SYM amplitudes in the high-energy limit

Vittorio Del Duca
INFN LNF

CALC 2009
Dubna II July 2009

Bern-Dixon-Smirnov ansatz

an ansatz for MHV amplitudes in N=4 SYM

$$
\begin{aligned}
m_{n} & =m_{n}^{(0)}\left[1+\sum_{L=1}^{\infty} a^{L} M_{n}^{(L)}(\epsilon)\right] \\
& =m_{n}^{(0)} \exp \left[\sum_{l=1}^{\infty} a^{l}\left(f^{(l)}(\epsilon) M_{n}^{(1)}(l \epsilon)+\text { Const }^{(l)}+E_{n}^{(l)}(\epsilon)\right)\right]
\end{aligned}
$$

coupling $\quad a=\frac{\lambda}{8 \pi^{2}}\left(4 \pi e^{-\gamma}\right)^{\epsilon} \quad \lambda=g^{2} N \quad$ 't Hooft parameter

$$
f^{(l)}(\epsilon)=\frac{\hat{\gamma}_{K}^{(l)}}{4}+\epsilon \frac{l}{2} \hat{G}^{(l)}+\epsilon^{2} f_{2}^{(l)} \quad E_{n}^{(l)}(\epsilon)=O(\epsilon)
$$

$\hat{\gamma}_{K}^{(l)}$ cusp anomalous dimension, known to all orders of a
Korchemsky Radyuskin 86 Beisert Eden Staudacher 06
$\hat{G}^{(l)}$ collinear anomalous dimension, known through $\mathrm{O}\left(a^{4}\right)$ Bern Dixon Smirnov 05 Cachazo Spradlin Volovich 07

Brief history of BDS ansatz

BDS ansatz checked for the 3-loop 4-pt amplitude Bern Dixon Smirnov 05
2-loop 5-pt amplitude Cachazo Spradlin Volovich 06
Bern Czakon Kosower Roiban Smirnov 06

Brief history of BDS ansatz

BDS ansatz checked for the 3-loop 4-pt amplitude Bern Dixon Smirnov 05
2-loop 5-pt amplitude Cachazo Spradlin Volovich 06
Bern Czakon Kosower Roiban Smirnov 06
BDS ansatz shown to fail on 2-loop 6-pt amplitude
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
Hints of break-up from strong-coupling expansion Alday Maldacena 07
hexagon Wilson loop Drummond Henn Korchemsky Sokatchev 07
multi-Regge limit (?) Bartels Lipatov Sabio-Vera 08

Brief history of BDS ansatz

BDS ansatz checked for the 3-loop 4-pt amplitude Bern Dixon Smirnov 05
2-loop 5-pt amplitude Cachazo Spradlin Volovich 06
Bern Czakon Kosower Roiban Smirnov 06
BDS ansatz shown to fail on 2-loop 6-pt amplitude
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
Hints of break-up from strong-coupling expansion Alday Maldacena 07
hexagon Wilson loop Drummond Henn Korchemsky Sokatchev 07 multi-Regge limit (?) Bartels Lipatov Sabio-Vera 08

The BDS ansatz implies an iteration formula for the 2-loop n-pt amplitude $m_{n}{ }^{(2)}$ (rescaled by the tree amplitude)

$$
m_{n}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}+f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)+\text { Const }^{(2)}+\mathcal{O}(\epsilon)
$$

Anastasiou Bern Dixon Kosower 03
The remainder function characterises the deviation from the ABDK/BDS iteration

$$
R_{n}^{(2)}=m_{n}^{(2)}(\epsilon)-\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}-f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)-\text { Const }^{(2)}
$$

Why

Why

solid theory of the IR-divergent part

Mueller, Sen, Korchemsky, Radyuskin, Collins, Sterman, Magnea, ...

Why ?

solid theory of the IR-divergent part
Mueller, Sen, Korchemsky, Radyuskin, Collins, Sterman, Magnea, ...
but not much known about the remainder function, apart from understanding why there shouldn't be any for $n=4,5$

Alday Maldacena
Drummond Henn Korchemsky Sokatchev

Why

solid theory of the IR-divergent part

Mueller, Sen, Korchemsky, Radyuskin, Collins, Sterman, Magnea, ...
but not much known about the remainder function, apart from understanding why there shouldn't be any for $n=4,5$

Alday Maldacena
Drummond Henn Korchemsky Sokatchev

How?

What is the remainder function?

Why

solid theory of the IR-divergent part

Mueller, Sen, Korchemsky, Radyuskin, Collins, Sterman, Magnea, ...
but not much known about the remainder function, apart from understanding why there shouldn't be any for $n=4,5$

Alday Maldacena
Drummond Henn Korchemsky Sokatchev

-1OM?

What is the remainder function ?
we are trying to move forward analytically
Duhr Glover Smirnov VDD 09

MHV amplitudes \Leftrightarrow Wilson loops

 agreement between n-edged Wilson loop and n-point MHV amplitude, verified forn-edged I-loop Wilson loop
6-edged 2-loop Wilson loop
Brandhuber Heslop Travaglini 07
Drummond Henn Korchemsky Sokatchev 07
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08

MHV amplitudes \Leftrightarrow Wilson loops

 agreement between n-edged Wilson loop and n-point MHV amplitude, verified forn-edged I-loop Wilson loop Brandhuber Heslop Travaglini 07
6-edged 2-loop Wilson loop Drummond Henn Korchemsky Sokatchev 07
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08

7-edged \& 8-edged 2-loop Wilson loops also computed (numerically)
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09
if agreement holds up to 8-edged 2-loop Wilson loops, then $R_{7}^{(2)}, R_{8}^{(2)}$ are known numerically
$R_{n}^{(2)}$ unknown analytically, but functions of conformally-invariant cross-ratios

Drummond Henn Korchemsky Sokatchev 07

Ward identities \& Wilson loops
Q $N=4 S Y M$ is invariant under $S O(2,4)$ conformal transformations

