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Bern-Dixon-Smirnov ansatz
an ansatz for MHV amplitudes in N=4 SYM Bern Dixon Smirnov 05

cusp anomalous dimension, known to all orders of a

collinear anomalous dimension, known through O(a4) 

Korchemsky Radyuskin 86 
Beisert Eden Staudacher 06 

Bern Dixon Smirnov 05 
Cachazo Spradlin Volovich 07
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Brief history of BDS ansatz
BDS ansatz checked for the 3-loop 4-pt amplitude

2-loop 5-pt amplitude Cachazo Spradlin Volovich 06 
Bern Czakon Kosower Roiban Smirnov 06

Bern Dixon Smirnov 05
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2-loop 5-pt amplitude Cachazo Spradlin Volovich 06 
Bern Czakon Kosower Roiban Smirnov 06

Bern Dixon Smirnov 05

BDS ansatz shown to fail on 2-loop 6-pt amplitude
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08

Hints of break-up from strong-coupling expansion
hexagon Wilson loop
multi-Regge limit (?)

Alday Maldacena 07
Drummond Henn Korchemsky Sokatchev 07
Bartels Lipatov Sabio-Vera 08
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Brief history of BDS ansatz
BDS ansatz checked for the 3-loop 4-pt amplitude

2-loop 5-pt amplitude Cachazo Spradlin Volovich 06 
Bern Czakon Kosower Roiban Smirnov 06

Bern Dixon Smirnov 05

BDS ansatz shown to fail on 2-loop 6-pt amplitude
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08

Hints of break-up from strong-coupling expansion
hexagon Wilson loop
multi-Regge limit (?)

Alday Maldacena 07
Drummond Henn Korchemsky Sokatchev 07
Bartels Lipatov Sabio-Vera 08

The BDS ansatz implies an iteration formula 
for the 2-loop n-pt amplitude mn(2) (rescaled by the tree amplitude)

Anastasiou Bern Dixon Kosower 03

R(2)
n = m(2)

n (ε)− 1
2

[
m(1)

n (ε)
]2
− f (2)(ε) m(1)

n (2ε)− Const(2)

m(2)
n (ε) =

1
2

[
m(1)

n (ε)
]2

+ f (2)(ε) m(1)
n (2ε) + Const(2) +O(ε)

The remainder function characterises the deviation from the ABDK/BDS iteration
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Why ?
Mueller, Sen, Korchemsky, Radyuskin, 
Collins, Sterman, Magnea, ...solid theory of the IR-divergent part
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Why ?
but not much known about the remainder function,
apart from understanding why there shouldn’t be any for n = 4, 5
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Why ?
but not much known about the remainder function,
apart from understanding why there shouldn’t be any for n = 4, 5

Alday Maldacena 
Drummond Henn Korchemsky Sokatchev 

Mueller, Sen, Korchemsky, Radyuskin, 
Collins, Sterman, Magnea, ...solid theory of the IR-divergent part

How ?
What is the remainder function ?

we are trying to move forward analytically Duhr Glover Smirnov VDD 09

Saturday, July 11, 2009



MHV amplitudes ⇔  Wilson loops
agreement between n-edged Wilson loop and n-point MHV amplitude, 
verified for Alday Maldacena 07

Drummond Henn Korchemsky Sokatchev 07
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08

Brandhuber Heslop Travaglini 07n-edged 1-loop Wilson loop
6-edged 2-loop Wilson loop
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MHV amplitudes ⇔  Wilson loops
agreement between n-edged Wilson loop and n-point MHV amplitude, 
verified for Alday Maldacena 07

Drummond Henn Korchemsky Sokatchev 07
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08

Brandhuber Heslop Travaglini 07n-edged 1-loop Wilson loop
6-edged 2-loop Wilson loop

7-edged & 8-edged 2-loop Wilson loops also computed (numerically)
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

if agreement holds up to 8-edged 2-loop Wilson loops,
then                are known numericallyR(2)

7 , R(2)
8

R(2)
n unknown analytically,

but functions of conformally-invariant cross-ratios
Drummond Henn Korchemsky Sokatchev 07
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Ward identities &  Wilson loops
N=4 SYM is invariant under SO(2,4) conformal transformations
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N=4 SYM is invariant under SO(2,4) conformal transformations

the Wilson loops fulfill conformal Ward identities

the solution of the Ward identity for special conformal boosts 
is given by the finite parts of the BDS ansatz + R

for n = 4, 5,  R is a constant
for n ≥ 6,    R is an unknown function of conformally invariant cross ratios
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Ward identities &  Wilson loops
N=4 SYM is invariant under SO(2,4) conformal transformations

the Wilson loops fulfill conformal Ward identities

the solution of the Ward identity for special conformal boosts 
is given by the finite parts of the BDS ansatz + R

for n = 4, 5,  R is a constant
for n ≥ 6,    R is an unknown function of conformally invariant cross ratios

for n = 6, the conformally invariant cross ratios are

with x2
k,k+r = (pk + . . . + pk+r−1)2
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2
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M(0)
n = 2n/2 gn−2

