
conformal cross-ratios, e.g. for n=6,

BDS remainder 
function

M (2)
6 (ε) =

1
2

(
M (1)

6 (ε)
)2 + f (2)(ε) M (1)

6 (2ε) + C(2)

+R(2)
6 (u1, u2, u3)

+O(ε)
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The BDS remainder function

• How can we get a handle on the BDS remainder function?

• Solution I:
Direct analytic computation of the one and two - loop six-
point amplitudes.

➡ Needs the analytic evaluation of the one and two-loop 
scalar hexagon integrals.

➡ Completely out of reach for the moment!
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The BDS remainder function

• How can we get a handle on the BDS remainder function?

• Solution II:
Analytic evaluation of the one and two-loop six-point 
amplitude in some simplified kinematics.

➡ Collinear limit: This limit is verified ‚by construction’.

➡ High-energy limit.

• We want to explore what higher point amplitudes looks 
like, so we start form the simplest non-trivial case, the 5-
point amplitude in the high-energy limit.
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The high-energy limit

• Multi-Regge kinematics are defined by

• This implies a hierarchy of scales:

p1

p2

p5

t2

p3

s1

s2

t1

p4

Figure 1: The five (a) and six (b) point amplitudes in quasi multi-Regge kinematics.

XX

July 14, 2009

1

y3 ! y4 ! y5

|p3⊥| ! |p4⊥| !| p5⊥|

s! s1, s2 ! −t1,−t2

st1 ! st2 ! s1s2

[See Del Duca’s talk last week]
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The scalar massless pentagon

[Bern, Dixon, Dunbar, Kosower]

• According to the BDS ansatz, it is enough to know the 5-
point amplitude to higher orders in    .ε

Chapter 9

The BDS ansatz and multi-Regge
kinematics

9.1 The ABDK/BDS ansatz

In Ref. [9], Anastasiou, Bern, Dixon and Kosower (ABDK) formulated an ansatz for the two-loop

n-point MHV amplitude in MSYM, which expresses the two-loop amplitude in terms of the one-loop

amplitude,
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4
ζ4. (9.2)

Note that because of the infrared poles in 1/ε2 in the one-loop amplitude, the one-loop amplitude

must be known through O(ε2). The origin of this ansatz goes back to the computation by the same

people of the two-loop splitting function in MSYM, which was shown to satisfy an iteration relation

very similar to Eq. (9.1),

r(2)
S (ε) =

1

2

(

r(1)
S (ε)

)2
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S (2ε), (9.3)

where r(l)
S denotes the l-loop splitting function, rescaled by the tree-level result. Indeed, in the

collinear limit the one and two-loop n-point MHV amplitudes must factorise according to
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S ,

M (2)
n → M (2)
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n−1 r(1)

S + r(2)
S ,

(9.4)

and it is easy to see that the ABDK ansatz (9.1) is the only iteration which is compatible with both

the iteration of the two-loop splitting amplitude, Eq. (9.3) and the collinear factorisation (9.4). The

ansatz was backed up by comparing the iteration to the two-loop four-point amplitude in MSYM.

In Ref. [92] the ABDK ansatz was shown to hold also in the case of the five-point amplitude, which

has been computed numerically.

Bern, Dixon and Smirnov (BDS) computed the three-loop four-point MSYM amplitude [10], and

showed that it satisfies an iteration formula similar to the ABDK ansatz for the two-loop amplitude,
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8.2.2 The five-point MSYM amplitude in the high-energy limit

In the case of the five-point amplitude the high-energy prescription (8.3) reduces to

A5(1, 2, 3, 4, 5; ε) = s C(p2, p3; ε, τ)
1

t2

(

−s2

τ

)α(t2;ε)

V (q2, p4, q1; ε, τ)
1

t1

(

−s1

τ

)α(t1;ε)

C(p1, p5; ε, τ),

(8.25)

and the mass-shell condition for the gluon emitted along the ladder reads

(−s) (−κ) = (−s1) (−s2). (8.26)

Expanding Eq. (8.25) to one-loop accuracy, we find

m(1)
5 = ᾱ(1)(t1; ε)L1 + ᾱ(1)(t2; ε)L2 + C̄(1)(t1; ε, τ) + C̄(1)(t2; ε, τ) + V̄ (1)(t1, t2,κ; ε, τ) . (8.27)

where Li = ln(−si/τ) and i = 1, 2. The coefficient functions and Regge trajectories appearing in

this expression are the same as those appearing in the four-point case, Eq. (8.23). The five-point

one-loop amplitude on the left-hand side can be expressed in terms of scalar one-mass boxes and a

massless pentagon integral in D = 6 − 2ε dimensions [92],

m(1)
5 = −1

2
G(ε)

∑

cyclic

s12s23I
1m
4 (1, 2, 3, 45, ε) − εG(ε) ε1234I

6−2ε
5 (ε), (8.28)

with

ε1234 = Tr
(

/p1 /p2 /p3 /p4 γ5
)

, (8.29)

and the cyclicity is over i = 1, . . . , 5. I1m
4 is the one-mass box in D = 4 − 2ε dimension, with

a massive leg of virtuality s45, and I6−2ε
5 denotes the massless pentagon integral in D = 6 − 2ε

dimensions. Note that I6−2ε
5 is finite for ε → 0, so this contribution only becomes important for

the higher-orders in ε. We can therefore neglect the pentagon contribution and use Eq. (8.28) to

extract the one-loop Lipatov vertex through O(ε) [90]. This function, together with the coefficient

functions and the Regge trajectory defined in Eq. (8.23), is enough to construct a one-loop n-point

gluon amplitude in MSYM in the limit of multi-Regge kinematics for arbitrary n through order ε0.

At two-loop accuracy, Eq. (8.25) reads

m(2)
5 =

1

2

(

m(1)
5

)2
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− 1

2

(

C̄(1)(t1, τ)
)2

− 1

2
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)2

− 1

2

(

C̄(1)(t2, τ)
)2

(8.30)

In order to extract the two-loop Lipatov vertex from Eq. (8.30), we need to know analytically the

one-loop amplitude to O(ε2) and the two-loop amplitude to O(ε0) in multi-Regge kinematics. As

already mentioned, the higher order terms of the one-loop amplitude gain contributions from the

scalar massless pentagon in D = 6−2ε dimensions. We will compute these contributions explicitly in

Chapter 10 to all orders in ε in terms of generalized hypergeometric functions and in Appendix N as

a Taylor series in ε whose coefficients are combinations of generalized polylogarithms. Furthermore,

Chapter 9

The BDS ansatz and multi-Regge
kinematics

9.1 The ABDK/BDS ansatz

In Ref. [9], Anastasiou, Bern, Dixon and Kosower (ABDK) formulated an ansatz for the two-loop

n-point MHV amplitude in MSYM, which expresses the two-loop amplitude in terms of the one-loop
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and C(2) = −5

4
ζ4. (9.2)

Note that because of the infrared poles in 1/ε2 in the one-loop amplitude, the one-loop amplitude

must be known through O(ε2). The origin of this ansatz goes back to the computation by the same

people of the two-loop splitting function in MSYM, which was shown to satisfy an iteration relation

very similar to Eq. (9.1),
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where r(l)
S denotes the l-loop splitting function, rescaled by the tree-level result. Indeed, in the

collinear limit the one and two-loop n-point MHV amplitudes must factorise according to

M (1)
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n−1 + r(1)
S ,

M (2)
n → M (2)

n−1 + M (1)
n−1 r(1)

S + r(2)
S ,

(9.4)

and it is easy to see that the ABDK ansatz (9.1) is the only iteration which is compatible with both

the iteration of the two-loop splitting amplitude, Eq. (9.3) and the collinear factorisation (9.4). The

ansatz was backed up by comparing the iteration to the two-loop four-point amplitude in MSYM.

In Ref. [92] the ABDK ansatz was shown to hold also in the case of the five-point amplitude, which

has been computed numerically.

Bern, Dixon and Smirnov (BDS) computed the three-loop four-point MSYM amplitude [10], and

showed that it satisfies an iteration formula similar to the ABDK ansatz for the two-loop amplitude,

M (3)
4 (ε) = −1

3

(

M (1)
4 (ε)

)3
+ M (1)

4 (ε)M (2)
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The scalar massless pentagon
• According to the BDS ansatz, it is enough to know the 5-

point amplitude to higher orders in    .ε

• We performed the computation in two different ways:

➡ using the Negative Dimension approach (NDIM).