Ward identities \& Wilson loops
Q $\mathrm{N}=4 \mathrm{SYM}$ is invariant under $\mathrm{SO}(2,4)$ conformal transformations
Q the Wilson loops fulfill conformal Ward identities

Ward identities \& Wilson loops

Q $N=4$ SYM is invariant under $S O(2,4)$ conformal transformations
Q the Wilson loops fulfill conformal Ward identities
Q the solution of the Ward identity for special conformal boosts is given by the finite parts of the BDS ansatz $+R$

Ward identities \& Wilson loops

Q $N=4$ SYM is invariant under $S O(2,4)$ conformal transformations
Q the Wilson loops fulfill conformal Ward identities
Q the solution of the Ward identity for special conformal boosts is given by the finite parts of the BDS ansatz $+R$

Q for $n=4,5, R$ is a constant for $n \geq 6, R$ is an unknown function of conformally invariant cross ratios

Ward identities \& Wilson loops

Q $N=4$ SYM is invariant under $S O(2,4)$ conformal transformations
Q the Wilson loops fulfill conformal Ward identities
Q the solution of the Ward identity for special conformal boosts is given by the finite parts of the BDS ansatz $+R$

Q for $n=4,5, R$ is a constant
for $n \geq 6, R$ is an unknown function of conformally invariant cross ratios
Q for $n=6$, the conformally invariant cross ratios are
$u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}} \quad u_{2}=\frac{x_{24}^{2} x_{15}^{2}}{x_{25}^{2} x_{14}^{2}} \quad u_{3}=\frac{x_{35}^{2} x_{26}^{2}}{x_{36}^{2} x_{25}^{2}}$
with $\quad x_{k, k+r}^{2}=\left(p_{k}+\ldots+p_{k+r-1}\right)^{2}$

Colour decomposition of the tree n-point amplitude

$$
\mathcal{M}_{n}^{(0)}=2^{n / 2} g^{n-2} \sum_{S_{n} / Z_{n}} \operatorname{tr}\left(T^{d_{1}} \cdots T^{d_{n}}\right) m_{n}^{(0)}(1, \ldots, n)
$$

$$
m_{n}^{(0)}(1,2, \ldots, n) \quad \text { colour-stripped amplitude }
$$

MHV amplitude

$$
m_{n}^{(0)}(1,2, \ldots, n)=\frac{\left\langle p_{i} p_{j}\right\rangle^{4}}{\left\langle p_{1} p_{2}\right\rangle \cdots\left\langle p_{n-1} p_{n}\right\rangle\left\langle p_{n} p_{1}\right\rangle}
$$

Regge factorisation of the 4-pt amplitude

 colour-stripped 4-pt amplitude $g_{1} g_{2} \rightarrow g_{3} g_{4}$ in the Regge limit $s \gg-t$$$
m_{4}(1,2,3,4)=s\left[g C\left(p_{2}, p_{3}, \tau\right)\right] \frac{1}{t}\left(\frac{-s}{\tau}\right)^{\alpha(t)}\left[g C\left(p_{1}, p_{4}, \tau\right)\right]
$$

$\alpha(t)$ Regge trajectory $C\left(p_{2}, p_{3}, \tau\right)$ coefficient function T Regge-factorisation scale

$$
\begin{gathered}
\alpha(t)=\bar{g}^{2} \bar{\alpha}^{(1)}(t)+\bar{g}^{4} \bar{\alpha}^{(2)}(t)+\bar{g}^{6} \bar{\alpha}^{(3)}(t)+O\left(\bar{g}^{8}\right) \quad \bar{g}^{2}=g^{2} N c_{\Gamma} \\
C\left(p_{i}, p_{j}, \tau\right)=C^{(0)}\left(p_{i}, p_{j}\right)\left(1+\bar{g}^{2} \bar{C}^{(1)}(t, \tau)+\bar{g}^{4} \bar{C}^{(2)}(t, \tau)+\bar{g}^{6} \bar{C}^{(3)}(t, \tau)+\mathcal{O}\left(\bar{g}^{8}\right)\right) \\
\bar{\alpha}^{(n)}(t), \quad \bar{C}^{(n)}(t, \tau) \quad \text { are re-scaled loop coefficients } \\
\bar{\alpha}^{(n)}(t)=\left(\frac{\mu^{2}}{-t}\right)^{n \epsilon} \alpha^{(n)}, \quad \bar{C}^{(n)}(t, \tau)=\left(\frac{\mu^{2}}{-t}\right)^{n \epsilon} C^{(n)}(t, \tau)
\end{gathered}
$$

Regge factorisation of the 4-pt amplitude

colour-stripped 4-pt amplitude $g_{1} g_{2} \rightarrow g_{3} g_{4}$ in the Regge limit $s \gg-t$

$$
m_{4}(1,2,3,4)=s\left[g C\left(p_{2}, p_{3}, \tau\right)\right] \frac{1}{t}\left(\frac{-s}{\tau}\right)^{\alpha(t)}\left[g C\left(p_{1}, p_{4}, \tau\right)\right]
$$

$\alpha(t)$ Regge trajectory $C\left(p_{2}, p_{3}, \tau\right)$ coefficient function \mathbf{T} Regge-factorisation scale

$$
\begin{gathered}
\alpha(t)=\bar{g}^{2} \bar{\alpha}^{(1)}(t)+\bar{g}^{4} \bar{\alpha}^{(2)}(t)+\bar{g}^{6} \bar{\alpha}^{(3)}(t)+O\left(\bar{g}^{8}\right) \quad \bar{g}^{2}=g^{2} N c_{\Gamma} \\
C\left(p_{i}, p_{j}, \tau\right)=C^{(0)}\left(p_{i}, p_{j}\right)\left(1+\bar{g}^{2} \bar{C}^{(1)}(t, \tau)+\bar{g}^{4} \bar{C}^{(2)}(t, \tau)+\bar{g}^{6} \bar{C}^{(3)}(t, \tau)+\mathcal{O}\left(\bar{g}^{8}\right)\right) \\
\bar{\alpha}^{(n)}(t), \quad \bar{C}^{(n)}(t, \tau) \quad \text { are re-scaled loop coefficients } \\
\bar{\alpha}^{(n)}(t)=\left(\frac{\mu^{2}}{-t}\right)^{n \epsilon} \alpha^{(n)}, \quad \bar{C}^{(n)}(t, \tau)=\left(\frac{\mu^{2}}{-t}\right)^{n \epsilon} C^{(n)}(t, \tau)
\end{gathered}
$$