∑

Sn/Zn

tr(T d1 · · ·T dn) m(0)
n (1, . . . , n)

m(0)
n (1, 2, . . . , n) =

〈pipj〉4

〈p1p2〉 · · · 〈pn−1pn〉〈pnp1〉

Colour decomposition of the tree n-point amplitude

m(0)
n (1, 2, . . . , n) colour-stripped amplitude

MHV amplitude
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Regge factorisation of the 4-pt amplitude
colour-stripped 4-pt amplitude                       in the Regge limit

m4(1, 2, 3, 4) = s [g C(p2, p3, τ)]
1
t

(
−s

τ

)α(t)

[g C(p1, p4, τ)]

g1 g2 → g3 g4 s! −t

Regge trajectory coefficient function        τ  Regge-factorisation scaleα(t) C(p2, p3, τ)

ᾱ(n)(t) , C̄(n)(t, τ) are re-scaled loop coefficients

α(t) = ḡ2ᾱ(1)(t) + ḡ4ᾱ(2)(t) + ḡ6ᾱ(3)(t) + O(ḡ8)

C(pi, pj , τ) = C(0)(pi, pj)
(
1 + ḡ2C̄(1)(t, τ) + ḡ4C̄(2)(t, τ) + ḡ6C̄(3)(t, τ) +O(ḡ8)

)

ᾱ(n)(t) =
(

µ2

−t

)nε

α(n) , C̄(n)(t, τ) =
(

µ2

−t

)nε

C(n)(t, τ)

Glover  VDD 08 

ḡ2 = g2NcΓ

Saturday, July 11, 2009



Regge factorisation of the 4-pt amplitude
colour-stripped 4-pt amplitude                       in the Regge limit

m4(1, 2, 3, 4) = s [g C(p2, p3, τ)]
1
t

(
−s

τ

)α(t)

[g C(p1, p4, τ)]

g1 g2 → g3 g4 s! −t

Regge trajectory coefficient function        τ  Regge-factorisation scaleα(t) C(p2, p3, τ)

ᾱ(n)(t) , C̄(n)(t, τ) are re-scaled loop coefficients

Because the Regge limit is exponential in the Regge trajectory,
one can use (the logarithm of) the BDS ansatz to obtain

the Regge trajectory to all loops

α(t) = ḡ2ᾱ(1)(t) + ḡ4ᾱ(2)(t) + ḡ6ᾱ(3)(t) + O(ḡ8)

C(pi, pj , τ) = C(0)(pi, pj)
(
1 + ḡ2C̄(1)(t, τ) + ḡ4C̄(2)(t, τ) + ḡ6C̄(3)(t, τ) +O(ḡ8)

)

ᾱ(n)(t) =
(

µ2

−t

)nε

α(n) , C̄(n)(t, τ) =
(

µ2

−t

)nε

C(n)(t, τ)

Naculich Schnitzer 07
Drummond Korchemsky Sokatchev 07
Bartels Lipatov Sabio-Vera 08
Glover  VDD 08 

α(l)(ε) = 2l−1α(1)(lε)

(
γ̂(l)

K

4
+ ε

l

2
Ĝ(l)

)
+ O(ε) α(1)(ε) =

2
ε

Glover  VDD 08 

ḡ2 = g2NcΓ
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In QCD the standard Regge factorisation is on the colour-dressed amplitude

Caveat

Kuraev Fadin Lipatov 76
Fadin Lipatov 93

M4(1, 2, 3, 4) = s
[
ig fabe C(p2, p3, τ)

] 1
t

(
−s

τ

)α(t) [
ig fcde C(p1, p4, τ)

