Numerical implementation of a oneloop tensor reduction

Theodoros Diakonidis
(DESY, ZEUTHEN)

Th. Diakonidis, J. Fleischer, J. Gluza, K. Kajda, T. Riemann, J.B. Tausk
Based on [arXiv:hep-ph/0807.2984, 0812.2134, 0901.4455, 0907.2115] Sponsored by EU-program:

HEPTOOLS

Tools and Precision Calculations for Phusics Discoveries at Colliders

Motivation and goals

- Recent years have seen the emergence of first results for $2 \rightarrow 4$ scattering processes
- One of the challenges posed is the need to compute one-loop tensor integrals with up to 6 legs
- We provide numerical results from compact analytic formulas for the complete reduction of tensor integrals to scalar master integrals

From bubbles to hexagons

- Implementation to Fortran and Mathematica code

Fortran

- For Tensor integrals, we have a Fortran implementation package (Th. Diakonidis \& B. Tausk)

The present implementation includes:

- Six point functions up to rank four (Hexagon.F)
- Five point functions (all 5 ranks) (Pentagon.F)
- Boxes (all 4 ranks) (Box.F)
- Triangles (all 3 ranks) (Triangle.F)
- Bubbles (all 2 ranks) (Bubble.F)

It is able to output the full result for:

- The tensor integrals
- The code so far uses:

Looptools 2.2 (by Thomas Hahn)
(calculates only the finite part)
QCDLoop (R.K. Ellis and G. Zanderighi) (Finite part and $1 / \varepsilon$ and $1 / \varepsilon^{2}$ terms)

To calculate the scalar master integrals after the reduction
(The first is restricted to massive cases but the second can be implemented for massless cases too)

- It can be adapted to any Fortran package for 1,2,3,4 point functions
- A lot of cross checks have been done so far (shown after) and we also cross checked the results with an independent code by Peter Uwer

The triangle

Here we have to add some extra terms in the cases of boxes, triangles and bubbles with the exception of $1^{\text {st }}$ rank (See Jochem's talk)

Starting from a pentagon

For the randomly chosen phase space point:

p_{1}	$5.00000000000 \mathrm{E}+00$	$0.0000000000 \mathrm{E}+00$	$0.00000000000 \mathrm{E}+00$	$4.00000000000 \mathrm{E}+00$			
p_{2}	$5.00000000000 \mathrm{E}+00$	$0.0000000000 \mathrm{E}+00$	$0.00000000000 \mathrm{E}+00$	$-4.00000000000 \mathrm{E}+00$			
p_{3}	$-0.30770034895 \mathrm{E}+01$	$0.5359484673 \mathrm{E}+00$	$-0.37447035150 \mathrm{E}+00$	$-0.20120057390 \mathrm{E}+00$			
p_{4}	$-0.34048537280 \mathrm{E}+01$	$0.2184763540 \mathrm{E}-01$	$-0.10479394969 \mathrm{E}+01$	$0.12224460727 \mathrm{E}+01$			
p_{5}	$-0.35181427825 \mathrm{E}+01$	$-0.5577961027 \mathrm{E}+00$	$0.14224098484 \mathrm{E}+01$	$-0.10212454988 \mathrm{E}+01$			
$m_{1}=0.0, \quad m_{2}=2.0, \quad m_{3}=3.0, \quad m_{4}=4.0, \quad m_{5}=5.0$							

A mixed case of massless and massive particles

Pentagon

	Pentagon.F
E^{2}	$(2.80450709388539 \mathrm{E}-05,-1.08461817406464 \mathrm{E}-05)$
E^{12}	$(-5.41333978667301 \mathrm{E}-06,6.26985967678899 \mathrm{E}-06)$
E^{232}	$(-1.20374858970726 \mathrm{E}-04,4.07974751672555 \mathrm{E}-04)$
$E^{\mathrm{0} 321}$	$(-9.11194535703727 \mathrm{E}-06,4.39187998675819 \mathrm{E}-05)$
E^{01230}	$(4.37928367160152 \mathrm{E}-05,-2.18183151665913 \mathrm{E}-04)$