Because the Regge limit is exponential in the Regge trajectory, one can use (the logarithm of) the BDS ansatz to obtain the Regge trajectory to all loops

$$
\alpha^{(l)}(\epsilon)=2^{l-1} \alpha^{(1)}(l \epsilon)\left(\frac{\hat{\gamma}_{K}^{(l)}}{4}+\epsilon \frac{l}{2} \hat{G}^{(l)}\right)+O(\epsilon)
$$

Naculich Schnitzer 07
Drummond Korchemsky Sokatchev 07 Bartels Lipatov Sabio-Vera 08
Glover VDD 08

$$
\alpha^{(1)}(\epsilon)=\frac{2}{\epsilon}
$$

Caveat

In QCD the standard Regge factorisation is on the colour-dressed amplitude

$$
M_{4}(1,2,3,4)=s\left[i g f^{a b e} C\left(p_{2}, p_{3}, \tau\right)\right] \frac{1}{t}\left(\frac{-s}{\tau}\right)^{\alpha(t)}\left[i g f^{c d e} C\left(p_{1}, p_{4}, \tau\right)\right]
$$

but it is known to be only approximate

Kuraev Fadin Lipatov 76
Fadin Lipatov 93
other colour structures occur at one loop C.R. Schmidt VDD 98

Regge factorisation of the I-loop 4-pt amplitude

$$
m_{4}^{(1)}=\bar{\alpha}^{(1)}(t) L+2 \bar{C}^{(1)}(t, \tau)
$$

Regge factorisation of the I-loop 4-pt amplitude

valid to all orders in ε

Regge factorisation of the I-loop 4-pt amplitude

valid to all orders in ε
I-loop coefficient function

$$
\begin{aligned}
C^{(1)}(t, \tau) & =\frac{\psi(1+\epsilon)-2 \psi(-\epsilon)+\psi(1)}{\epsilon}-\frac{1}{\epsilon} \ln \frac{-t}{\tau} \\
& =\frac{1}{\epsilon^{2}}\left(-2-\epsilon \ln \frac{-t}{\tau}+3 \sum_{n=1}^{\infty} \zeta_{2 n} \epsilon^{2 n}+\sum_{n=1}^{\infty} \zeta_{2 n+1} \epsilon^{2 n+1}\right)
\end{aligned}
$$

Factorisation of the 2-loop amplitude

$$
\begin{aligned}
m_{4}^{(2)} & =\frac{1}{2}\left(\bar{\alpha}^{(1)}(t)\right)^{2} L^{2} \\
& +\left(\bar{\alpha}^{(2)}(t)+2 \bar{C}^{(1)}(t, \tau) \bar{\alpha}^{(1)}(t)\right) L \\
& +2 \bar{C}^{(2)}(t, \tau)+\left(\bar{C}^{(1)}(t, \tau)\right)^{2}
\end{aligned}
$$

valid to all orders in ε

Factorisation of the 2-loop amplitude

$$
\begin{aligned}
m_{4}^{(2)} & =\frac{1}{2}\left(\bar{\alpha}^{(1)}(t)\right)^{2} L^{2} \\
& +\left(\bar{\alpha}^{(2)}(t)+2 \bar{C}^{(1)}(t, \tau) \bar{\alpha}^{(1)}(t)\right) L \\
& +2 \bar{C}^{(2)}(t, \tau)+\left(\bar{C}^{(1)}(t, \tau)\right)^{2}
\end{aligned}
$$

valid to all orders in ε
a more efficient way of writing it

$$
m_{4}^{(2)}=\frac{1}{2}\left(m_{4}^{(1)}\right)^{2}+\bar{\alpha}^{(2)}(t) L+2 \bar{C}^{(2)}(t, \tau)-\left(\bar{C}^{(1)}(t, \tau)\right)^{2}
$$

where $m_{4}^{(1)}$ must be known at least through $\mathcal{O}\left(\epsilon^{2}\right)$

Factorisation of the 2-loop amplitude

$$
\begin{aligned}
m_{4}^{(2)} & =\frac{1}{2}\left(\bar{\alpha}^{(1)}(t)\right)^{2} L^{2} \\
& +\left(\bar{\alpha}^{(2)}(t)+2 \bar{C}^{(1)}(t, \tau) \bar{\alpha}^{(1)}(t)\right) L \\
& +2 \bar{C}^{(2)}(t, \tau)+\left(\bar{C}^{(1)}(t, \tau)\right)^{2}
\end{aligned}
$$

valid to all orders in ε
a more efficient way of wrijng it
$m_{4}^{(2)}=\frac{1}{2}\left(m_{4}^{(1)}\right)^{2}+\bar{\alpha}^{(2)}(t) L+2 \bar{C}^{(2)}(t, \tau)-\left(\bar{C}^{(1)}\right.$
where $m_{4}^{(1)}$ must be known at least through $\mathcal{O}\left(\epsilon^{2}\right)$
by direct calculation from the 2-loop 4-pt amplitude $m_{4}{ }^{(2)}$ to $O\left(\varepsilon^{2}\right) \quad$ Bern Dixon Smirnov 05 we get 2-loop trajectory

$$
\alpha^{(2)}=-\frac{2 \zeta_{2}}{\epsilon}-2 \zeta_{3}-8 \zeta_{4} \epsilon+\left(36 \zeta_{2} \zeta_{3}+82 \zeta_{5}\right) \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)
$$