]

but it is known to be only approximate

C.R. Schmidt  VDD 98 other colour structures occur at one loop 

Saturday, July 11, 2009



Regge factorisation of the 1-loop 4-pt amplitude

m(1)
4 = ᾱ(1)(t)L + 2C̄(1)(t, τ)
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Regge factorisation of the 1-loop 4-pt amplitude

m(1)
4 = ᾱ(1)(t)L + 2C̄(1)(t, τ)

valid to all orders in ε

Saturday, July 11, 2009



Regge factorisation of the 1-loop 4-pt amplitude

m(1)
4 = ᾱ(1)(t)L + 2C̄(1)(t, τ)

valid to all orders in ε
1-loop coefficient function

C(1)(t, τ) =
ψ(1 + ε)− 2ψ(−ε) + ψ(1)

ε
− 1

ε
ln
−t

τ

=
1
ε2

(
−2− ε ln

−t

τ
+ 3

∞∑

n=1

ζ2n ε2n +
∞∑

n=1

ζ2n+1 ε2n+1

)
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m(2)
4 =

1
2

(
ᾱ(1)(t)

)2
L2

+
(
ᾱ(2)(t) + 2 C̄(1)(t, τ)ᾱ(1)(t)

)
L

+ 2 C̄(2)(t, τ) +
(
C̄(1)(t, τ)

)2

valid to all orders in ε
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m(2)
4 =

1
2

(
ᾱ(1)(t)

)2
L2

+
(
ᾱ(2)(t) + 2 C̄(1)(t, τ)ᾱ(1)(t)

)
L

+ 2 C̄(2)(t, τ) +
(
C̄(1)(t, τ)

)2

valid to all orders in ε

a more efficient way of writing it

m(2)
4 =

1
2

(
m(1)

4

)2
+ ᾱ(2)(t)L + 2 C̄(2)(t, τ)−

(
C̄(1)(t, τ)

)2

where           must be known at least through m(1)
4 O(ε2)
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)
L

+ 2 C̄(2)(t, τ) +
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)2
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a more efficient way of writing it

m(2)
4 =
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2

(
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)2
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(
C̄(1)(t, τ)

)2
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by direct calculation from 

the 2-loop 4-pt amplitude m4(2) to O(ε2) 

we get 2-loop trajectory

α(2) = −2ζ2

ε
− 2ζ3 − 8ζ4ε + (36ζ2ζ3 + 82ζ5)ε2 +O(ε3)

2-loop coefficient function 

Glover  VDD 08

C(2)(t, τ) =
1
2

[
C(1)(t, τ)

]2
+

ζ2

ε2
+

(
ζ3 + ζ2 ln

−t

τ

)
1
ε

+
(

ζ3 ln
−t

τ
− 19ζ4

)
+

(
4ζ4 ln

−t

τ
− 2ζ2ζ3 − 39ζ5

)
ε

−
(

48ζ2
3 +

1773
8

ζ6 + (18ζ2ζ3 + 41ζ5) ln
−t

τ

)
ε2 +O(ε3)

where                    must be known at least through C(1)(t, τ, ε) O(ε2)

Bern Dixon Smirnov 05
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A similar factorisation holds also for QCD amplitudes.
In that case, the 2-loop 4-parton amplitude m4(2) 

yields the 2-loop trajectory

α(2) = CA

[
β0

1
ε2

+ K
2
ε

+ CA

(
404
27

− 2ζ3

)
− 56

27
NF

]
+O(ε)

β0 =
11
3

CA −
2
3
NF K =

(
67
18
− ζ2

)
CA −

5
9
NF

Fadin Fiore 95
Glover  VDD 01

maximal trascendentality
Kotikov Lipatov 02

maximal trascendentality:

ζn, lnn, ε−n have weight n in trascendentality

N=4 SYM amplitudes, and quantities derived from them,
are homogeneous polynomials of maximal trascendentality
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BDS ansatz and Regge limit

the iteration formula for the 2-loop n-pt amplitude mn(2)

m(2)
n (ε) =

1
2

[
m(1)

n (ε)
]2

+
2 G2(ε)
G(2ε)

f (2)(ε) m(1)
n (2ε) + 4 Const(2) +O(ε)

Anastasiou Bern Dixon Kosower 03
valid for n = 4, 5

f (2)(ε) = −ζ2 − ζ3ε− ζ4ε
2

(we use a different normalisation from BDS) G(ε) =
e−γε Γ(1− 2ε)

Γ(1 + ε) Γ2(1− ε)
= 1 +O(ε2)

Const(2) = −ζ2
2

2
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BDS ansatz and Regge limit

the iteration formula for the 2-loop n-pt amplitude mn(2)

m(2)
n (ε) =

1
2

[
m(1)

n (ε)
]2

+
2 G2(ε)
G(2ε)

f (2)(ε) m(1)
n (2ε) + 4 Const(2) +O(ε)