➡ using the Mellin-Barnes approach (MB).

[Halliday, Ricotta]

[See Riemann’s and Smirnov’s lectures]
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8.2.2 The five-point MSYM amplitude in the high-energy limit

In the case of the five-point amplitude the high-energy prescription (8.3) reduces to
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1
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and the mass-shell condition for the gluon emitted along the ladder reads

(−s) (−κ) = (−s1) (−s2). (8.26)

Expanding Eq. (8.25) to one-loop accuracy, we find
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where Li = ln(−si/τ) and i = 1, 2. The coefficient functions and Regge trajectories appearing in

this expression are the same as those appearing in the four-point case, Eq. (8.23). The five-point

one-loop amplitude on the left-hand side can be expressed in terms of scalar one-mass boxes and a
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a massive leg of virtuality s45, and I6−2ε
5 denotes the massless pentagon integral in D = 6 − 2ε

dimensions. Note that I6−2ε
5 is finite for ε → 0, so this contribution only becomes important for

the higher-orders in ε. We can therefore neglect the pentagon contribution and use Eq. (8.28) to

extract the one-loop Lipatov vertex through O(ε) [90]. This function, together with the coefficient

functions and the Regge trajectory defined in Eq. (8.23), is enough to construct a one-loop n-point

gluon amplitude in MSYM in the limit of multi-Regge kinematics for arbitrary n through order ε0.

At two-loop accuracy, Eq. (8.25) reads
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In order to extract the two-loop Lipatov vertex from Eq. (8.30), we need to know analytically the

one-loop amplitude to O(ε2) and the two-loop amplitude to O(ε0) in multi-Regge kinematics. As

already mentioned, the higher order terms of the one-loop amplitude gain contributions from the

scalar massless pentagon in D = 6−2ε dimensions. We will compute these contributions explicitly in

Chapter 10 to all orders in ε in terms of generalized hypergeometric functions and in Appendix N as

a Taylor series in ε whose coefficients are combinations of generalized polylogarithms. Furthermore,

Chapter 9

The BDS ansatz and multi-Regge
kinematics

9.1 The ABDK/BDS ansatz

In Ref. [9], Anastasiou, Bern, Dixon and Kosower (ABDK) formulated an ansatz for the two-loop

n-point MHV amplitude in MSYM, which expresses the two-loop amplitude in terms of the one-loop

amplitude,
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+ f (2)(ε)M (1)

n (2ε) + C(2) + O(ε), (9.1)

where

f (2)(ε) =
ψ(1 − ε) + γE

ε
and C(2) = −5

4
ζ4. (9.2)

Note that because of the infrared poles in 1/ε2 in the one-loop amplitude, the one-loop amplitude

must be known through O(ε2). The origin of this ansatz goes back to the computation by the same

people of the two-loop splitting function in MSYM, which was shown to satisfy an iteration relation

very similar to Eq. (9.1),

r(2)
S (ε) =
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)2
+ f (2)(ε) r(1)

S (2ε), (9.3)

where r(l)
S denotes the l-loop splitting function, rescaled by the tree-level result. Indeed, in the

collinear limit the one and two-loop n-point MHV amplitudes must factorise according to

M (1)
n → M (1)

n−1 + r(1)
S ,

M (2)
n → M (2)

n−1 + M (1)
n−1 r(1)

S + r(2)
S ,

(9.4)

and it is easy to see that the ABDK ansatz (9.1) is the only iteration which is compatible with both

the iteration of the two-loop splitting amplitude, Eq. (9.3) and the collinear factorisation (9.4). The

ansatz was backed up by comparing the iteration to the two-loop four-point amplitude in MSYM.

In Ref. [92] the ABDK ansatz was shown to hold also in the case of the five-point amplitude, which

has been computed numerically.

Bern, Dixon and Smirnov (BDS) computed the three-loop four-point MSYM amplitude [10], and

showed that it satisfies an iteration formula similar to the ABDK ansatz for the two-loop amplitude,

M (3)
4 (ε) = −1

3

(

M (1)
4 (ε)

)3
+ M (1)

4 (ε)M (2)
4 (ε) + f (3)(ε)M (1)

4 (3ε) + C(3) + O(ε), (9.5)
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• We start from the Schwinger parametrization.

NDIM in a nutshell
and performing the Gaussian integral in Eq. (3.4) leads to
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{νi}; {Q2
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=

∫

Dα
1

PD/2
exp(Q/P) exp(−M). (3.6)

The quantities P, Q and M are polynomials in the Schwinger parameters αi, the internal

masses M2
i and the momentum scales Q2

i ,

P =
n

∑

i=1

αi,

Q =
n−1
∑
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n
∑

j=i+1

αiαj

(

j−1
∑

l=i

kl

)2

,

M =
n

∑

i=1

αi M
2
i .

(3.7)

Note that the polynomials can directly be read off from the Feynman diagram in terms of

trees and two-trees [30, 31, 32, 33].

The Schwinger parametrization is the starting point of the NDIM method, which we

describe in the next section. Note however at this point the formal similarity between the

Schwinger parametrization (3.7) and the Laplace integral representation of the hypergeo-

metric function, Eq. (2.8).

3.2 The Negative Dimension approach

The crucial point in the NDIM approach is that the Gaussian integral (3.4) is an analytic

function of the space-time dimension. Hence it is possible to consider D < 0 and to make

the definition [23, 24]
∫

dDk

iπD/2
(k2)n = n! δn+ D

2 , 0 (3.8)

for positive values of n.

For the one-loop integrals we are interested in here, we view Eqs. (3.4) and (3.6) as

existing in negative dimensions. Making the same series expansion of the exponential as

above, Eq. (3.4) becomes

ID
n

(

{νi}; {Q2
i }; {Mi}

)

=

∫

Dα
∞

∑

n1,...,nn=0

∫

dDk

iπD/2

n
∏

i=1

(xiDi)ni

ni!

=

∫

Dα
∞

∑

n1,...,nn=0

ID
n

(

− n1, . . . ,−nn; {Q2
i }, {M2

i }
)

n
∏

i=1

xni
i

ni!
, (3.9)

where the ni are positive integers. The target loop integral is an infinite sum of (integrals

over the Schwinger parameters of) loop integrals with negative powers of the propagators.

Likewise, we expand the exponentials in Eq. (3.6)

ID
n

(

{νi}; {Q2
i }; {Mi}

)

=

∫

Dα
∞

∑

n=0

QnP−n−D
2

n!

∞
∑

m=0

(−M)m

m!
, (3.10)
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3. Feynman integrals

In this section we review the different representations for n-point scalar one-loop Feynman

integrals in D = D0 − 2ε dimensions, D0 being a positive integer,

ID
n

(

{νi}; {Q2
i }; {Mi}

)

= eγEε
∫

dDk

iπD/2

n
∏

i=1

1

Dνi
i

, (3.1)

where the external momenta ki are incoming such that
∑n

i=1 ki = 0 and the propagators

have the form

D1 = k2 − M2
1 + i0,

Di =



k +
i−1
∑

j=1

kj





2

− M2
i + i0, i = 2, . . . , n.

(3.2)

The external momentum scales are the Mandelstam variables Q2
i , and we work in the

Euclidean region, Q2
i < 0.

Feynman integrals can often be expressed in terms of (generalized) hypergeometric

functions. In the previous section we showed that different representations of hypergeo-

metric functions are useful to derive different properties. In the following we will argue that

the different parametrizations used to evaluate Feynman integrals, Schwinger and Feyn-

man parameters, series and Mellin-Barnes representations, are the equivalents to the four

representations of the representations of the hypergeometric function, and switching from

one parametrization to another might allow one to obtain valuable information about the

Feynman integral. In the rest of this section we briefly review the different parametriza-

tions, and in the rest of this work we give two examples how representations for Feynman

integrals can be combined when computing Feynman integrals.