2-loop coefficient function

$$
\begin{aligned}
C^{(2)}(t, \tau) & =\frac{1}{2}\left[C^{(1)}(t, \tau)\right]^{2}+\frac{\zeta_{2}}{\epsilon^{2}}+\left(\zeta_{3}+\zeta_{2} \ln \frac{-t}{\tau}\right) \frac{1}{\epsilon} \\
& +\left(\zeta_{3} \ln \frac{-t}{\tau}-19 \zeta_{4}\right)+\left(4 \zeta_{4} \ln \frac{-t}{\tau}-2 \zeta_{2} \zeta_{3}-39 \zeta_{5}\right) \epsilon \\
& -\left(48 \zeta_{3}^{2}+\frac{1773}{8} \zeta_{6}+\left(18 \zeta_{2} \zeta_{3}+41 \zeta_{5}\right) \ln \frac{-t}{\tau}\right) \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

where $C^{(1)}(t, \tau, \epsilon)$ must be known at least through $\mathcal{O}\left(\epsilon^{2}\right)$

A similar factorisation holds also for QCD amplitudes. In that case, the 2-loop 4-parton amplitude $m_{4}{ }^{(2)}$ yields the 2-loop trajectory

Fadin Fiore 95
Glover VDD 0 I
$\beta_{0}=\frac{11}{3} C_{A}-\frac{2}{3} N_{F}$

$$
K=\left(\frac{67}{18}-\zeta_{2}\right)^{2}-\frac{5}{9} N_{F}
$$

ascendentality
Kotikov Lipatov 02
maximal trascendentality:
$\zeta_{n}, \ln ^{n}, \epsilon^{-n} \quad$ have weight n in trascendentality
$N=4$ SYM amplitudes, and quantities derived from them, are homogeneous polynomials of maximal trascendentality

BDS ansatz and Regge limit

the iteration formula for the 2-loop n-pt amplitude $m_{n}{ }^{(2)}$

$$
m_{n}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}+\frac{2 G^{2}(\epsilon)}{G(2 \epsilon)} f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)+4 \text { Const }^{(2)}+\mathcal{O}(\epsilon)
$$

valid for $n=4,5$

$$
f^{(2)}(\epsilon)=-\zeta_{2}-\zeta_{3} \epsilon-\zeta_{4} \epsilon^{2} \quad \text { Const }^{(2)}=-\frac{\zeta_{2}^{2}}{2}
$$

(we use a different normalisation from BDS) $\quad G(\epsilon)=\frac{e^{-\gamma \epsilon} \Gamma(1-2 \epsilon)}{\Gamma(1+\epsilon) \Gamma^{2}(1-\epsilon)}=1+\mathcal{O}\left(\epsilon^{2}\right)$

BDS ansatz and Regge limit

the iteration formula for the 2-loop n-pt amplitude $m_{n}{ }^{(2)}$

$$
m_{n}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}+\frac{2 G^{2}(\epsilon)}{G(2 \epsilon)} f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)+4 \text { Const }^{(2)}+\mathcal{O}(\epsilon)
$$

valid for $n=4,5$
Anastasiou Bern Dixon Kosower 03

$$
f^{(2)}(\epsilon)=-\zeta_{2}-\zeta_{3} \epsilon-\zeta_{4} \epsilon^{2} \quad \text { Const }^{(2)}=-\frac{\zeta_{2}^{2}}{2}
$$

(we use a different normalisation from BDS) $\quad G(\epsilon)=\frac{e^{-\gamma \epsilon} \Gamma(1-2 \epsilon)}{\Gamma(1+\epsilon) \Gamma^{2}(1-\epsilon)}=1+\mathcal{O}\left(\epsilon^{2}\right)$
from the iteration formula and Regge factorisation we obtain iteration formulae for the Regge trajectory and the coefficient function

$$
\begin{aligned}
& \alpha^{(2)}(\epsilon)=2 f^{(2)}(\epsilon) \alpha^{(1)}(2 \epsilon)+\mathcal{O}(\epsilon) \\
& C^{(2)}(t, \tau, \epsilon)=\frac{1}{2}\left[C^{(1)}(t, \tau, \epsilon)\right]^{2}+\frac{2 G^{2}(\epsilon)}{G(2 \epsilon)} f^{(2)}(\epsilon) C^{(1)}(t, \tau, 2 \epsilon)+2 \text { Const }^{(2)}+\mathcal{O}(\epsilon) \\
& \text { where } C^{(1)}(t, \tau, \epsilon) \text { must be known through } \mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

the formulae for $n=4$ implied by

the BDS ansatz and by Regge factorisation differ in that BDS: valid for arbitrary kinematics, but to $O\left(\varepsilon^{0}\right)$
Regge: valid to all orders in ε, but only in the Regge kinematics.
They overlap and agree in the Regge kinematics to $O\left(\varepsilon^{0}\right)$

Regge factorisation at 3 loops

$$
\begin{aligned}
m_{4}^{(3)} & =m_{4}^{(2)} m_{4}^{(1)}-\frac{1}{3}\left(m_{4}^{(1)}\right)^{3} \\
& +\bar{\alpha}^{(3)}(t) L+2 \bar{C}^{(3)}(t, \tau)-2 \bar{C}^{(2)}(t, \tau) \bar{C}^{(1)}(t, \tau)+\frac{2}{3}\left(\bar{C}^{(1)}(t, \tau)\right)^{3}
\end{aligned}
$$

with 3-loop trajectory valid to all orders in ε

$$
\alpha^{(3)}=\frac{44 \zeta_{4}}{3 \epsilon}+\frac{40}{3} \zeta_{2} \zeta_{3}+16 \zeta_{5}+\mathcal{O}(\epsilon)
$$