Box case

	Box.F	LoopTools
D^{1}	$(6.81403420828588 \mathrm{E}-03,-5.74298462683219 \mathrm{E}-03)$	$(6.8140342082847463 \mathrm{E}-03,-5.7429846268324187 \mathrm{E}-03)$
D^{33}	$(2.40138809967981 \mathrm{E}-03,1.11591328775015 \mathrm{E}-02)$	$(2.4013880996803092 \mathrm{E}-03,1.1159132877500448 \mathrm{E}-02)$
D^{212}	$(-1.69702786278243 \mathrm{E}-03,-2.83731121595478 \mathrm{E}-03)$	$(-1.6970278627700630 \mathrm{E}-03,-2.8373112159962330 \mathrm{E}-03)$
D^{0123}	$(-1.92190388316994 \mathrm{E}-04,-4.04730302413490 \mathrm{E}-04)$	$(-1.9219038693301300 \mathrm{E}-04,-4.0473030187772325 \mathrm{E}-04)$

Triangle

	Triangle.F	LoopTools
C^{2}	$(2.44757827793318 \mathrm{E}-04,-7.50688449850356 \mathrm{E}-03)$	$(2.4475782779342707 \mathrm{E}-04,-7.5068844985030472 \mathrm{E}-03)$
C^{01}	$(-1.28259813172255 \mathrm{E}-02,-6.73809718907549 \mathrm{E}-02)$	$(-1.2825981317215014 \mathrm{E}-02,-6.7380971890795340 \mathrm{E}-02)$
C^{133}	$(-7.00360822297110 \mathrm{E}-02,7.24628606014397 \mathrm{E}-02)$	$(-7.0036082229746830 \mathrm{E}-02,7.2462860601566081 \mathrm{E}-02)$

Bubble

	Bubble.F	LoopTools
B^{3}	$(-0.141525070262337 \mathrm{E}+00,0.138870631815383 \mathrm{E}+00)$	$(-0.1415250702623366,0.1388706318153829)$
B^{12}	$(0.102490343329085 \mathrm{E}+00,-6.12154531068256 \mathrm{E}-02)$	$(0.1024903433290848,-6.1215453106825706 \mathrm{E}-02)$

Some sample results for hexagons

For the randomly chosen phase space point given by:

$$
\left.\left.\begin{array}{rl}
p_{1}= & (0.21774554 E+03, \quad 0, \quad 0, \quad 0.21774554 E+03) \\
p_{2}= & (0.21774554 E+03, \quad 0, \quad 0, \quad-0.21774554 E+03) \\
p_{3}= & (-0.20369415 E+03, \quad-0.47579512 E+02, \quad 0.42126823 E+02, \quad 0.84097181 E+02) \\
p_{4}= & (-0.20907237 E+03, \quad 0.55215961 E+02, \quad-0.46692034 E+02, \quad-0.90010087 E+02) \\
p_{5}= & (-0.68463308 E+01, \quad 0.53063195 E+01, \quad 0.29698267 E+01, \quad-0.31456871 E+01) \\
p_{6}= & (-0.15878244 E+02, \quad-0.12942769 E+02, \quad 0.15953850 E+01, \quad 0.90585932 E+01
\end{array}\right)\right\}
$$

Results for scalar, vector and $2^{\text {nd }}$ rank six point functions:

	RESULTS		
	REAL	IM	
	F_{0}		
		$-0.223393 \mathrm{E}-18$	
$-0.396728 \mathrm{E}-19$			
μ		F^{μ}	
0		$0.192487 \mathrm{E}-17$	
1		$-0.363320 \mathrm{E}-17$	
2		$0.365514 \mathrm{E}-17$	
3		$0.11940 \mathrm{E}-17$	
μ	ν	$F^{\mu \nu}$	
0	0	$0.539793 \mathrm{E}-16$	