Anastasiou Bern Dixon Kosower 03
valid for n = 4, 5

f (2)(ε) = −ζ2 − ζ3ε− ζ4ε
2

(we use a different normalisation from BDS) G(ε) =
e−γε Γ(1− 2ε)

Γ(1 + ε) Γ2(1− ε)
= 1 +O(ε2)

Const(2) = −ζ2
2

2

from the iteration formula and Regge factorisation
we obtain iteration formulae for the Regge trajectory and the coefficient function

C(2)(t, τ, ε) =
1
2

[
C(1)(t, τ, ε)

]2
+

2 G2(ε)
G(2ε)

f (2)(ε)C(1)(t, τ, 2ε) + 2 Const(2) +O(ε)

where                    must be known through C(1)(t, τ, ε) O(ε2)
Glover  VDD 08

α(2)(ε) = 2 f (2)(ε) α(1)(2ε) +O(ε)
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the formulae for n = 4 implied by
the BDS ansatz and by Regge factorisation differ in that

BDS: valid for arbitrary kinematics, but to O(ε0) 
Regge: valid to all orders in ε, but only in the Regge kinematics.

They overlap and agree in the Regge kinematics to O(ε0)
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Regge factorisation at 3 loops

m(3)
4 = m(2)

4 m(1)
4 − 1

3

(
m(1)

4

)3

+ ᾱ(3)(t)L + 2 C̄(3)(t, τ)− 2 C̄(2)(t, τ) C̄(1)(t, τ) +
2
3

(
C̄(1)(t, τ)

)3

with 3-loop trajectory

α(3) =
44ζ4

3ε
+

40
3

ζ2ζ3 + 16ζ5 +O(ε)

3-loop coefficient function 

C(3)(t, τ) = C(2)(t, τ)C(1)(t, τ)− 1
3

[
C(1)(t, τ)

]3

− 44
9

ζ4

ε2
−

(
40
9

ζ2ζ3 +
16
3

ζ5 +
22
3

ζ4 ln
−t

τ

)
1
ε

+
3982
27

ζ6 −
68
9

ζ2
3 −

(
8ζ5 +

20
3

ζ2ζ3

)
ln
−t

τ
+O(ε)

Glover  VDD 08
where                    must be known at least through C(1)(t, τ, ε)

O(ε2)C(2)(t, τ, ε)

O(ε4)

valid to all orders in ε
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BDS ansatz and 3-loop Regge factorisation

from BDS’s iteration formula for the 3-loop 4-point amplitude and Regge factorisation, 
we get iteration formulae for the 3-loop Regge trajectory and coefficient function

C(3)(t, τ, ε) = C(2)(t, τ, ε) C(1)(t, τ, ε)− 1
3

[
C(1)(t, τ, ε)

]3

+
4 G3(ε)
G(3ε)

f (3)(ε) C(1)(t, τ, 3ε) + 4 Const(3) +O(ε)

f (3)(ε) =
11
2

ζ4 + (6ζ5 + 5ζ2ζ3)ε + (c1ζ6 + c2ζ
2
3 )ε2with

Const(3) =
(

341
216

+
2
9
c1

)
ζ6 +

(
−17

9
+

2
9
c2

)
ζ2
3

with c1 and c2 known constants (which drop out of the recursive formula above)

α(3)(ε) = 4 f (3)(ε) α(1)(3ε) +O(ε)
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BDS ansatz and 3-loop Regge factorisation

from BDS’s iteration formula for the 3-loop 4-point amplitude and Regge factorisation, 
we get iteration formulae for the 3-loop Regge trajectory and coefficient function

C(3)(t, τ, ε) = C(2)(t, τ, ε) C(1)(t, τ, ε)− 1
3

[
C(1)(t, τ, ε)

]3

+
4 G3(ε)
G(3ε)

f (3)(ε) C(1)(t, τ, 3ε) + 4 Const(3) +O(ε)

f (3)(ε) =
11
2

ζ4 + (6ζ5 + 5ζ2ζ3)ε + (c1ζ6 + c2ζ
2
3 )ε2with

Const(3) =
(

341
216

+
2
9
c1

)
ζ6 +

(
−17

9
+

2
9
c2

)
ζ2
3

with c1 and c2 known constants (which drop out of the recursive formula above)

To         , the BDS iteration formulae above are in agreement
with the Regge formulae of the previous slide

O(ε0)

α(3)(ε) = 4 f (3)(ε) α(1)(3ε) +O(ε)
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Regge factorisation is valid also for amplitudes with 
5 or more points in generalised Regge limits. 