3.1 The Schwinger parametrization

The Schwinger parametrization4 is based on the identity

1

Dνi
i

=
(−1)νi

Γ(νi)

∫ ∞

0
dαi α

νi−1
i eαi Di , (3.3)

Note that we explicitly derived Eq. (3.3) in Euclidean space, where we used the fact that

in the Euclidean region Di < 0 in order to get a convergent integral. The corresponding

relation in Minkowski space is similar, up to some factors of i in the exponent. Inserting

Eq. (3.3) into the loop integral (3.1), we obtain,

ID
n

(

{νi}; {Q2
i }; {Mi}

)

=

∫

Dα

∫

dDk

iπD/2
exp

(

n
∑

i=1

αi Di

)

, (3.4)

where we introduced the shorthand
∫

Dα = eγEε
n

∏

i=1

(−1)νi

Γ(νi)

∫ ∞

0
dαi α

νi−1
i , (3.5)

4Also known as α parametrization.
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and performing the Gaussian integral in Eq. (3.4) leads to

ID
n

(

{νi}; {Q2
i }; {Mi}

)

=

∫

Dα
1

PD/2
exp(Q/P) exp(−M). (3.6)

The quantities P, Q and M are polynomials in the Schwinger parameters αi, the internal

masses M2
i and the momentum scales Q2

i ,

P =
n

∑

i=1

αi,

Q =
n−1
∑

i=1

n
∑

j=i+1

αiαj

(

j−1
∑

l=i

kl

)2

,

M =
n

∑

i=1

αi M
2
i .

(3.7)

Note that the polynomials can directly be read off from the Feynman diagram in terms of

trees and two-trees [30, 31, 32, 33].

The Schwinger parametrization is the starting point of the NDIM method, which we

describe in the next section. Note however at this point the formal similarity between the

Schwinger parametrization (3.7) and the Laplace integral representation of the hypergeo-

metric function, Eq. (2.8).

3.2 The Negative Dimension approach

The crucial point in the NDIM approach is that the Gaussian integral (3.4) is an analytic

function of the space-time dimension. Hence it is possible to consider D < 0 and to make

the definition [23, 24]
∫

dDk

iπD/2
(k2)n = n! δn+ D

2 , 0 (3.8)

for positive values of n.

For the one-loop integrals we are interested in here, we view Eqs. (3.4) and (3.6) as

existing in negative dimensions. Making the same series expansion of the exponential as

above, Eq. (3.4) becomes
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, (3.9)

where the ni are positive integers. The target loop integral is an infinite sum of (integrals

over the Schwinger parameters of) loop integrals with negative powers of the propagators.

Likewise, we expand the exponentials in Eq. (3.6)
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P−n−D/2.

and introduce the integers q1, . . . , qq, p1, . . . , pn and m1, . . . ,mn to make multinomial ex-

pansions of Q, P and M respectively

Qn =
∞

∑

q1,...,qq=0

Qq1
1

q1!
. . .

Qqq
q

qq!
(q1 + . . . + qq)!,

P−n−D
2 =

∞
∑

p1,...,pn=0

αp1
1

p1!
. . .

αpn
n

pn!
(p1 + . . . + pn)!, (3.11)

(−M)m =
∞

∑

m1,...,mn=0

(−α1M2
1 )m1

m1!
. . .

(−αnM2
n)mn

mn!
(m1 + . . . + mn)!,

subject to the constraints
q

∑

i=1

qi = n,

n
∑

i=1

pi = −n − D

2
,

n
∑

i=1

mi = m,

p1 + . . . + pn + q1 + . . . + qq = −D

2
. (3.12)

Altogether, Eqs. (3.10) and (3.11) give

ID
n

(

{νi}; {Q2
i }; {Mi}

)

=
∫

Dα
∞
∑

p1,...,pn=0
q1,...,qq=0

m1,...,mn=0

Qq1
1 . . .Qqq

q

q1! . . . qq!

αp1
1 . . . αpn

n

p1! . . . pn!

(−α1M2
1 )m1

m1!
. . .

(−αnM2
n)mn

mn!
(p1 + . . . + pn)!,

(3.13)

with the constraints expressed by Eq. (3.12).

We recall that each of the Qi is a bilinear in the Schwinger parameters, so that the

target loop integral is now an infinite sum of powers of the scales of the process (with

each of the M2
i and the Q2

i raised to a different summation variable) integrated over the

Schwinger parameters.

Equations (3.9) and (3.13) are two different expressions for the same quantity: ID
n .

Matching up powers of the Schwinger parameters, we obtain an expression for the loop

integral with negative powers of the propagators in negative dimensions

ID
n

(

{νi}; {Q2
i }; {Mi}

)

≡ eγEε
∞
∑

p1,...,pn=0
q1,...,qq=0

m1,...,mn=0

(Q2
1)

q1 . . . (Q2
q)

qq (−M2
1 )m1 . . . (−M2

n)mn

×
(

n
∏

i=1

Γ(1 − νi)

Γ(1 + mi)Γ(1 + pi)

)(

q
∏

i=1

1

Γ(1 + qi)

)

Γ

(

1 +
n

∑

k=1

pk

)

,

(3.14)
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over the Schwinger parameters of) loop integrals with negative powers of the propagators.

Likewise, we expand the exponentials in Eq. (3.6)

ID
n

(

{νi}; {Q2
i }; {Mi}

)

=

∫

Dα
∞

∑

n=0

QnP−n−D
2

n!

∞
∑

m=0

(−M)m

m!
, (3.10)

– 8 –

n∏

i=1

αni
i

ni!

• We can now match the powers of the Schwinger 
parameters...
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NDIM in a nutshell
• ... and obtain a series representation of the Feynman 

integral

and introduce the integers q1, . . . , qq, p1, . . . , pn and m1, . . . ,mn to make multinomial ex-

pansions of Q, P and M respectively

Qn =
∞

∑

q1,...,qq=0

Qq1
1

q1!
. . .

Qqq
q

qq!
(q1 + . . . + qq)!,

P−n−D
2 =

∞
∑

p1,...,pn=0

αp1
1

p1!
. . .

αpn
n

pn!
(p1 + . . . + pn)!, (3.11)

(−M)m =
∞

∑

m1,...,mn=0

(−α1M2
1 )m1

m1!
. . .

(−αnM2
n)mn

mn!
(m1 + . . . + mn)!,

subject to the constraints
q

∑

i=1

qi = n,

n
∑

i=1

pi = −n − D

2
,

n
∑

i=1

mi = m,

p1 + . . . + pn + q1 + . . . + qq = −D

2
. (3.12)

Altogether, Eqs. (3.10) and (3.11) give

ID
n

(

{νi}; {Q2
i }; {Mi}

)

=
∫

Dα
∞
∑

p1,...,pn=0
q1,...,qq=0

m1,...,mn=0

Qq1
1 . . .Qqq

q

q1! . . . qq!

αp1
1 . . . αpn

n

p1! . . . pn!

(−α1M2
1 )m1

m1!
. . .

(−αnM2
n)mn

mn!
(p1 + . . . + pn)!,

(3.13)

with the constraints expressed by Eq. (3.12).

We recall that each of the Qi is a bilinear in the Schwinger parameters, so that the

target loop integral is now an infinite sum of powers of the scales of the process (with

each of the M2
i and the Q2

i raised to a different summation variable) integrated over the

Schwinger parameters.

Equations (3.9) and (3.13) are two different expressions for the same quantity: ID
n .

Matching up powers of the Schwinger parameters, we obtain an expression for the loop

integral with negative powers of the propagators in negative dimensions

ID
n

(

{νi}; {Q2
i }; {Mi}

)

≡ eγEε
∞
∑

p1,...,pn=0
q1,...,qq=0

m1,...,mn=0

(Q2
1)

q1 . . . (Q2
q)

qq (−M2
1 )m1 . . . (−M2

n)mn

×
(

n
∏

i=1

Γ(1 − νi)

Γ(1 + mi)Γ(1 + pi)

)(

q
∏

i=1

1

Γ(1 + qi)

)

Γ

(

1 +
n

∑

k=1

pk

)

,

(3.14)

– 9 –

• In general, more than one solution might be obtained, and 
the Feynman integral is a combination of hypergeometric 
series.
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NDIM in a nutshell
• Caveat: Some of the series are only convergent in a given 

region of phase space!

E.g., in the four point case
∞∑

n=0

(a)n

n!

(s

t

)n
= 2F1(a, b, b; s/t), if s < t

∞∑

n=0

(a)n

n!