3rd rank 6 point functions

μ	ν	λ	$F^{\mu \nu \lambda}$
0	0	0	$-0.227754 \mathrm{E}-11-\mathrm{i} 0.267244 \mathrm{E}-12$
0	0	1	$0.140271 \mathrm{E}-13-\mathrm{i} 0.119448 \mathrm{E}-12$
0	0	2	$-0.201270 \mathrm{E}-13+\mathrm{i} 0.101968 \mathrm{E}-12$
0	0	3	$0.102976 \mathrm{E}-12+\mathrm{i} 0.624467 \mathrm{E}-12$
0	1	1	$0.183904 \mathrm{E}-12+\mathrm{i} 0.142429 \mathrm{E}-12$
0	1	2	$-0.131028 \mathrm{E}-13-\mathrm{i} 0.610343 \mathrm{E}-14$
0	1	3	$-0.543316 \mathrm{E}-13-\mathrm{i} 0.158809 \mathrm{E}-13$
0	2	2	$0.181352 \mathrm{E}-12+\mathrm{i} 0.141686 \mathrm{E}-12$
0	2	3	$0.506408 \mathrm{E}-13+\mathrm{i} 0.163568 \mathrm{E}-13$
0	3	3	$0.600542 \mathrm{E}-12+\mathrm{i} 0.130733 \mathrm{E}-12$
1	1	1	$-0.563539 \mathrm{E}-13+\mathrm{i} 0.178403 \mathrm{E}-13$
1	1	2	$0.210641 \mathrm{E}-13-\mathrm{i} 0.584990 \mathrm{E}-14$
1	1	3	$0.120482 \mathrm{E}-12-\mathrm{i} 0.574688 \mathrm{E}-13$
1	2	2	$-0.201182 \mathrm{E}-13+\mathrm{i} 0.620591 \mathrm{E}-14$
1	2	3	$-0.686164 \mathrm{E}-14+\mathrm{i} 0.205457 \mathrm{E}-14$
1	3	3	$-0.447329 \mathrm{E}-13+\mathrm{i} 0.193180 \mathrm{E}-13$
2	2	2	$0.582201 \mathrm{E}-13-\mathrm{i} 0.163889 \mathrm{E}-13$
2	2	3	$0.119659 \mathrm{E}-12-\mathrm{i} 0.570084 \mathrm{E}-13$
2	3	3	$0.457464 \mathrm{E}-13-\mathrm{i} 0.181141 \mathrm{E}-13$
3	3	3	$0.557081 \mathrm{E}-12-\mathrm{i} 0.374359 \mathrm{E}-12$

$4^{\text {th }}$ rank 6-point

				REAL	IM
μ	ν	λ	ρ	$F^{\mu \nu \lambda \rho}$	
0	0	0	0	$0.666615 \mathrm{D}-09$	$0.247562 \mathrm{D}-09$
0	0	0	1	$-0.200049 \mathrm{D}-10$	$0.294036 \mathrm{D}-10$
0	0	0	2	$0.200975 \mathrm{D}-10$	$-0.237333 \mathrm{D}-10$
0	0	0	3	$0.645477 \mathrm{D}-10$	$-0.162236 \mathrm{D}-09$
0	0	1	1	$-0.116956 \mathrm{D}-10$	$-0.516760 \mathrm{D}-10$
0	0	1	2	$0.160357 \mathrm{D}-11$	$0.222284 \mathrm{D}-11$
0	0	1	3	$0.792692 \mathrm{D}-11$	$0.729502 \mathrm{D}-11$
0	0	2	2	$-0.111838 \mathrm{D}-10$	$-0.513133 \mathrm{D}-10$
0	0	2	3	$-0.681086 \mathrm{D}-11$	$-0.708933 \mathrm{D}-11$
0	0	3	3	$-0.804454 \mathrm{D}-10$	$-0.801909 \mathrm{D}-10$
0	1	1	1	$0.100498 \mathrm{D}-10$	$-0.151735 \mathrm{D}-13$
0	1	1	2	$-0.348984 \mathrm{D}-11$	$-0.195436 \mathrm{D}-12$
0	1	1	3	$-0.21111 \mathrm{D}-10$	$0.295212 \mathrm{D}-11$
0	1	2	2	$0.357455 \mathrm{D}-11$	$0.662809 \mathrm{D}-14$
0	1	2	3	$0.121595 \mathrm{D}-11$	$-0.807388 \mathrm{D}-13$
0	1	3	3	$0.825803 \mathrm{D}-11$	$-0.142086 \mathrm{D}-11$
0	2	2	2	$-0.958961 \mathrm{D}-11$	$-0.585948 \mathrm{D}-12$