3-loop coefficient function

$$
\begin{aligned}
C^{(3)}(t, \tau) & =C^{(2)}(t, \tau) C^{(1)}(t, \tau)-\frac{1}{3}\left[C^{(1)}(t, \tau)\right]^{3} \\
& -\frac{44}{9} \frac{\zeta_{4}}{\epsilon^{2}}-\left(\frac{40}{9} \zeta_{2} \zeta_{3}+\frac{16}{3} \zeta_{5}+\frac{22}{3} \zeta_{4} \ln \frac{-t}{\tau}\right) \frac{1}{\epsilon} \\
& +\frac{3982}{27} \zeta_{6}-\frac{68}{9} \zeta_{3}^{2}-\left(8 \zeta_{5}+\frac{20}{3} \zeta_{2} \zeta_{3}\right) \ln \frac{-t}{\tau}+\mathcal{O}(\epsilon)
\end{aligned}
$$

Glover VDD 08
where $C^{(1)}(t, \tau, \epsilon)$ must be known at least through $\mathcal{O}\left(\epsilon^{4}\right)$

$$
\begin{equation*}
C^{(2)}(t, \tau, \epsilon) \tag{2}
\end{equation*}
$$

BDS ansatz and 3-loop Regge factorisation

from BDS's iteration formula for the 3-loop 4-point amplitude and Regge factorisation, we get iteration formulae for the 3-loop Regge trajectory and coefficient function

$$
\begin{aligned}
& \begin{aligned}
\alpha^{(3)}(\epsilon) & =4 f^{(3)}(\epsilon) \alpha^{(1)}(3 \epsilon)+\mathcal{O}(\epsilon) \\
C^{(3)}(t, \tau, \epsilon) & =C^{(2)}(t, \tau, \epsilon) C^{(1)}(t, \tau, \epsilon)-\frac{1}{3}\left[C^{(1)}(t, \tau, \epsilon)\right]^{3} \\
& +\frac{4 G^{3}(\epsilon)}{G(3 \epsilon)} f^{(3)}(\epsilon) C^{(1)}(t, \tau, 3 \epsilon)+4 \text { Const }^{(3)}+\mathcal{O}(\epsilon)
\end{aligned} \\
& \text { with } \quad f^{(3)}(\epsilon)=\frac{11}{2} \zeta_{4}+\left(6 \zeta_{5}+5 \zeta_{2} \zeta_{3}\right) \epsilon+\left(c_{1} \zeta_{6}+c_{2} \zeta_{3}^{2}\right) \epsilon^{2} \\
& C_{\text {Const }}{ }^{(3)}=\left(\frac{341}{216}+\frac{2}{9} c_{1}\right) \zeta_{6}+\left(-\frac{17}{9}+\frac{2}{9} c_{2}\right) \zeta_{3}^{2}
\end{aligned}
$$

with c_{1} and c_{2} known constants (which drop out of the recursive formula above)

BDS ansatz and 3-loop Regge factorisation

from BDS's iteration formula for the 3-loop 4-point amplitude and Regge factorisation, we get iteration formulae for the 3-loop Regge trajectory and coefficient function

$$
\begin{aligned}
& \begin{aligned}
\alpha^{(3)}(\epsilon) & =4 f^{(3)}(\epsilon) \alpha^{(1)}(3 \epsilon)+\mathcal{O}(\epsilon) \\
C^{(3)}(t, \tau, \epsilon) & =C^{(2)}(t, \tau, \epsilon) C^{(1)}(t, \tau, \epsilon)-\frac{1}{3}\left[C^{(1)}(t, \tau, \epsilon)\right]^{3} \\
& +\frac{4 G^{3}(\epsilon)}{G(3 \epsilon)} f^{(3)}(\epsilon) C^{(1)}(t, \tau, 3 \epsilon)+4 \text { Const }^{(3)}+\mathcal{O}(\epsilon)
\end{aligned} \\
& \text { with } \quad f^{(3)}(\epsilon)=\frac{11}{2} \zeta_{4}+\left(6 \zeta_{5}+5 \zeta_{2} \zeta_{3}\right) \epsilon+\left(c_{1} \zeta_{6}+c_{2} \zeta_{3}^{2}\right) \epsilon^{2} \\
& C o n s t^{(3)}=\left(\frac{341}{216}+\frac{2}{9} c_{1}\right) \zeta_{6}+\left(-\frac{17}{9}+\frac{2}{9} c_{2}\right) \zeta_{3}^{2}
\end{aligned}
$$

with c_{1} and c_{2} known constants (which drop out of the recursive formula above)
To $\mathcal{O}\left(\epsilon^{0}\right)$, the BDS iteration formulae above are in agreement with the Regge formulae of the previous slide

Regge factorisation is valid also for amplitudes with 5 or more points in generalised Regge limits.

The strategy is to use the modular form of the amplitudes dictated by high-energy factorisation, to obtain information on n-point amplitudes in terms of building blocks derived from m-point amplitudes, with $m<n$

Regge factorisation of the 5-pt amplitude
5-pt amplitude $g_{1} g_{2} \rightarrow g_{3} g_{4} g_{5}$ in the multi-Regge limit $\quad s \gg s_{1}, s_{2} \gg-t_{1},-t_{2}$

$$
m_{5}=s\left[g C\left(p_{2}, p_{3}, \tau\right)\right] \frac{1}{t_{2}}\left(\frac{-s_{2}}{\tau}\right)^{\alpha\left(t_{2}\right)}\left[g V\left(q_{2}, q_{1}, \kappa, \tau\right)\right] \frac{1}{t_{1}}\left(\frac{-s_{1}}{\tau}\right)^{\alpha\left(t_{1}\right)}\left[g C\left(p_{1}, p_{5}, \tau\right)\right]
$$

V is gluon-production vertex; $K=\left|p_{T}\right|^{2}$ of central gluon

Regge factorisation of the 5-pt amplitude

 5-pt amplitude $g_{1} g_{2} \rightarrow g_{3} g_{4} g_{5}$ in the multi-Regge limit $s \gg s_{1}, s_{2} \gg-t_{1},-t_{2}$$$
m_{5}=s\left[g C\left(p_{2}, p_{3}, \tau\right)\right] \frac{1}{t_{2}}\left(\frac{-s_{2}}{\tau}\right)^{\alpha\left(t_{2}\right)}\left[g V\left(q_{2}, q_{1}, \kappa, \tau\right)\right] \frac{1}{t_{1}}\left(\frac{-s_{1}}{\tau}\right)^{\alpha\left(t_{1}\right)}\left[g C\left(p_{1}, p_{5}, \tau\right)\right]
$$