(
t

s

)n

= 2F1(a, b, b; t/s), if t < s

• Recipe: Only the convergent series contirbute to a given 
region.

• The different regions are linked by analytic continuation:

2F1(a, b, b; t/s) =
(
−s

t

)a

2F1(a, b, b; s/t)
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The pentagon from NDIM

• For the pentagon in general kinematics, we find 125 4-fold 
hypergeometric sums:

• After imposing multi-Regge kinematics, the sums reduce to 
double sums.

5. The pentagon integral from NDIM

5.1 General considerations

Solving the system of constraints from negative dimensions, we identify 125 quadruple

series contributing to the massless scalar pentagon in general kinematics. Each series has

the form of a multiple generalized hypergeometric series. For example,

I{n1,n2,n3,n4} = (−s)ν45−D
2 (−t2)

ν51−D
2 (−s2)

−ν345+ D
2 (−s1)

ν45−D
2 (−t1)

−ν512+ D
2

× (−1)
D
2 eγEε Γ(ν1)Γ(ν2)Γ(ν3)Γ(ν4)Γ(ν5)

Γ(ν345 − D
2 )Γ(ν451 − D

2 )Γ(ν512 − D
2 )Γ(D

2 − ν45)Γ(D
2 − ν51)

× F

(

D − ν,
D

2
− ν45,

D

2
− ν51, 1 +

D

2
− ν345, 1 +

D

2
− ν451, 1 +

D

2
− ν512; x1, x2, x3, x4

)

.

(5.1)

The arguments of the hypergeometric functions are ratios of scales, e.g.

x1 =
s2

s
, x2 = −s1s2

st2
, x3 =

s1t1
st2

, x4 =
t1
t2

, (5.2)

and we introduced the definitions ν123 = ν1 + ν2 + ν3, etc. For convenience we have intro-

duced the shorthand for quadruple sums,

F (a, b, c,d, e, f ;x1, x2, x3, x4)

=
∞
∑

n1,n2,n3,n4=0

(a)n1+n2+n3+n4 (b)n1+n2+n3 (c)n2+n3+n4

(d)n1+n2 (e)n2+n3 (f)n3+n4

xn1
1

n1!

xn2
2

n2!

xn3
3

n3!

xn4
4

n4!
.

(5.3)

The hierarchy of scales in multi-Regge kinematics eliminates many of the 125 solutions

for the pentagon integral. The procedure for reducing the number of solutions is as follows,

1. Any solution containing a summation that contains ratios of a “large” scale divided

by a “small” scale, such as
(

s

s1

)n

, (5.4)

cannot converge and is therefore discarded. This reduces the number of solutions

from 125 to 22.

2. Solutions with a prefactor that are less singular than

1

s1s2
,

1

st1
,

1

st2
, (5.5)

when D = 6 − 2ε and νi = 1 are discarded. This reduces the number of solutions

from 22 to 20.

3. Any sum that contains ratios of a “small” scale divided by a “large” scale such as
(s1

s

)n
, (5.6)

gives its leading contribution when the summation variable n is zero. This leads to

sums with fewer than four summations.

– 13 –
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• For the pentagon there are three regions of convergence:
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Figure 1: The three regions contributing to the scalar massless pentagon in Euclidean kinematics.

where λ → 0 . The Euclidean region is itself divided into three other regions, in which

the pentagon is represented by different analytic expressions. For later convenience let us

introduce the following definitions,

x1 =
st1
s1s2

=
t1
κ

and x2 =
st2
s1s2

=
t2
κ

, (4.6)

where we introduced the transverse momentum scale

−κ =
(−s1) (−s2)

(−s)
. (4.7)

Note that κ behaves as a t-type invariant under the scaling Eq. (4.5). In terms of these

quantities the Euclidean region can be divided into three regions

1. Region I, where
√

x1 +
√

x2 < 1.

2. Region II(a), where −√
x1 +

√
x2 > 1.

3. Region II(b), where
√

x1 −
√

x2 > 1.

A graphical representation of these three regions in the (x1, x2) plane can be found in

Fig. 1. Note that Region I is symmetric in x1 and x2, whereas Regions II(a) and II(b)

exchange their roles under an exchange of x1 and x2. It is easy to see that Regions II(a)

and II(b) can be furthermore characterized by

1. Region II(a): (−t1) < (−t2).

2. Region II(b): (−t1) > (−t2).

Note that the region where k4 is soft, s1, s2 → 0, corresponds to x1, x2 → +∞ in the

(x1, x2)-plane.
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• The three regions are connected by analytic continuation.

The pentagon from NDIM
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all six contributions, e.g. ,

I(IIa)
3 + I(IIa)

4 = − 1

ε2
yε
1 y−ε

2

{

[

ln y1 + ψ(1 − ε) − ψ(−ε)
]

F4
(

1, 1 − ε, 1 + ε, 1 − ε;−y1, y2
)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ − ε 1 − − −
− − 1 + δ 1 − ε 1 + ε + δ −

− y1, y2

)

|δ=0

}

,

I(IIa)
5 + I(IIa)

6 =
1

ε2
yε
1

{

[

ln y1 + ψ(1 + ε) − ψ(−ε)
]

F4
(

1, 1 + ε, 1 + ε, 1 + ε;−y1, y2
)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ + ε 1 − − −
− − 1 + δ 1 + ε 1 + ε + δ −

− y1, y2

)

|δ=0

}

.

(5.12)

The final result for the massless scalar pentagon in multi-Regge kinematics to all orders in

ε in Region II(a) is then simply given by the sum

I(IIa)
ND (s, s1, s2, t1, t2)

= − 1

ε3
y−ε
2 Γ(1 − 2ε)Γ(1 + ε)2 F4

(

1 − 2ε, 1 − ε, 1 − ε, 1 − ε;−y1, y2

)

+
1

ε3
Γ(1 + ε)Γ(1 − ε)F4

(

1, 1 − ε, 1 − ε, 1 + ε;−y1, y2

)

− 1

ε2
yε
1 y−ε

2

{

[

ln y1 + ψ(1 − ε) − ψ(−ε)
]

F4
(

1, 1 − ε, 1 + ε, 1 − ε;−y1, y2
)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ − ε 1 − − −
− − 1 + δ 1 − ε 1 + ε + δ −

− y1, y2

)

|δ=0

}

+
1

ε2
yε
1

{

[

ln y1 + ψ(1 + ε) − ψ(−ε)
]

F4
(

1, 1 + ε, 1 + ε, 1 + ε;−y1, y2
)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ + ε 1 − − −
− − 1 + δ 1 + ε 1 + ε + δ −

− y1, y2

)

|δ=0

}

.

(5.13)

Note that the only functional dependence of I(IIa)
ND is in the ratio of scales y1 and y2, i.e. ,

in the transverse momentum scales t1, t2 and κ,

I(IIa)
ND (s, s1, s2, t1, t2) = I(IIa)

ND (κ, t1, t2). (5.14)

The solution in Region II(b) is related to the Region II(a) by analytic continuation accord-

ing to the prescription t1/t2 → t2/t1, or equivalently y2 → 1/y2. From the symmetry of

the multi-Regge limit in t1 and t2 it is easy to see that we must have

I(IIb)
ND (κ, t1, t2) =

t2
t1

I(IIa)
ND (κ, t2, t1). (5.15)

In Appendix E we explicitly show that Eq. (5.13) enjoys this property.
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• Appell function:

with w′ < w, we obtain now the function H(!w(a); 1) with a being the limit of the last

integration.

Since M -functions are nothing but the values in z = 1 of the G functions, and since

G-functions are straightforward generalizations of the HPL’s, this algorithm immediately

generalizes to the M -functions, and allows in principle to reduce functions of the form

M(. . . ,λ1, . . .) to HPL’s of the form H(. . . ;λ1), the algorithm being a straightforward

generalization of Eq. (B.9)

M(!w(a)) = M(!w(a0)) +

∫ a

a0

da′
∂

∂a′
M(!w(a′)), (B.10)

where a0 is arbitrary, provided that M(!w(a0)) exists.