			REAL	IM	
μ	ν	λ	ρ	$F^{\mu \nu \lambda \rho}$	
0	2	2	3	$-0.209232 \mathrm{D}-10$	$0.289031 \mathrm{D}-11$
0	2	3	3	$-0.802359 \mathrm{D}-11$	$0.994701 \mathrm{D}-12$
0	3	3	3	$-0.102576 \mathrm{D}-09$	$0.378476 \mathrm{D}-10$
1	1	1	1	$-0.246426 \mathrm{D}-10$	$0.276326 \mathrm{D}-10$
1	1	1	2	$0.915670 \mathrm{D}-12$	$-0.660629 \mathrm{D}-12$
1	1	1	3	$0.303529 \mathrm{D}-11$	$-0.287480 \mathrm{D}-11$
1	1	2	2	$-0.822697 \mathrm{D}-11$	$0.919635 \mathrm{D}-11$
1	1	2	3	$-0.116294 \mathrm{D}-11$	$0.100024 \mathrm{D}-11$
1	1	3	3	$-0.146918 \mathrm{D}-10$	$0.183799 \mathrm{D}-10$
1	2	2	2	$0.908296 \mathrm{D}-12$	$-0.654735 \mathrm{D}-12$
1	2	2	3	$0.109510 \mathrm{D}-11$	$-0.100875 \mathrm{D}-11$
1	2	3	3	$0.717342 \mathrm{D}-12$	$-0.557293 \mathrm{D}-12$
1	3	3	3	$0.450661 \mathrm{D}-11$	$-0.485065 \mathrm{D}-11$
2	2	2	2	$-0.245154 \mathrm{D}-10$	$0.274313 \mathrm{D}-10$
2	2	2	3	$-0.318500 \mathrm{D}-11$	$0.279750 \mathrm{D}-11$
2	2	3	3	$-0.146317 \mathrm{D}-10$	$0.182912 \mathrm{D}-10$
2	3	3	3	$-0.477335 \mathrm{D}-11$	$0.477368 \mathrm{D}-11$
3	3	3	3	$-0.730168 \mathrm{D}-10$	$0.112865 \mathrm{D}-09$

More results (massless case)

For the phase space point given by:

```
p1 =(1, 0, 0, 0)
p2 =(-0.19178191,-0.12741180,-0.08262477,-0.11713105)
p3 =(-0.33662712, 0.06648281, 0.31893785, 0.08471424)
p4 =(-0.21604814, 0.20363139,-0.04415762,-0.05710657)
p5 =-(p1+p2+p3+p4)
    M1=0, M2=0, M3=0, M4=0, M5=0
```

Golem95: T.Binoth, J.-Ph.Guillet, G. Heinrich, E.Pilon, T.Reiter [arXiv:hep-ph/0810.0992]