V is gluon-production vertex; $\mathrm{K}=\left|\mathrm{P}_{\mathrm{T}}\right|^{2}$ of central gluon
I loop $m_{5}^{(1)}=\bar{\alpha}^{(1)}\left(t_{1}\right) L_{1}+\bar{\alpha}^{(1)}\left(t_{2}\right) L_{2}+\bar{C}^{(1)}\left(t_{1}, \tau\right)+\bar{C}^{(1)}\left(t_{2}, \tau\right)+\bar{V}^{(1)}\left(t_{1}, t_{2}, \kappa, \tau\right)$

Regge factorisation of the 5-pt amplitude

5-pt amplitude $g_{1} g_{2} \rightarrow g_{3} g_{4} g_{5}$ in the multi-Regge limit $\quad s \gg s_{1}, s_{2} \gg-t_{1},-t_{2}$

$$
m_{5}=s\left[g C\left(p_{2}, p_{3}, \tau\right)\right] \frac{1}{t_{2}}\left(\frac{-s_{2}}{\tau}\right)^{\alpha\left(t_{2}\right)}\left[g V\left(q_{2}, q_{1}, \kappa, \tau\right)\right] \frac{1}{t_{1}}\left(\frac{-s_{1}}{\tau}\right)^{\alpha\left(t_{1}\right)}\left[g C\left(p_{1}, p_{5}, \tau\right)\right]
$$

V is gluon-production vertex; $K=\left|p_{T}\right|^{2}$ of central gluon
I loop $m_{5}^{(1)}=\bar{\alpha}^{(1)}\left(t_{1}\right) L_{1}+\bar{\alpha}^{(1)}\left(t_{2}\right) L_{2}+\bar{C}^{(1)}\left(t_{1}, \tau\right)+\bar{C}^{(1)}\left(t_{2}, \tau\right)+\bar{V}^{(1)}\left(t_{1}, t_{2}, \kappa, \tau\right)$

2 loops

$$
\begin{aligned}
m_{5}^{(2)} & =\frac{1}{2}\left(m_{5}^{(1)}\right)^{2}+\bar{\alpha}^{(2)}\left(t_{1}\right) L_{1}+\bar{\alpha}^{(2)}\left(t_{2}\right) L_{2} \\
& +\bar{C}^{(2)}\left(t_{1}, \tau\right)+\bar{V}^{(2)}\left(t_{1}, t_{2}, \kappa, \tau\right)+\bar{C}^{(2)}\left(t_{2}, \tau\right) \\
& -\frac{1}{2}\left(\bar{C}^{(1)}\left(t_{1}, \tau\right)\right)^{2}-\frac{1}{2}\left(\bar{V}^{(1)}\left(t_{1}, t_{2}, \kappa, \tau\right)\right)^{2}-\frac{1}{2}\left(\bar{C}^{(1)}\left(t_{2}, \tau\right)\right)^{2}
\end{aligned}
$$

where $m_{5}^{(1)}$ must be known at least through $\mathcal{O}\left(\epsilon^{2}\right)$

BDS ansatz and Regge limit for the 5-pt amplitude

Using the BDS and Regge 2-loop iteration formula for the 5-pt amplitude $m_{5}{ }^{(2)}$ and the iteration formulae for the trajectory and the coefficient functions, one obtains a 2-loop iteration formula for the gluon-production vertex

$$
\begin{array}{r}
V^{(2)}\left(t_{1}, t_{2}, \kappa, \tau, \epsilon\right)=\frac{1}{2}\left[V^{(1)}\left(t_{1}, t_{2}, \kappa, \tau, \epsilon\right)\right]^{2}+\frac{2 G^{2}(\epsilon)}{G(2 \epsilon)} f^{(2)}(\epsilon) V^{(1)}\left(t_{1}, t_{2}, \kappa, \tau, 2 \epsilon\right)+\mathcal{O}(\epsilon) \\
\text { Duhr Glover VDD } 08
\end{array}
$$

where $V^{(1)}\left(t_{1}, t_{2}, \kappa, \tau, \epsilon\right)$ must be known through $\mathcal{O}\left(\epsilon^{2}\right)$

BDS ansatz and Regge limit for the 5-pt amplitude

Using the BDS and Regge 2-loop iteration formula for the 5-pt amplitude $m_{5}{ }^{(2)}$ and the iteration formulae for the trajectory and the coefficient functions, one obtains a 2-loop iteration formula for the gluon-production vertex

$$
V^{(2)}\left(t_{1}, t_{2}, \kappa, \tau, \epsilon\right)=\frac{1}{2}\left[V^{(1)}\left(t_{1}, t_{2}, \kappa, \tau, \epsilon\right)\right]^{2}+\frac{2 G^{2}(\epsilon)}{G(2 \epsilon)} f^{(2)}(\epsilon) V^{(1)}\left(t_{1}, t_{2}, \kappa, \tau, 2 \epsilon\right)+\mathcal{O}(\epsilon)
$$