C. Generalized hypergeometric functions

C.1 Appell functions

The Appell functions are defined by the double series,

F1(a, b, c, d;x, y) =
∞
∑

m=0

∞
∑

n=0

(a)m+n (b)m (c)n
(d)m+n

xm

m!

yn

n!
,

F2(a, b, c, d, e;x, y) =
∞
∑

m=0

∞
∑

n=0

(a)m+n (b)m (c)n
(d)m (e)n

xm

m!

yn

n!
,

F3(a, b, c, d, e;x, y) =
∞
∑

m=0

∞
∑

n=0

(a)m (b)n (c)m (d)n
(e)m+n

xm

m!

yn

n!
,

F4(a, b, c, d;x, y) =
∞
∑

m=0

∞
∑

n=0

(a)m+n (b)m+n

(c)m(d)n

xm

m!

yn

n!
.

(C.1)

From the series representation the Mellin-Barnes representation is trivially obtained. For

some special values of the indices, the Appell functions reduce to simpler hypergeometric

functions, e.g. ,

F4

(

α,β,α,β;
−x

(1 − x)(1 − y)
,

−y

(1 − x)(1 − y)

)

=
(1 − x)β(1 − y)α

1 − xy
,

F4

(

α,β,β,β;
−x

(1 − x)(1 − y)
,

−y

(1 − x)(1 − y)

)

= (1 − x)α(1 − y)α 2F1(α, 1 + α − β,β;xy),

F4

(

α,β,1 + α − β,β;
−x

(1 − x)(1 − y)
,

−y

(1 − x)(1 − y)

)

= (1 − y)α 2F1

(

α,β, 1 + α − β;−x(1 − y)

1 − x

)

,

F4

(

α,β,γ,β;
−x

(1 − x)(1 − y)
,

−y

(1 − x)(1 − y)

)

= (1 − x)α (1 − y)α F1(α, γ − β, 1 + α − γ, γ;x, xy).

(C.2)
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• Kampé de Fériet function:

The analytic continuation of the Appell F4 function reads

F4(a, b, c, d;x, y) =
Γ(d)Γ(b − a)

Γ(b)Γ(d − a)
(−y)−a F4

(

a, 1 + a − d, c, 1 + a − b;
x

y
,
1

y

)

+
Γ(d)Γ(a − b)

Γ(a)Γ(d − b)
(−y)−b F4

(

1 + b − d, b, c, 1 + b − a;
x

y
,
1

y

)

.

(C.3)

C.2 Kampé de Fériet functions

The Kampé de Fériet functions are defined by the series

F p,q
p′,q′

(

αi βj γj

α′
k β′

! γ′
!

x, y

)

=
∞
∑

m=0

∞
∑

n=0

∏

i (αi)m+n
∏

j (βj)m (γj)n
∏

k (α′
k)m+n

∏

! (β′
!)m (γ′

!)n

xm

m!

yn

n!
, (C.4)

with 1 ≤ i ≤ p, 1 ≤ j ≤ q, 1 ≤ k ≤ p′ and 1 ≤ $ ≤ q′, and convergence requires

p+q ≤ p′+q′+1 [29]. The order of a Kampé de Fériet function is defined by ω = p′+q′. If

p+q = ω+1, the function is called complete, and all other cases are obtained as a confluent

limiting case of a complete function. From its definition it is clear that the Kampé de Fériet

function enjoys the following symmetry property,

F p,q
p′,q′

(

αi βj γj

α′
k β′

! γ′
!

x, y

)

= F p,q
p′,q′

(

αi γj βj

α′
k γ′

! β′
!

y, x

)

. (C.5)

The Kampé de Fériet functions encompass the Appell functions for particular values of the

parameters,

F 1,1
1,0

(

a b c

d − −
x, y

)

= F1(a, b, c, d;x, y),

F 1,1
0,1

(

a b c

− d e
x, y

)

= F2(a, b, c, d, e;x, y),

F 0,2
1,0

(

− a b c d

e − − − −
x, y

)

= F3(a, b, c, d, e;x, y),

F 2,0
0,1

(

a b − −
− − c d

x, y

)

= F4(a, b, c, d;x, y).

(C.6)

The Kampé de Fériet function involves only Pochhammer symbols of the form (.)n1+n2 ,

(.)n1 , (.)n2 . We could alternatively define a function involving (.)n1−n2. Let us consider the

double series

F̃ p,q,r
p′,q′,r′

(

ai bj ch

a′k b′l c′m
x, y

)

=
∞
∑

n1=0

∞
∑

n2=0

∏

i(ai)n1−n2

∏

j(bj)n1

∏

h(ch)n2
∏

k(a
′
k)n1−n2

∏

l(b
′
l)n1

∏

m(c′m)n2

xn1

n1!

yn2

n2!
. (C.7)

Note that this function can appear in the analytic continuation of the Kampé de Fériet

function. In the following we proof that the generalized hypergeometric series F̃ can always

– 43 –
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• After expansion in   , we find an expression for the 
pentagon in terms of new transcendental functions:

ε

10.3. The pentagon integral from NDIM 103

reduction formulas of the Appell F4 functions, but we proceed and perform the ε expansion directly

on the series representation of the hypergeometric functions appearing in Eq. (10.20). Since all the

hypergeometric functions in Eq. (10.20) are finite for ε = 0, we can safely expand the Pochhammer

symbols into a power series under the summation sign,

(1 + ε)n = n!
(

1 + εZ1(n) + ε2 Z11(n) + ε3 Z111(n) + O(ε4)
)

,

1

(1 + ε)n
=

1

n!

(

1 − εS1(n) − ε2 S11(n) − ε3 S111(n) + O(ε4)
)

,
(10.24)

where S and Z denote nested harmonic sums and Euler-Zagier sums, defined recursively by [97]

Si(n) = Zi(n) = H(i)
n =

n
∑

k=1

1

ki
,

Si!(n) =
n

∑

k=1

S!(k)

ki
and Zi!(n) =

n
∑

k=1

Z!(k − 1)

ki
.

(10.25)

Using the algorithm described in Appendix G, we can express all the Euler-Zagier sums in terms

of harmonic sums. Finally, using the algebra properties of the S-sums, we can reduce all the

products of harmonic sums to linear combinations of the latter. Inserting Eq. (10.24) into the series

representation for hypergeometric functions we obtain the desired ε expansions, e.g. ,

F4(1, 1 + ε, 1 + ε, 1 + ε;x1, x2) = M(0, 0, 0;x1 , x2)

+ ε
[

M(0, 0, 1;x1, x2) −M(1, 0, 0;x1, x2) −M(0, 1, 0;x1 , x2)
]

+ ε2
[

M((1, 1), 0, 0;x1 , x2) + M(0, (1, 1), 0;x1 , x2) + M(0, 0, (1, 1);x1 , x2)

+ M(1, 1, 0;x1 , x2) −M(1, 0, 1;x1 , x2) −M(0, 1, 1;x1, x2) −M(0, 0, 2;x1, x2)
]

+O(ε3).

(10.26)

The M functions appearing in this expansion are transcendental functions defined by the double

series

M("ı,","k;x1, x2) =
∞
∑

n1=0

∞
∑

n2=0

(

n1 + n2

n1

)2

S!ı(n1)S!(n2)S!k(n1 + n2)xn1
1 xn2

2 . (10.27)

Note that due to the appearance of the binomial squared term in Eq. (10.27), we cannot reduce the

double sums in general to known function using the standard techniques [75, 74]. We can however

sum the series in some particular cases in which we can relate the M-function to the expansion of

a known hypergeometric function. This issue will be addressed in Appendix J.

Since Eq. (10.20) only involves Appell functions and Kampé de Fériet functions with indices

1 + ciε, it can be easily expanded in terms of M functions. The first two orders read,

I(IIa)(κ, t1, t2) = i(IIa)
0 (y1, y2) + ε i(IIa)

1 (y1, y2) + O(ε2), (10.28)

• In simple cases we could resum these series, but we could 
not do it in general.

The pentagon from NDIM
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• We can easily perform the analytic continuation to the 
physical region, because the hypergeometric functions stay 
real. 

The pentagon from NDIM

➡ The convergence criterion is

➡ y1 and y2 change sign, but not in absolute value.