Comparisons with golem 95

	ϵ^{0}	$1 / \epsilon$	$1 / \epsilon^{2}$
E_{0}	$(202.168496,3211.04072)$	$(1022.10601,972.027061)$	$(309.405823,0)$
E_{3}	$(-264.996441,303.068452)$	$(96.4696846,149.228472)$	$(47.5008979,0)$
E_{44}	$(1780.58042,2914.50734)$	$(927.71650,568.572069)$	$(180.982111,0)$
E_{00}	$(9.56327810,0)$	$(0,0)$	$(0,0)$
E_{555}	$(1035.29689,1422.01085)$	$(452.640112,254.226520)$	$(80.9228146,0)$
E_{001}	$(0.84742102,0)$	$(0,0)$	$(0,0)$

Complete agreement to all the numbers shown
(QCDLoop was used for the scalar master integrals)

Mixed case (Hexagon)

p_{1}	$0.21774554 \mathrm{E}+01$	0.0	0.0	$0.21774554 \mathrm{E}+01$		
p_{2}	$0.21774554 \mathrm{E}+01$	0.0	0.0	$-0.21774554 \mathrm{E}+01$		
p_{3}	$-0.20369415 \mathrm{E}+01$	$-0.47579512 \mathrm{E}+00$	$0.42126823 \mathrm{E}+00$	$0.84097181 \mathrm{E}+00$		
p_{4}	$-0.20907237 \mathrm{E}+01$	$0.55215961 \mathrm{E}+00$	$-0.46692034 \mathrm{E}+00$	$-0.90010087 \mathrm{E}+00$		
p_{5}	$-0.68463308 \mathrm{E}-01$	$0.53063195 \mathrm{E}-01$	$0.29698267 \mathrm{E}-01$	$-0.31456871 \mathrm{E}-01$		
p_{6}	$-0.15878244 \mathrm{E}+00$	$-0.12942769 \mathrm{E}+00$	$0.15953850 \mathrm{E}-01$	$0.90585932 \mathrm{E}-01$		
$m_{1}=0.0, m_{2}=0.0, \quad m_{3}=0.0, \quad m_{4}=1.7430, \quad m_{5}=0.0, \quad m_{6}=0.0$						

It corresponds to the reaction : $g g+t \bar{t} \quad q \bar{q}$

	ϵ^{0}	$1 / \epsilon$	$1 / \epsilon^{2}$
F_{0}	$0.240358675 \mathrm{E}+04-\mathrm{i} 0.2058213187 \mathrm{E}+03$	$0.7315208677 \mathrm{E}+02-\mathrm{i} 0.4276718518 \mathrm{E}+02$	$-0.7543148872 \mathrm{E}+01+\mathrm{i} 0.0$
F^{2}	$0.1112747404 \mathrm{E}+03-\mathrm{i} 0.6809282900 \mathrm{E}+01$	$0.4419243474 \mathrm{E}+01-\mathrm{i} 0.1201033663 \mathrm{E}+01$	$-0.1044856909 \mathrm{E}+00+\mathrm{i} 0.0$
F^{13}	$-0.1014018623 \mathrm{E}+02+\mathrm{i} 0.1797332619 \mathrm{E}+01$	$-0.5914958485 \mathrm{E}-01+\mathrm{i} 0.3275539398 \mathrm{E}+00$	$0.7678550480 \mathrm{E}-01+\mathrm{i} 0.0$
F^{123}	$-0.5007216712 \mathrm{E}+00+\mathrm{i} 0.4194342396 \mathrm{E}-01$	$-0.1642316924 \mathrm{E}-01+\mathrm{i} 0.7789453935 \mathrm{E}-02$	$0.1225024390 \mathrm{E}-02+\mathrm{i} 0.0$
F^{3210}	$0.1263455978 \mathrm{E}+00-\mathrm{i} 0.6509987460 \mathrm{E}-02$	$0.4610567958 \mathrm{E}-02-\mathrm{i} 0.1506637282 \mathrm{E}-02$	$-0.1945123881 \mathrm{E}-03+\mathrm{i} 0.0$