The strategy is to use the modular form of the 
amplitudes dictated by high-energy factorisation, 
to obtain information on n-point amplitudes in 

terms of building blocks derived 
from m-point amplitudes, with m < n
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Regge factorisation of the 5-pt amplitude

m5 = s [g C(p2, p3, τ)]
1
t2

(
−s2

τ

)α(t2)

[g V (q2, q1, κ, τ)]
1
t1

(
−s1

τ

)α(t1)

[g C(p1, p5, τ)]

V is gluon-production vertex;    κ = |pT|2 of central gluon

5-pt amplitude                         in the multi-Regge limitg1g2 → g3g4g5 s! s1, s2 ! −t1,−t2
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Regge factorisation of the 5-pt amplitude

1 loop m(1)
5 = ᾱ(1)(t1)L1 + ᾱ(1)(t2)L2 + C̄(1)(t1, τ) + C̄(1)(t2, τ) + V̄ (1)(t1, t2, κ, τ)

m5 = s [g C(p2, p3, τ)]
1
t2

(
−s2

τ

)α(t2)

[g V (q2, q1, κ, τ)]
1
t1

(
−s1

τ

)α(t1)

[g C(p1, p5, τ)]

V is gluon-production vertex;    κ = |pT|2 of central gluon

5-pt amplitude                         in the multi-Regge limitg1g2 → g3g4g5 s! s1, s2 ! −t1,−t2
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Regge factorisation of the 5-pt amplitude

1 loop m(1)
5 = ᾱ(1)(t1)L1 + ᾱ(1)(t2)L2 + C̄(1)(t1, τ) + C̄(1)(t2, τ) + V̄ (1)(t1, t2, κ, τ)

2 loops

where           must be known at least through O(ε2)m(1)
5

m(2)
5 =

1
2

(
m(1)

5

)2
+ ᾱ(2)(t1)L1 + ᾱ(2)(t2)L2

+ C̄(2)(t1, τ) + V̄ (2)(t1, t2, κ, τ) + C̄(2)(t2, τ)

− 1
2

(
C̄(1)(t1, τ)

)2
− 1

2

(
V̄ (1)(t1, t2, κ, τ)

)2
− 1

2

(
C̄(1)(t2, τ)

)2

m5 = s [g C(p2, p3, τ)]
1
t2

(
−s2

τ

)α(t2)

[g V (q2, q1, κ, τ)]
1
t1

(
−s1

τ

)α(t1)

[g C(p1, p5, τ)]

V is gluon-production vertex;    κ = |pT|2 of central gluon

5-pt amplitude                         in the multi-Regge limitg1g2 → g3g4g5 s! s1, s2 ! −t1,−t2
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BDS ansatz and Regge limit for the 5-pt amplitude
Using the BDS and Regge 2-loop iteration formula for the 5-pt amplitude m5(2)

and the iteration formulae for the trajectory and the coefficient functions,
one obtains a 2-loop iteration formula for the gluon-production vertex

V (2)(t1, t2, κ, τ, ε) =
1
2

[
V (1)(t1, t2, κ, τ, ε)

]2
+

2 G2(ε)
G(2ε)

f (2)(ε) V (1)(t1, t2, κ, τ, 2ε) +O(ε)

where                              must be known through V (1)(t1, t2, κ, τ, ε) O(ε2)
Duhr Glover  VDD 08
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BDS ansatz and Regge limit for the 5-pt amplitude
Using the BDS and Regge 2-loop iteration formula for the 5-pt amplitude m5(2)

and the iteration formulae for the trajectory and the coefficient functions,
one obtains a 2-loop iteration formula for the gluon-production vertex

V (2)(t1, t2, κ, τ, ε) =
1
2

[
V (1)(t1, t2, κ, τ, ε)

]2
+

2 G2(ε)
G(2ε)

f (2)(ε) V (1)(t1, t2, κ, τ, 2ε) +O(ε)

Similarly, at 3 loops

V (3)(t1, t2, κ, τ, ε) = V (2)(t1, t2, κ, τ, ε)V (1)(t1, t2, κ, τ, ε)− 1
3

[
V (1)(t1, t2, κ, τ, ε)

]3

+
4 G3(ε)
G(3ε)

f (3)(ε) V (1)(t1, t2, κ, τ, 3ε) +O(ε)

where                              must be known through V (1)(t1, t2, κ, τ, ε) O(ε2)

where                              must be known through V (1)(t1, t2, κ, τ, ε)

O(ε2)V (2)(t1, t2, κ, τ, ε)