➡ So the only imaginary parts come form the coefficients.

all six contributions, e.g. ,

I(IIa)
3 + I(IIa)

4 = − 1

ε2
yε
1 y−ε

2

{

[

ln y1 + ψ(1 − ε) − ψ(−ε)
]

F4
(

1, 1 − ε, 1 + ε, 1 − ε;−y1, y2
)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ − ε 1 − − −
− − 1 + δ 1 − ε 1 + ε + δ −

− y1, y2

)

|δ=0

}

,

I(IIa)
5 + I(IIa)

6 =
1

ε2
yε
1

{

[

ln y1 + ψ(1 + ε) − ψ(−ε)
]

F4
(

1, 1 + ε, 1 + ε, 1 + ε;−y1, y2
)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ + ε 1 − − −
− − 1 + δ 1 + ε 1 + ε + δ −

− y1, y2

)

|δ=0

}

.

(5.12)

The final result for the massless scalar pentagon in multi-Regge kinematics to all orders in

ε in Region II(a) is then simply given by the sum

I(IIa)
ND (s, s1, s2, t1, t2)

= − 1

ε3
y−ε
2 Γ(1 − 2ε)Γ(1 + ε)2 F4

(

1 − 2ε, 1 − ε, 1 − ε, 1 − ε;−y1, y2

)

+
1

ε3
Γ(1 + ε)Γ(1 − ε)F4

(

1, 1 − ε, 1 − ε, 1 + ε;−y1, y2

)

− 1

ε2
yε
1 y−ε

2

{

[

ln y1 + ψ(1 − ε) − ψ(−ε)
]

F4
(

1, 1 − ε, 1 + ε, 1 − ε;−y1, y2
)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ − ε 1 − − −
− − 1 + δ 1 − ε 1 + ε + δ −

− y1, y2

)

|δ=0

}

+
1

ε2
yε
1

{

[

ln y1 + ψ(1 + ε) − ψ(−ε)
]

F4
(

1, 1 + ε, 1 + ε, 1 + ε;−y1, y2
)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ + ε 1 − − −
− − 1 + δ 1 + ε 1 + ε + δ −

− y1, y2

)

|δ=0

}

.

(5.13)

Note that the only functional dependence of I(IIa)
ND is in the ratio of scales y1 and y2, i.e. ,

in the transverse momentum scales t1, t2 and κ,

I(IIa)
ND (s, s1, s2, t1, t2) = I(IIa)

ND (κ, t1, t2). (5.14)

The solution in Region II(b) is related to the Region II(a) by analytic continuation accord-

ing to the prescription t1/t2 → t2/t1, or equivalently y2 → 1/y2. From the symmetry of

the multi-Regge limit in t1 and t2 it is easy to see that we must have

I(IIb)
ND (κ, t1, t2) =

t2
t1

I(IIa)
ND (κ, t2, t1). (5.15)

In Appendix E we explicitly show that Eq. (5.13) enjoys this property.

– 15 –

√
|y1| +

√
|y2| < 1
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• The pentagon in general kinematics can be written as a 
four-fold MB integral.

The pentagon from MB

• After imposing multi-Regge kinematics, the 4-fold integral 
reduces to a double integral, e.g. in Region II(a):

[Bern et al.]

we find

ID
5 (1,1, 1, 1, 1;Q2

i ) =
− eγEε (−s)−ε−2

Γ(1 − 2ε)

× 1

(2πi)4

∫ +i∞

−i∞
dz dz′ dz1 dz2

(s1

s

)−z−2z′+z1
(s2

s

)z1
(

t1
s

)z2
(

t2
s

)−z1−z2+z′

λ−z

× Γ (−z1) Γ (−z2) Γ (z1 + z2 + 1) Γ
(

−ε − z′ − 1
)

Γ
(

ε − z + z1 − z′ + 2
)

× Γ
(

−z − z2 − z′ + 1
)

Γ
(

z1 + z2 − z′
)

Γ
(

−ε + z + z′ − 1
)

Γ
(

−z1 + z′ + 1
)

× Γ
(

z + z1 + 2z2 + 2
(

−z1 − z2 + z′
))

.

(6.42)

We think of the integration over z as the last one, and we analyze how poles in Γ(. . .+z) with

leading behavior λ−2 might arise. There is only one possibility, coming from the product

Γ (−ε − z′ − 1) Γ (−ε + z + z′ − 1). Taking the residues at z′ = −1− ε+n′, n′ ∈ N, we find

λ−zΓ
(

−ε + z + z′ − 1
)

→ λ−zΓ
(

−2ε − 2 + z + n′) . (6.43)

Taking the residues at z = 2 + 2ε − n − v′, n ∈ N, we find

λzΓ
(

−2ε − 2 + z + n′) → λ−2−2ε+n+n′

. (6.44)

Since we are only interested in the leading behavior in λ−2, we only keep the terms in

n = n′ = 0. Hence, we find a twofold Mellin-Barnes representation for the pentagon in

multi-Regge kinematics,

ID
5 (1,1, 1, 1, 1;Q2

i ) = rΓ eγEε (−κ)−ε

st2
I(IIa)

MB (κ, t1, t2) (6.45)

with

I(IIa)
MB (κ, t1, t2) =

−yε
1

Γ(1 + ε)Γ(1 − ε)2
1

(2πi)2

∫ +i∞

−i∞
dz1 dz2 yz1

1 yz2
2 Γ (−ε − z1) Γ (−z1)

2

× Γ (z1 + 1) Γ (−ε − z2) Γ (−z2)Γ (z1 + z2 + 1) Γ (ε + z1 + z2 + 1) ,

(6.46)

where y1 and y2 are defined in Eq. (5.10). We checked that if we close the integration con-

tours to the right, and take residues, we reproduce exactly the expression of the pentagon

obtained from NDIM, Eq. (5.13).

We now evaluate the Mellin-Barnes representation (6.45) and we derive an Euler in-

tegral representation for the pentagon in multi-Regge kinematics. Let us concentrate only

on the Mellin-Barnes integral. We can now use the identity (6.9), and we checked again

numerically that we can exchange the Euler and the Mellin-Barnes integration. We find

I(IIa)
MB (κ, t1, t2) =

−yε
1

Γ(1 + ε)Γ(1 − ε)2
1

2πi

∫ 1

0
dv

∫ +i∞

−i∞
dz1 (1 − v)z1−εvε+z1yz1

1

× (1 − v (1 − y2))
−z1−1 Γ (−ε − z1)Γ (−z1)

2 Γ (z1 + 1)3 .

(6.47)
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• Closing the contours, and taking residues, we exactly 
reproduce the NDIM result.
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• In this case we can do more!

• We can exchange one MB integral for an Euler integral:

• The remaining MB integral now becomes trivial, and we 
obtain an Euler integral representation for the pentagon.

To obtain the leading behavior in our limit λ → 0 let us follow the strategy formulated,

e.g., in Chap. 4 of [32, 33]. We think of the integration over z as the last one, and we

analyze how poles in Γ(. . . − z) with leading behavior λ−2 might arise. There is only

one possibility, coming from the product Γ (−ε − z + z1 − 1) Γ (−ε − z1 − 1). Taking the

residues at z1 = −1 − ε + n1, n1 ∈ N, we find

λzΓ (−ε − z + z1 − 1) → λzΓ (−2ε − 2 − z + n1) . (6.4)

If we now take the residues at z = −2 − 2ε + n1 + n2, n2 ∈ N, we find

λzΓ (−2ε − 2 − z + n1) → λ−2−2ε+n1+n2 . (6.5)

Since we are only interested in the leading behavior in λ−2, we only keep the terms in

n1 = n2 = 0. Hence, we find a twofold Mellin-Barnes representation for the pentagon in

multi-Regge kinematics,

ID
5 (1,1, 1, 1, 1;Q2

i ) = rΓ eγEε (−κ)−ε

s1s2
I(I)

MB(κ, t1, t2) (6.6)

with

I(I)
MB(κ, t1, t2) =

−1

Γ(1 + ε)Γ(1 − ε)2
1

(2πi)2

∫ +i∞

−i∞
dz1 dz2 xz1

1 xz2
2 Γ (−ε − z1)Γ (−z1)

× Γ (−ε − z2) Γ (−ε − z1 − z2) Γ (−z2) Γ (z1 + z2 + 1)Γ (ε + z1 + z2 + 1)2 ,

(6.7)

where x1 and x2 are defined in Eq. (4.6). Note that this expression is symmetric in x1

and x2, as expected in Region I. We checked that if we close the integration contours to

the right, and take residues, we reproduce exactly the expression of the pentagon obtained

from NDIM, Eq. (5.29).