Mixed case (Pentagon)

p_{1}	$0.21774554 \mathrm{E}+01$	0.0	0.0	$0.21774554 \mathrm{E}+01$		
p_{2}	$0.21774554 \mathrm{E}+01$	0.0	0.0	$-0.21774554 \mathrm{E}+01$		
p_{3}	$-0.20369415 \mathrm{E}+01$	$-0.47579512 \mathrm{E}+00$	$0.42126823 \mathrm{E}+00$	$0.84097181 \mathrm{E}+00$		
p_{4}	$-0.20907237 \mathrm{E}+01$	$0.55215961 \mathrm{E}+00$	$-0.46692034 \mathrm{E}+00$	$-0.90010087 \mathrm{E}+00$		
p_{5}	$-0.68463308 \mathrm{E}-01$	$0.53063195 \mathrm{E}-01$	$0.29698267 \mathrm{E}-01$	$-0.31456871 \mathrm{E}-01$		
p_{6}	$-0.15878244 \mathrm{E}+00$	$-0.12942769 \mathrm{E}+00$	$0.15953850 \mathrm{E}-01$	$0.90585932 \mathrm{E}-01$		
$m_{1}=0.0, m_{2}=0.0, \quad m_{3}=0.0, \quad m_{4}=1.7430, \quad m_{5}=0.0, \quad m_{6}=0.0$						

Produced by adding together the external momenta: $\quad p_{1}=p_{1}+p_{2}$

	ϵ^{0}	$1 / \epsilon$	$1 / \epsilon^{2}$
E_{0}	$-0.289852933 \mathrm{E}+04+\mathrm{i} 0.228935552 \mathrm{E}+03$	$-0.945038648 \mathrm{E}+02+\mathrm{i} 0.454178453 \mathrm{E}+02$	$0.7112330546 \mathrm{E}+01+\mathrm{i} 0.0$
E^{3}	$0.168344624 \mathrm{E}+03-\mathrm{i} 0.181758172 \mathrm{E}+02$	$0.4242553725 \mathrm{E}+01-\mathrm{i} 0.338838829 \mathrm{E}+01$	$-0.644270877 \mathrm{E}+00+\mathrm{i} 0.0$
E^{23}	$-0.79409571852 \mathrm{E}+01+\mathrm{i} 0.5445326927 \mathrm{E}+00$	$-0.3008645503 \mathrm{E}+00+\mathrm{i} 0.9457613783 \mathrm{E}-01$	$0.1027899989 \mathrm{E}-01+\mathrm{i} 0.0$
E^{012}	$0.2472148936 \mathrm{E}+01-\mathrm{i} 0.127011969 \mathrm{E}+00$	$0.9699262574 \mathrm{E}-01-\mathrm{i} 0.2560545796 \mathrm{E}-01$	$-0.2331885086 \mathrm{E}-02+\mathrm{i} 0.0$
E^{2130}	$0.2733228280 \mathrm{E}+02-\mathrm{i} 0.519106421 \mathrm{E}+02$	$-0.909476582 \mathrm{E}+01+\mathrm{i} 0.1744459753 \mathrm{E}-02$	$0.2112313083 \mathrm{E}-03+\mathrm{i} 0.0$

Numerical results (Mathematica)

Mathematica package hexagon.m (by K. Kajda)

The present implementation includes:

- Six point functions up to rank four
- Five point functions up to rank three

It is able to output the full result for:

- Six or five point tensor integral
- A specific coefficient for a given rank
- A list of all coefficients of a given rank

More about the Mathematica program

- They provide coefficients of Lorentz-covariant tensors, and work in a basis of $g^{\mu \nu}$ and internal momenta q_{i}

$$
q_{0}=0, \quad q_{n}=p_{i=1}
$$

- In terms of these coefficients, the tensor decomposition e.g. for pentagons E and hexagons F reads:

$$
\begin{aligned}
E^{\mu}= & \sum_{i=1}^{4} q_{i}^{\mu} E_{i}, \\
E^{\mu \nu}= & \sum_{i, j=1}^{4} q_{i}^{\mu} q_{i}^{\nu} E_{i j}+g^{\mu \nu} E_{00} \\
E^{\mu \nu \lambda}= & \sum_{i, j, k=1}^{4} q_{i}^{\mu} q_{i}^{\nu} q_{k}^{\lambda} E_{i j k}+\sum_{i=1}^{4} g^{[\mu \nu} q_{i}^{\lambda]} E_{00 i}, \\
F^{\mu}= & \sum_{i=1}^{5} q_{i}^{\mu} F_{i} \\
F^{\mu \nu}= & \sum_{i, j=1}^{5} q_{i}^{\mu} q_{i}^{\nu} F_{i j}, \\
F^{\mu \nu \lambda}= & \sum_{i, j, k=1}^{5} q_{i}^{\mu} q_{i}^{\nu} q_{k}^{\lambda} F_{i j k}+\sum_{i=1}^{5} g^{\mu \nu} q_{i}^{\lambda} F_{00 i}, \\
F^{\mu \nu \lambda \rho}= & \sum_{i, j, k, l=1}^{5} q_{i}^{\mu} q_{i}^{\nu} q_{k}^{\lambda} q_{l}^{\rho} F_{i j k l} \\
& +\sum_{i, j=1}^{5} q_{i}^{\mu} q_{j}^{[\nu} g^{\lambda \rho]} F_{00 i j}
\end{aligned}
$$

Functions used in the package

Six point functions	Five point functions		
RedF0	scalar 6pt integral	RedE0	scalar 5pt integral
RedF1	vector 6pt integral	RedE1	vector 5pt integral
RedF2	rank two 6pt tensor integral	RedE2	rank two 5pt tensor integral
RedF3	rank three 6pt tensor integral	RedE3	rank three 5pt tensor integral
RedF4	rank four 6pt tensor integral		
RedFcoef	coefficient of given 6pt	RedEcoef	coefficient of given 5pt
RedFget	all coefficients of given 6pt	RedEget \quad all coefficients of given 5pt	
The basic functions have the following arguments, here $s_{i j}=\left(p_{i}+p_{j}\right)^{2}, s_{i j k}=\left(p_{i}+p_{j}+p_{k}\right)^{2}:$			
RedFO $\left[p_{1}^{2}, \ldots, p_{6}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{56}, s_{16}, s_{123}, s_{234}, s_{345}, m_{1}^{2}, \ldots, m_{6}^{2}\right]$			
RedEO $\left.p_{1}^{2}, \ldots, p_{5}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, m_{1}^{2}, \ldots, m_{5}^{2}\right]$			

Numerical cross checks

1. Comparison with AMBRE \& MB.m $p_{1}^{\mu} p_{2}^{\nu} p_{3}^{\lambda} E_{\mu \nu \lambda}$

$$
\begin{aligned}
& \text { Point: } \\
& p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{5}^{2}=1, p_{4}^{2}=0, m_{1}^{2}=m_{3}^{2}=0, m_{2}^{2}=m_{4}^{2}=m_{5}^{2}=1, \\
& s_{12}=-3, s_{23}=-6, s_{34}=-5, s_{45}=-7, s_{15}=-2 \\
& \text { In: RedE3[} \left.p_{1}^{2}, \ldots, p_{5}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, m_{1}^{2}, \ldots, m_{5}^{2}\right] / .\{\mathrm{D} 4->\mathrm{D} 0, \mathrm{C} 3->\mathrm{C} 0, \mathrm{~B} 2->\mathrm{B} 0\} \\
& \text { Out: } 0.218741 \\
& \text { 2. Comparison with Sector Decomposition : } F_{0} \\
& \text { Point: } \\
& p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=p_{5}^{2}=p_{6}^{2}=-1, m_{1}^{2}=m_{2}^{2}=m_{3}^{2}=m_{4}^{2}=m_{5}^{2}=m_{6}^{2}=1, \\
& s_{12}=s_{23}=s_{34}=s_{45}=s_{56}=s_{16}=s_{123}=s_{234}=-1, s_{345}=-5 / 2 \\
& \text { In: RedF0[} \left.p_{1}^{2}, \ldots, p_{6}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{56}, s_{16}, s_{123}, s_{234}, s_{345}, m_{1}^{2}, \ldots, m_{6}^{2}\right] / .\{\mathrm{D} 4->D 0\} \\
& \text { Out: } 0.013526
\end{aligned}
$$