O(ε4)

Duhr Glover  VDD 08
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1-loop 5-pt amplitude

parity-even and O(ε-2) parity-odd and O(ε)
ε1234 = tr[γ5!k1!k2 !k3!k4]

one-mass boxes known to all orders in ε
(6-2ε)-dim pentagon IR finite, but irreducible, and unknown analytically

Bern Dixon Dunbar Kosower 97

1-loop 5-pt amplitude computed through O(ε2) numerically
Cachazo Spradlin Volovich 06 

Bern Czakon Kosower Roiban Smirnov 06

m(1)
5 = −1

4

∑

cyclic

s12 s23 I1m
4 (1, 2, 3, 45, ε)− ε

2
ε1234 I6−2ε

5 (ε)
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1-loop 5-pt amplitude computed through O(ε2) numerically
Cachazo Spradlin Volovich 06 

Bern Czakon Kosower Roiban Smirnov 06

m(1)
5 = −1

4

∑

cyclic

s12 s23 I1m
4 (1, 2, 3, 45, ε)− ε

2
ε1234 I6−2ε

5 (ε)

Duhr Glover Smirnov  VDD 09in multi-Regge kinematics, we have computed analytically
the 1-loop 5-pt amplitude to all orders in ε, expanded through O(ε2)
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Regge factorisation of the 6-pt amplitude
6-pt amplitude
in the multi-Regge limit

g1g2 → g3g4g5g6

s! s1, s2, s3 ! −t1,−t2,−t3

m6 = s [g C(p2, p3, τ)]
1
t3

(
−s3

τ

)α(t3)

[g V (q2, q3, κ2, τ)]

× 1
t2

(
−s2

τ

)α(t2)

[g V (q1, q2, κ1, τ)]
1
t1

(
−s1

τ

)α(t1)

[g C(p1, p6, τ)]

y3 ! y4 ! y5 ! y6; |p3⊥| " |p4⊥| "| p5⊥| "| p6⊥|
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Regge factorisation of the 6-pt amplitude
6-pt amplitude
in the multi-Regge limit

g1g2 → g3g4g5g6

s! s1, s2, s3 ! −t1,−t2,−t3

m6 = s [g C(p2, p3, τ)]
1
t3

(
−s3

τ

)α(t3)

[g V (q2, q3, κ2, τ)]

× 1
t2

(
−s2

τ

)α(t2)

[g V (q1, q2, κ1, τ)]
1
t1

(
−s1

τ

)α(t1)

[g C(p1, p6, τ)]

no new vertices or coefficient functions appear, wrt n = 5

The l-loop 6-pt amplitude can then be assembled using the l-loop 
trajectories, gluon-production vertices and coefficient functions, 
which can be determined through the l-loop 4-pt and 5-pt amplitudes

y3 ! y4 ! y5 ! y6; |p3⊥| " |p4⊥| "| p5⊥| "| p6⊥|
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Regge factorisation of the 6-pt amplitude
6-pt amplitude
in the multi-Regge limit

g1g2 → g3g4g5g6

s! s1, s2, s3 ! −t1,−t2,−t3

m6 = s [g C(p2, p3, τ)]
1
t3

(
−s3

τ

)α(t3)

[g V (q2, q3, κ2, τ)]

× 1
t2

(
−s2

τ

)α(t2)

[g V (q1, q2, κ1, τ)]
1
t1

(
−s1

τ

)α(t1)

[g C(p1, p6, τ)]

no new vertices or coefficient functions appear, wrt n = 5

The l-loop 6-pt amplitude can then be assembled using the l-loop 
trajectories, gluon-production vertices and coefficient functions, 
which can be determined through the l-loop 4-pt and 5-pt amplitudes

Thus, also the l-loop BDS iterative formula for n = 6 will be fulfilled

the multi-Regge limit is not able to detect
the BDS-ansatz violation for n = 6

y3 ! y4 ! y5 ! y6; |p3⊥| " |p4⊥| "| p5⊥| "| p6⊥|
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the remainder function of the 6-pt amplitude depends on 
3 conformally-invariant cross-ratios 

Remainder function

Drummond Henn Korchemsky Sokatchev 07

u1 =
s12 s45

s345 s456
, u2 =

s23 s56

s234 s456
, u3 =

s34 s61

s234 s345

R(2)
6 = R(2)

6 (u1.u2, u3)
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the remainder function of the 6-pt amplitude depends on 
3 conformally-invariant cross-ratios 