We now evaluate the Mellin-Barnes representation (6.6) andwe derive an Euler integral

representation for the pentagon in multi-Regge kinematics. Let us concentrate only on the

Mellin-Barnes integral. We start with the change of variable z2 = z − z1 and we find

I(I)
MB(κ, t1, t2) =

−1

Γ(1 + ε)Γ(1 − ε)2
1

(2πi)2

∫ +i∞

−i∞
dz1 dz xz1

1 xz−z1
2 Γ(−ε − z)Γ(z + 1)

× Γ(ε + z + 1)2 Γ (−ε − z1) Γ (−z1) Γ (z1 − z) Γ (−ε − z + z1) .

(6.8)

We now replace the Mellin-Barnes integral over z1 by an Euler integral by using the trans-

formation formula,

1

2πi

∫ +i∞

−i∞
dz1 Γ(−z1)Γ(c − z1)Γ(b + z1)Γ(a + z1)Xz1

= Γ(a)Γ(b + c)

∫ 1

0
dv vb−1 (1 − v)a+c−1 (1 − (1 − X)v)−a,

(6.9)

and we find

I(I)
MB(κ, t1, t2) =

−1

Γ(1 + ε)Γ(1 − ε)2
1

2πi

∫ +i∞

−i∞
dz

∫ 1

0
dv

(

1 − v

(

1 − x1

x2

))ε+z

xz
2

× (1 − v)−2ε−z−1 v−z−1 Γ(−ε − z)3Γ(z + 1)Γ(ε + z + 1)2.

(6.10)

– 22 –
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• A small sample:

• The Euler integral can be completely solved in terms of 
Goncharov‘s multiple polylogarithm

The pentagon from MB

If the weight vector !w has a parametric dependence on a second variable, then we obtain

multidimensional harmonic polylogarithms. Finally, let us introduce the following set of

functions, which will be useful to write down the answer for the pentagon

M(!w) ≡ G(!w; 1). (6.31)

The M -functions defined in this way are in fact Goncharov’s multiple polylogarithm (up to a

sign). For a more detailed discussions of these functions, and their relations to Goncharov’s

multiple polylogarithm, see Appendix B. It is clear from the definition that these functions

form a shuffle algebra

M(!w1)M(!w2) =
∑

!w=!w1!!w2

M(!w). (6.32)

Using these functions we can easily integrate I(I)
0 and I(I)

1 . We illustrate this procedure

explicitly for the integral

∫ 1

0

dv

v − λ1
ln

(

v

(

x1

x2
− 1

)

+ 1

)

ln(1 − v). (6.33)

First we can express all logarithms in terms of the G-functions we defined:

ln

(

v

(

x1

x2
− 1

)

+ 1

)

ln(1 − v) = ln

(

1 − v

λ3

)

ln(1 − v)

= G(λ3; v)G(1; v)

= G(λ3, 1; v) + G(1,λ3; v).

(6.34)

Then we get

∫ 1

0

dv

v − λ1
ln

(

v

(

x1

x2
− 1

)

+ 1

)

ln(1 − v)

=

∫ 1

0
dv

G(λ3, 1; v)

v − λ1
+

∫ 1

0
dv

G(1,λ3; v)

v − λ1

= G(λ1,λ3, 1; 1) + G(λ1, 1,λ3; 1)

= M(λ1,λ3, 1) + M(λ1, 1,λ3).

(6.35)

All other integrals can be performed in exactly the same way, and we can hence express

I(I)
0 as a combination of M -functions. We find

I(I)
0 (x1, x2) = (6.36)

1√
λK

{

(

1
2 ln2 x2 + π2

2

)

M
(

λ1
)

+
(

− 1
2 ln2 x2 − π2

2

)

M
(

λ2
)

− ln x2M
(

λ1, 0
)

−

ln x2M
(

λ1, 1
)

+ ln x2M
(

λ1,λ3
)

+ ln x2M
(

λ2, 0
)

+ ln x2M
(

λ2, 1
)

− ln x2M
(

λ2,λ3
)

+

M
(

λ1, 0, 0
)

+ M
(

λ1, 0, 1
)

− M
(

λ1, 0,λ3
)

+ M
(

λ1, 1, 0
)

+ M
(

λ1, 1, 1
)

− M
(

λ1, 1,λ3
)

−
M

(

λ1,λ3, 0
)

− M
(

λ1,λ3, 1
)

+ M
(

λ1,λ3,λ3
)

− M
(

λ2, 0, 0
)

− M
(

λ2, 0, 1
)

+ M
(

λ2, 0,λ3
)

−

M
(

λ2, 1, 0
)

− M
(

λ2, 1, 1
)

+ M
(

λ2, 1,λ3
)

+ M
(

λ2,λ3, 0
)

+ M
(

λ2,λ3, 1
)

− M
(

λ2,λ3,λ3
)

}

.
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that I(I)
0 (x1, x2) and I(I)

1 (x1, x2) will have uniform weight 3 and 4 respectively, as expected.

Furthermore note that the poles in v = 0 and v = 1 have cancelled out. However, we still

need to be careful with the quadratic polynomial in the denominator of the integrand,

since it might vanish in the integration region. We analyze this situation in the rest of this

section.

We know already that the phase space boundaries in Region I require

√
x1 +

√
x2 < 1. (6.15)

This subspace of the square [0, 1] × [0, 1] is at the same time the domain of the integral

I(x1, x2; ε). We can divide this domain further into

1. Region I(a): x1 < x2.

2. Region I(b): x2 < x1.

We now turn to the quadratic denominator in Eqs. (6.13) and (6.14). The roots of this

quadratic polynomial are

λ1 ≡ λ1(x1, x2) =
1

2

(

1 + x1 − x2 −
√

λK

)

,

λ2 ≡ λ1(x1, x2) =
1

2

(

1 + x1 − x2 +
√

λK

)

,
(6.16)

where λK denotes the Källen function

λK ≡ λK(x1, x2) = λ(x1, x2,−1) = 1 + x2
1 + x2

2 + 2x1 + 2x2 − 2x1x2. (6.17)

First, let us note that λK(x1, x2) > 0, ∀ (x1, x2) ∈ [0, 1] × [0, 1], and hence the square root

in Eq. (6.16) is well defined in the Region I. Second, it is easy to show that on the square

[0, 1] × [0, 1] we have,

−1 < λ1(x1, x2) < 0 and 1 < λ2(x1, x2) < 2. (6.18)

For later convenience, let us note at this point the following useful identities

λ1λ2 = −x2,

λ1 + λ2 = 1 + x1 − x2,

λ1 − λ2 = −
√

λK ,
(

1 − 1

λ1

)(

1 − 1

λ2

)

=
x1

x2
.

(6.19)

From Eq. (6.18) it follows now immediately that the quadratic denominators in Eqs. (6.13)

and (6.14) do not vanish in the whole integration range [0, 1], and hence all the integrals

in Eqs. (6.13) and (6.14) are convergent. Using partial fractioning and the relations (6.19)

we can write

I(I)
0 (x1, x2) =

1√
λK

∫ 1

0
dv

i(0)(x1, x2, v)

v − λ2
− 1√

λK

∫ 1

0
dv

i(0)(x1, x2, v)

v − λ1
, (6.20)
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that I(I)
0 (x1, x2) and I(I)

1 (x1, x2) will have uniform weight 3 and 4 respectively, as expected.

Furthermore note that the poles in v = 0 and v = 1 have cancelled out. However, we still

need to be careful with the quadratic polynomial in the denominator of the integrand,

since it might vanish in the integration region. We analyze this situation in the rest of this

section.

We know already that the phase space boundaries in Region I require

√
x1 +

√
x2 < 1. (6.15)

This subspace of the square [0, 1] × [0, 1] is at the same time the domain of the integral

I(x1, x2; ε). We can divide this domain further into

1. Region I(a): x1 < x2.

2. Region I(b): x2 < x1.

We now turn to the quadratic denominator in Eqs. (6.13) and (6.14). The roots of this

quadratic polynomial are

λ1 ≡ λ1(x1, x2) =
1

2

(

1 + x1 − x2 −
√

λK

)

,

λ2 ≡ λ1(x1, x2) =
1

2

(

1 + x1 − x2 +
√

λK

)

,
(6.16)

where λK denotes the Källen function

λK ≡ λK(x1, x2) = λ(x1, x2,−1) = 1 + x2
1 + x2

2 + 2x1 + 2x2 − 2x1x2. (6.17)
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M(a1, a2, . . . ; z) =
∫ z

0

dx

x− a1
M(a2, . . . ;x) =

∫ z

0

dx

x− a1

∫ x

0

dy

y − a2
. . .
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What did we learn?