1. J. Gluza, K. Kajda and T. Riemann, Comput. Phys. Comm. 177 (2007) 879 M. Czakon, Comput. Phys. Commun. 175 (2006) 559
2. C. Bogner and S. Weinzierl, Comput. Phys. Commun. 178 (2008) 596 T. Binoth, G. Heinrich and N. Kauer, Nucl. Phys. B 654 (2003) 277

Numerical cross checks

3. Comparison with LoopTools : $E_{0}, E_{1}, E_{2}, E_{3}, E_{4}, E_{34}, E_{123}, E_{002}$

Point:

$p_{1}^{2}=p_{2}^{2}=0, p_{3}^{2}=p_{5}^{2}=49 / 256, p_{4}^{2}=9 / 100, m_{1}^{2}=m_{2}^{2}=m_{3}^{2}=49 / 256, m_{4}^{2}=m_{5}^{2}=81 / 1600$,
$s_{12}=4, s_{23}=-1 / 5, s_{34}=1 / 5, s_{45}=3 / 10, s_{15}=-1 / 2$
In: RedE0 $\left[p_{1}^{2}, \ldots, p_{5}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, m_{1}^{2}, \ldots, m_{5}^{2}\right] / . \mathrm{D} 4->\mathrm{D} 0$
Out: 41.3403-45.9721*I
In: RedEget[rank1 $, p_{1}^{2}, \ldots, p_{5}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, m_{1}^{2}, \ldots, m_{5}^{2}$]/.D4->D0
Out: ee1 $=-2.38605+5.27599 * \mathrm{I}$, ee2 $=-5.80875+0.597891 * \mathrm{I}$,

$$
e \mathrm{e} 3=-14.4931+20.8149 * \mathrm{I} \text {, ee4 }=-11.3362+18.1593 * \mathrm{I}
$$

In: RedEcoef $\left[\right.$ ee $\left.34, p_{1}^{2}, \ldots, p_{5}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, m_{1}^{2}, \ldots, m_{5}^{2}\right] / .\{\mathrm{D} 4->\mathrm{D} 0, \mathrm{C} 3->\mathrm{C} 0\}$
Out: $7.1964+3.10115 * \mathrm{I}$
In: RedEcoef [ee123 $\left., p_{1}^{2}, \ldots, p_{5}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, m_{1}^{2}, \ldots, m_{5}^{2}\right] / .\{\mathrm{D} 4->\mathrm{D} 0, \mathrm{C} 3->\mathrm{C} 0, \mathrm{~B} 2->\mathrm{B} 0\}$
Out:-0.149527-0.31059*I
In: RedEcoef $\left[\mathrm{ee} 002, p_{1}^{2}, \ldots, p_{5}^{2}, s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, m_{1}^{2}, \ldots, m_{5}^{2}\right] / .\{\mathrm{D} 4->\mathrm{D} 0, \mathrm{C} 3->\mathrm{C} 0, \mathrm{~B} 2->\mathrm{B} 0\}$
Out: 0.154517 - 0.387727*I
3. T. Hahn and M. Perez-Victoria, Comput. Phys. Commun. 118 (1999) 153 T. Hahn and M. Rauch, Nucl. Phys. Proc. Suppl. 157 (2006) 236

Conclusions

- The full numerical implementation of the analytical reduction of one-loop tensor integrals down to scalar master integrals has been described
- Reduction formulas have been implemented in a Mathematica and a Fortran program
- Results and cross checks with other programs were shown
- Mathematica program publicly available at:
http://www-zeuthen.desy.de/theory/research/CAS.html