Remainder function

Drummond Henn Korchemsky Sokatchev 07

u1 =
s12 s45

s345 s456
, u2 =

s23 s56

s234 s456
, u3 =

s34 s61

s234 s345

R(2)
6 = R(2)

6 (u1.u2, u3)

in the multi-Regge kinematics

like in the collinear limit

u1 = 1 +O
(

t

s

)
, u2 = O

(
t

s

)
, u3 = O

(
t

s

)
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1-loop 6-pt amplitude
computed through O(ε2) numerically
even
odd

Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
Cachazo Spradlin Volovich 08

through O(ε0), it is given in terms of 1m and 2me boxes
at O(ε) a hexagon occurs in the even part

s ≡ s12, t3 ≡ s23, s3 ≡ s34, s2 ≡ s45, s1 ≡ s56, t1 ≡ s61

5
1

4
2

6

3
s3

t3

s

t1

s2

s1
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1-loop 6-pt amplitude
computed through O(ε2) numerically
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through O(ε0), it is given in terms of 1m and 2me boxes
at O(ε) a hexagon occurs in the even part

s ≡ s12, t3 ≡ s23, s3 ≡ s34, s2 ≡ s45, s1 ≡ s56, t1 ≡ s61

multi-Regge kinematics (in Euclidean region)
−s" −s1,−s2,−s3 " −t1,−t2,−t3

s1 → λ2s1, s2 → λ2s2, s3 → λ2s3, t1 → λ3t1, t3 → λ3t3, λ" 1

5
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1-loop 6-pt amplitude
computed through O(ε2) numerically
even
odd

Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
Cachazo Spradlin Volovich 08

through O(ε0), it is given in terms of 1m and 2me boxes
at O(ε) a hexagon occurs in the even part

s ≡ s12, t3 ≡ s23, s3 ≡ s34, s2 ≡ s45, s1 ≡ s56, t1 ≡ s61

multi-Regge kinematics (in Euclidean region)
−s" −s1,−s2,−s3 " −t1,−t2,−t3

s1 → λ2s1, s2 → λ2s2, s3 → λ2s3, t1 → λ3t1, t3 → λ3t3, λ" 1

to all orders in ε, the hexagon integral is reduced to: 
triple sums in NDIM,
3-fold integrals through Mellin-Barnes 

5
1

4
2

6

3
s3

t3

s

t1

s2

s1
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Regge factorisation of the n-pt amplitude

mn(1, 2, . . . , n) = s [g C(p2, p3)]
1

tn−3

(
−sn−3

τ

)α(tn−3)

[g V (qn−3, qn−4, κn−4)]

· · ·× 1
t2

(
−s2

τ

)α(t2)

[g V (q2, q1, κ1)]
1
t1

(
−s1

τ

)α(t1)

[g C(p1, pn)]

n-pt amplitude in the multi-Regge limit

s! s1, s2, . . . , sn−3 ! −t1,−t2 . . . ,−tn−3

y3 ! y4 ! · · ·! yn; |p3⊥| " |p4⊥|... " |pn⊥|
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Regge factorisation of the n-pt amplitude

mn(1, 2, . . . , n) = s [g C(p2, p3)]
1

tn−3

(
−sn−3

τ

)α(tn−3)

[g V (qn−3, qn−4, κn−4)]

· · ·× 1
t2

(
−s2

τ

)α(t2)

[g V (q2, q1, κ1)]
1
t1

(
−s1

τ

)α(t1)

[g C(p1, pn)]

n-pt amplitude in the multi-Regge limit

s! s1, s2, . . . , sn−3 ! −t1,−t2 . . . ,−tn−3

What we said for n = 6 can be repeated in general:
the l-loop n-pt amplitude can be assembled
using the l-loop trajectories, vertices and
coefficient functions, determined through the
l-loop 4-pt and 5-pt amplitudes

no violation of the BDS ansatz can
be found in the multi-Regge limit

y3 ! y4 ! · · ·! yn; |p3⊥| " |p4⊥|... " |pn⊥|
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To have a chance to detect the violation of 
the BDS ansatz for the 2-loop 6-pt amplitude, 
that we see in arbitrary kinematics, we must 
relax the strong-ordering constraints of the 
multi-Regge kinematics
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n-pt amplitude in quasi-multi-Regge kinematics

y3 ! y4 " · · ·" yn; |p3⊥| ! |p4⊥|... ! |pn⊥|

quasi-multi-Regge kinematics

mn(1, 2, . . . , n) = s
[
g2 A(p2, p3, p4)

] 1
tn−4

(
−sn−4

τ

)α(tn−4)