• New mathematical structures can appear beyond 

➡ Kampé de Fériet functions
➡ Goncharov’s polylogarithms

O(ε0)

• We used different representations to get different kinds of 
information

➡ NDIM: Hypergeometric functions, analytic continuation.
➡ MB: Closed form in terms of generalized polylog‘s.
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What did we learn?

• Switching between different representations can give a 
valuable insight

Feynman 
integral

SeriesMellin 
Barnes

Schwinger 
parameters

Feynman 
parameters

• We used different representations to get different kinds of 
information

➡ NDIM: Hypergeometric functions, analytic continuation.
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The five-point amplitude
• We have now all the ingredients to build the five-point 

two-loop amplitude (in MRK).

➡ The BDS iteration

➡ The one-loop amplitude to higher orders in

Chapter 9

The BDS ansatz and multi-Regge
kinematics

9.1 The ABDK/BDS ansatz

In Ref. [9], Anastasiou, Bern, Dixon and Kosower (ABDK) formulated an ansatz for the two-loop

n-point MHV amplitude in MSYM, which expresses the two-loop amplitude in terms of the one-loop

amplitude,

M (2)
n (ε) =

1

2

(

M (1)
n (ε)

)2
+ f (2)(ε)M (1)

n (2ε) + C(2) + O(ε), (9.1)

where

f (2)(ε) =
ψ(1 − ε) + γE

ε
and C(2) = −5

4
ζ4. (9.2)

Note that because of the infrared poles in 1/ε2 in the one-loop amplitude, the one-loop amplitude

must be known through O(ε2). The origin of this ansatz goes back to the computation by the same

people of the two-loop splitting function in MSYM, which was shown to satisfy an iteration relation

very similar to Eq. (9.1),

r(2)
S (ε) =

1

2

(

r(1)
S (ε)

)2
+ f (2)(ε) r(1)

S (2ε), (9.3)

where r(l)
S denotes the l-loop splitting function, rescaled by the tree-level result. Indeed, in the

collinear limit the one and two-loop n-point MHV amplitudes must factorise according to

M (1)
n → M (1)

n−1 + r(1)
S ,

M (2)
n → M (2)

n−1 + M (1)
n−1 r(1)

S + r(2)
S ,

(9.4)

and it is easy to see that the ABDK ansatz (9.1) is the only iteration which is compatible with both

the iteration of the two-loop splitting amplitude, Eq. (9.3) and the collinear factorisation (9.4). The

ansatz was backed up by comparing the iteration to the two-loop four-point amplitude in MSYM.

In Ref. [92] the ABDK ansatz was shown to hold also in the case of the five-point amplitude, which

has been computed numerically.

Bern, Dixon and Smirnov (BDS) computed the three-loop four-point MSYM amplitude [10], and

showed that it satisfies an iteration formula similar to the ABDK ansatz for the two-loop amplitude,

M (3)
4 (ε) = −1

3

(

M (1)
4 (ε)

)3
+ M (1)

4 (ε)M (2)
4 (ε) + f (3)(ε)M (1)

4 (3ε) + C(3) + O(ε), (9.5)
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8.2.2 The five-point MSYM amplitude in the high-energy limit

In the case of the five-point amplitude the high-energy prescription (8.3) reduces to

A5(1, 2, 3, 4, 5; ε) = s C(p2, p3; ε, τ)
1

t2

(

−s2

τ

)α(t2;ε)

V (q2, p4, q1; ε, τ)
1

t1

(

−s1

τ

)α(t1;ε)

C(p1, p5; ε, τ),

(8.25)

and the mass-shell condition for the gluon emitted along the ladder reads

(−s) (−κ) = (−s1) (−s2). (8.26)

Expanding Eq. (8.25) to one-loop accuracy, we find

m(1)
5 = ᾱ(1)(t1; ε)L1 + ᾱ(1)(t2; ε)L2 + C̄(1)(t1; ε, τ) + C̄(1)(t2; ε, τ) + V̄ (1)(t1, t2,κ; ε, τ) . (8.27)

where Li = ln(−si/τ) and i = 1, 2. The coefficient functions and Regge trajectories appearing in

this expression are the same as those appearing in the four-point case, Eq. (8.23). The five-point

one-loop amplitude on the left-hand side can be expressed in terms of scalar one-mass boxes and a

massless pentagon integral in D = 6 − 2ε dimensions [92],

m(1)
5 = −1

2
G(ε)

∑

cyclic

s12s23I
1m
4 (1, 2, 3, 45, ε) − εG(ε) ε1234I

6−2ε
5 (ε), (8.28)

with

ε1234 = Tr
(

/p1 /p2 /p3 /p4 γ5
)

, (8.29)

and the cyclicity is over i = 1, . . . , 5. I1m
4 is the one-mass box in D = 4 − 2ε dimension, with

a massive leg of virtuality s45, and I6−2ε
5 denotes the massless pentagon integral in D = 6 − 2ε

dimensions. Note that I6−2ε
5 is finite for ε → 0, so this contribution only becomes important for

the higher-orders in ε. We can therefore neglect the pentagon contribution and use Eq. (8.28) to

extract the one-loop Lipatov vertex through O(ε) [90]. This function, together with the coefficient

functions and the Regge trajectory defined in Eq. (8.23), is enough to construct a one-loop n-point

gluon amplitude in MSYM in the limit of multi-Regge kinematics for arbitrary n through order ε0.

At two-loop accuracy, Eq. (8.25) reads

m(2)
5 =

1

2

(

m(1)
5

)2
+ ᾱ(2)(t1; ε)L1 + ᾱ(2)(t2; ε)L2

+ C̄(2)(t1, τ) + V̄ (2)(t1, t2,κ, τ) + C̄(2)(t2, τ)

− 1

2

(

C̄(1)(t1, τ)
)2

− 1

2

(

V̄ (1)(t1, t2,κ, τ)
)2

− 1

2

(

C̄(1)(t2, τ)
)2

(8.30)

In order to extract the two-loop Lipatov vertex from Eq. (8.30), we need to know analytically the

one-loop amplitude to O(ε2) and the two-loop amplitude to O(ε0) in multi-Regge kinematics. As

already mentioned, the higher order terms of the one-loop amplitude gain contributions from the

scalar massless pentagon in D = 6−2ε dimensions. We will compute these contributions explicitly in

Chapter 10 to all orders in ε in terms of generalized hypergeometric functions and in Appendix N as

a Taylor series in ε whose coefficients are combinations of generalized polylogarithms. Furthermore,
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Conclusion

• We studied for the first time the analytic structure of 5-
point one-loop amplitudes to higher orders in   . 

• New mathematical structures appear beyond the finite part:

• As a byproduct, we computed the two-loop 5-point 
amplitude in MSYM in simplified kinematics.

ε

➡ Kampé de Fériet functions
➡ Goncharov’s polylogarithms
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The BDS remainder function

• The remainder function vanishes for n < 6:

R4 = R5 = 0.

• The remainder function is a function of conformal cross-
ratios only.

• The remainder function is a symmetric function in the 
conformal cross-ratios.

• Collinear limits: Rn −→ Rn−1

In particular, this implies

R6 −→ 0
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The high-energy limit

• In the high-energy limit, the amplitude is conjectured to 
factorize,

p1

p2

p5

t2

p3

s1

s2

t1

p4

Figure 1: The five (a) and six (b) point amplitudes in quasi multi-Regge kinematics.
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Determined by 
the four-point 

amplitude

We can now 
extract the Lipatov 

vertex
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The high-energy limit

• In the high-energy limit, the amplitude is conjectured to 
factorize,

➡ The impact factor C
➡ The Regge trajectory
➡ The Lipatov vertex V
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Figure 1: The five (a) and six (b) point amplitudes in quasi multi-Regge kinematics.
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[See Del Duca’s talk last week]
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