Duhr Glover VDD 08
where $V^{(1)}\left(t_{1}, t_{2}, \kappa, \tau, \epsilon\right)$ must be known through $\mathcal{O}\left(\epsilon^{2}\right)$
Similarly, at 3 loops

$$
\begin{aligned}
V^{(3)}\left(t_{1}, t_{2}, \kappa, \tau, \epsilon\right) & =V^{(2)}\left(t_{1}, t_{2}, \kappa, \tau, \epsilon\right) V^{(1)}\left(t_{1}, t_{2}, \kappa, \tau, \epsilon\right)-\frac{1}{3}\left[V^{(1)}\left(t_{1}, t_{2}, \kappa, \tau, \epsilon\right)\right]^{3} \\
& +\frac{4 G^{3}(\epsilon)}{G(3 \epsilon)} f^{(3)}(\epsilon) V^{(1)}\left(t_{1}, t_{2}, \kappa, \tau, 3 \epsilon\right)+\mathcal{O}(\epsilon)
\end{aligned}
$$

where $V^{(1)}\left(t_{1}, t_{2}, \kappa, \tau, \epsilon\right)$ must be known through $\mathcal{O}\left(\epsilon^{4}\right)$

$$
V^{(2)}\left(t_{1}, t_{2}, \kappa, \tau, \epsilon\right) \quad \mathcal{O}\left(\epsilon^{2}\right)
$$

I-loop 5-pt amplitude

$$
\begin{aligned}
& m_{5}^{(1)}=-\frac{1}{4} \sum_{\text {cyclic }} s_{12} s_{23} I_{4}^{1 m}(1,2,3,45, \epsilon)-\frac{\epsilon}{2} \epsilon_{1234} I_{5}^{6-2 \epsilon}(\epsilon) \\
& \text { parity-even and } O\left(\varepsilon^{-2}\right) \quad \text { parity-odd and } O(\varepsilon)
\end{aligned}
$$

$$
\epsilon_{1234}=\operatorname{tr}\left[\gamma_{5} \not k_{1} k / k_{2} k / k_{3} / k_{4}\right]
$$

one-mass boxes known to all orders in ε
(6-2ع)-dim pentagon IR finite, but irreducible, and unknown analytically
I-loop 5-pt amplitude computed through $O\left(\varepsilon^{2}\right)$ numerically
Cachazo Spradlin Volovich 06
Bern Czakon Kosower Roiban Smirnov 06

I-loop 5-pt amplitude

$$
\begin{aligned}
& m_{5}^{(1)}=-\frac{1}{4} \sum_{\text {cyclic }} s_{12} s_{23} I_{4}^{1 m}(1,2,3,45, \epsilon)-\frac{\epsilon}{2} \epsilon_{1234} I_{5}^{6-2 \epsilon}(\epsilon) \\
& \text { parity-even and } O\left(\varepsilon^{-2}\right) \quad \text { parity-odd and } O(\varepsilon)
\end{aligned}
$$

$$
\epsilon_{1234}=\operatorname{tr}\left[\gamma_{5} \not / k_{1} k / k_{2} k / /_{3} / k_{4}\right]
$$

one-mass boxes known to all orders in ε
(6-2ع)-dim pentagon IR finite, but irreducible, and unknown analytically
I-loop 5-pt amplitude computed through $O\left(\varepsilon^{2}\right)$ numerically
Cachazo Spradlin Volovich 06
Bern Czakon Kosower Roiban Smirnov 06
in multi-Regge kinematics, we have computed analytically Duhr Glover Smirnov VDD 09 the I-loop 5-pt amplitude to all orders in ε, expanded through $O\left(\varepsilon^{2}\right)$

Regge factorisation of the 6-pt amplitude

6-pt amplitude $\quad g_{1} g_{2} \rightarrow g_{3} g_{4} g_{5} g_{6}$ in the multi-Regge limit $\quad y_{3} \gg y_{4} \gg y_{5} \gg y_{6} ; \quad\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \simeq\left|p_{5 \perp}\right| \simeq\left|p_{6 \perp}\right|$ $s \gg s_{1}, s_{2}, s_{3} \gg-t_{1},-t_{2},-t_{3}$

$$
m_{6}=s\left[g C\left(p_{2}, p_{3}, \tau\right)\right] \frac{1}{t_{3}}\left(\frac{-s_{3}}{\tau}\right)^{\alpha\left(t_{3}\right)}\left[g V\left(q_{2}, q_{3}, \kappa_{2}, \tau\right)\right]
$$

$$
\times \frac{1}{t_{2}}\left(\frac{-s_{2}}{\tau}\right)^{\alpha\left(t_{2}\right)}\left[g V\left(q_{1}, q_{2}, \kappa_{1}, \tau\right)\right] \frac{1}{t_{1}}\left(\frac{-s_{1}}{\tau}\right)^{\alpha\left(t_{1}\right)}\left[g C\left(p_{1}, p_{6}, \tau\right)\right]
$$

Regge factorisation of the 6-pt amplitude

6-pt amplitude $\quad g_{1} g_{2} \rightarrow g_{3} g_{4} g_{5} g_{6}$ in the multi-Regge limit $\quad y_{3} \gg y_{4} \gg y_{5} \gg y_{6} ; \quad\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \simeq\left|p_{5 \perp}\right| \simeq\left|p_{6 \perp}\right|$

$$
\begin{gathered}
s \gg s_{1}, s_{2}, s_{3} \gg-t_{1},-t_{2},-t_{3} \\
m_{6}=s\left[g C\left(p_{2}, p_{3}, \tau\right)\right] \frac{1}{t_{3}}\left(\frac{-s_{3}}{\tau}\right)^{\alpha\left(t_{3}\right)}\left[g V\left(q_{2}, q_{3}, \kappa_{2}, \tau\right)\right] \\
\times \frac{1}{t_{2}}\left(\frac{-s_{2}}{\tau}\right)^{\alpha\left(t_{2}\right)}\left[g V\left(q_{1}, q_{2}, \kappa_{1}, \tau\right)\right] \frac{1}{t_{1}}\left(\frac{-s_{1}}{\tau}\right)^{\alpha\left(t_{1}\right)}\left[g C\left(p_{1}, p_{6}, \tau\right)\right]
\end{gathered}
$$

no new vertices or coefficient functions appear, wrt $n=5$
The l-loop 6-pt amplitude can then be assembled using the l-loop trajectories, gluon-production vertices and coefficient functions, which can be determined through the l-loop 4-pt and 5-pt amplitudes