[g V (qn−4, qn−5, κn−5)]

· · ·× 1
t2

(
−s2

τ

)α(t2)

[g V (q2, q1, κ1)]
1
t1

(
−s1

τ

)α(t1)

[g C(p1, pn)]
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n-pt amplitude in quasi-multi-Regge kinematics

y3 ! y4 " · · ·" yn; |p3⊥| ! |p4⊥|... ! |pn⊥|

quasi-multi-Regge kinematics

mn(1, 2, . . . , n) = s
[
g2 A(p2, p3, p4)

] 1
tn−4

(
−sn−4

τ

)α(tn−4)

[g V (qn−4, qn−5, κn−5)]

· · ·× 1
t2

(
−s2

τ

)α(t2)

[g V (q2, q1, κ1)]
1
t1

(
−s1

τ

)α(t1)

[g C(p1, pn)]

A new coefficient function
occurs already at n = 5,
for which the BDS ansatz is fulfilled.
Because no new coefficient functions
appear for n ≥ 6, a violation of the
BDS ansatz cannot be found even in this case

A(p2, p3, p4, τ)
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n-pt amplitude in quasi-multi-Regge kinematics

y3 ! y4 " · · ·" yn; |p3⊥| ! |p4⊥|... ! |pn⊥|

quasi-multi-Regge kinematics

mn(1, 2, . . . , n) = s
[
g2 A(p2, p3, p4)

] 1
tn−4

(
−sn−4

τ

)α(tn−4)

[g V (qn−4, qn−5, κn−5)]

· · ·× 1
t2

(
−s2

τ

)α(t2)

[g V (q2, q1, κ1)]
1
t1

(
−s1

τ

)α(t1)

[g C(p1, pn)]

A new coefficient function
occurs already at n = 5,
for which the BDS ansatz is fulfilled.
Because no new coefficient functions
appear for n ≥ 6, a violation of the
BDS ansatz cannot be found even in this case

A(p2, p3, p4, τ)

The same can be said for the
quasi-multi-Regge kinematics

y3 ! y4 " · · · " yn−1 ! yn; |p3⊥| !| p4⊥|... ! |pn⊥|
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in the quasi-multi-Regge kinematics
y3 ! y4 " · · ·" yn; |p3⊥| ! |p4⊥|... ! |pn⊥|

the 3 conformally-invariant cross-ratios 

u1 =
s12 s45

s345 s456
, u2 =

s23 s56

s234 s456
, u3 =

s34 s61

s234 s345

take the values

like in the multi-Regge kinematics and in the collinear limit

u1 = 1 +O
(

t

s

)
, u2 = O

(
t

s

)
, u3 = O

(
t

s

)
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More general quasi-multi-Regge kinematics
A necessary condition to see a violation of 
the BDS ansatz for the 2-loop 6-pt amplitude, 
is to go to a quasi-multi-Regge kinematics for 
which new coefficient functions appear for n ≥ 6
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More general quasi-multi-Regge kinematics
A necessary condition to see a violation of 
the BDS ansatz for the 2-loop 6-pt amplitude, 
is to go to a quasi-multi-Regge kinematics for 
which new coefficient functions appear for n ≥ 6

two such quasi-multi-Regge kinematics are

it remains to be seen if these kinematics harbour a violation of the BDS ansatz

in both cases, the 3 conformally-invariant cross-ratios take values

u1 = O(1) , u2 = O(1) , u3 = O(1)
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Conclusions

in multi-Regge kinematics, we have computed analytically the (6-2ε)-dim 
pentagon integral, and so the 1-loop 5-pt amplitude through O(ε2)

Duhr’s talk on Friday
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Conclusions

in multi-Regge kinematics, we have computed analytically the (6-2ε)-dim 
pentagon integral, and so the 1-loop 5-pt amplitude through O(ε2)

by the ABDK/BDS iteration, we can get 
the 2-loop 5-pt amplitude up to finite terms

by the Regge factorisation, the 1-loop 5-pt amplitude allows us 
to extract the 1-loop gluon-production vertex through O(ε2),
and by the ABDK/BDS iteration the 2-loop gluon-production 
vertex up to finite terms

by the factorisation of the l-loop n-pt amplitude in multi-Regge 
kinematics, we can build the amplitude in terms of l-loop 
coefficient functions and gluon-production vertices

the l-loop n-pt amplitude so built fulfils the BDS ansatz, 
thus any ansatz violation must be searched in less 
constraining (quasi-multi-Regge ?) kinematics 

Duhr’s talk on Friday
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