Regge factorisation of the 6-pt amplitude

6-pt amplitude $\quad g_{1} g_{2} \rightarrow g_{3} g_{4} g_{5} g_{6}$ in the multi-Regge limit $\quad y_{3} \gg y_{4} \gg y_{5} \gg y_{6} ; \quad\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \simeq\left|p_{5 \perp}\right| \simeq\left|p_{6 \perp}\right|$

$$
\begin{gathered}
s \gg s_{1}, s_{2}, s_{3} \gg-t_{1},-t_{2},-t_{3} \\
m_{6}=s\left[g C\left(p_{2}, p_{3}, \tau\right)\right] \frac{1}{t_{3}}\left(\frac{-s_{3}}{\tau}\right)^{\alpha\left(t_{3}\right)}\left[g V\left(q_{2}, q_{3}, \kappa_{2}, \tau\right)\right] \\
\times \frac{1}{t_{2}}\left(\frac{-s_{2}}{\tau}\right)^{\alpha\left(t_{2}\right)}\left[g V\left(q_{1}, q_{2}, \kappa_{1}, \tau\right)\right] \frac{1}{t_{1}}\left(\frac{-s_{1}}{\tau}\right)^{\alpha\left(t_{1}\right)}\left[g C\left(p_{1}, p_{6}, \tau\right)\right]
\end{gathered}
$$

no new vertices or coefficient functions appear, wrt $n=5$
The l-loop 6-pt amplitude can then be assembled using the l-loop trajectories, gluon-production vertices and coefficient functions, which can be determined through the l-loop 4-pt and 5-pt amplitudes

Thus, also the l-loop BDS iterative formula for $n=6$ will be fulfilled the multi-Regge limit is not able to detect the BDS-ansatz violation for $n=6$

Remainder function

the remainder function of the 6-pt amplitude depends on
3 conformally-invariant cross-ratios
Drummond Henn Korchemsky Sokatchev 07

$$
\begin{aligned}
& R_{6}^{(2)}=R_{6}^{(2)}\left(u_{1} \cdot u_{2}, u_{3}\right) \\
& u_{1}=\frac{s_{12} s_{45}}{s_{345} s_{456}}, \quad u_{2}=\frac{s_{23} s_{56}}{s_{234} s_{456}}, \quad u_{3}=\frac{s_{34} s_{61}}{s_{234} s_{345}}
\end{aligned}
$$

Remainder function

the remainder function of the 6-pt amplitude depends on
3 conformally-invariant cross-ratios
Drummond Henn Korchemsky Sokatchev 07

$$
\begin{aligned}
& R_{6}^{(2)}=R_{6}^{(2)}\left(u_{1} \cdot u_{2}, u_{3}\right) \\
& u_{1}=\frac{s_{12} s_{45}}{s_{345} s_{456}}, \quad u_{2}=\frac{s_{23} s_{56}}{s_{234} s_{456}}, \quad u_{3}=\frac{s_{34} s_{61}}{s_{234} s_{345}}
\end{aligned}
$$

in the multi-Regge kinematics

$$
u_{1}=1+\mathcal{O}\left(\frac{t}{s}\right), \quad u_{2}=\mathcal{O}\left(\frac{t}{s}\right), \quad u_{3}=\mathcal{O}\left(\frac{t}{s}\right)
$$

like in the collinear limit

I-loop 6-pt amplitude

- computed through $O\left(\varepsilon^{2}\right)$ numerically
even Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08 odd Cachazo Spradlin Volovich 08
through $O\left(\varepsilon^{0}\right)$, it is given in terms of Im and $2 m e$ boxes at $O(\varepsilon)$ a hexagon occurs in the even part

$$
s \equiv s_{12}, \quad t_{3} \equiv s_{23}, \quad s_{3} \equiv s_{34}, \quad s_{2} \equiv s_{45}, \quad s_{1} \equiv s_{56}, \quad t_{1} \equiv s_{61}
$$

I-loop 6-pt amplitude

Q computed through $O\left(\varepsilon^{2}\right)$ numerically
even Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
odd Cachazo Spradlin Volovich 08
through $O\left(\varepsilon^{0}\right)$, it is given in terms of Im and $2 m e$ boxes
at $O(\varepsilon)$ a hexagon occurs in the even part

$$
s \equiv s_{12}, \quad t_{3} \equiv s_{23}, \quad s_{3} \equiv s_{34}, \quad s_{2} \equiv s_{45}, \quad s_{1} \equiv s_{56}, \quad t_{1} \equiv s_{61}
$$

9 multi-Regge kinematics (in Euclidean region)

$$
\begin{aligned}
& \quad-s \gg-s_{1},-s_{2},-s_{3} \gg-t_{1},-t_{2},-t_{3} \\
& s_{1} \rightarrow \lambda^{2} s_{1}, \quad s_{2} \rightarrow \lambda^{2} s_{2}, \quad s_{3} \rightarrow \lambda^{2} s_{3}, \quad t_{1} \rightarrow \lambda^{3} t_{1}, \quad t_{3} \rightarrow \lambda^{3} t_{3}, \quad \lambda \ll 1
\end{aligned}
$$

I-loop 6-pt amplitude

Q computed through $O\left(\varepsilon^{2}\right)$ numerically
even Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
odd Cachazo Spradlin Volovich 08
through $O\left(\varepsilon^{0}\right)$, it is given in terms of Im and $2 m e$ boxes at $O(\varepsilon)$ a hexagon occurs in the even part

$$
s \equiv s_{12}, \quad t_{3} \equiv s_{23}, \quad s_{3} \equiv s_{34}, \quad s_{2} \equiv s_{45}, \quad s_{1} \equiv s_{56}, \quad t_{1} \equiv s_{61}
$$

Q multi-Regge kinematics (in Euclidean region)

$$
\begin{aligned}
& \quad-s \gg-s_{1},-s_{2},-s_{3} \gg-t_{1},-t_{2},-t_{3} \\
& s_{1} \rightarrow \lambda^{2} s_{1}, \quad s_{2} \rightarrow \lambda^{2} s_{2}, \quad s_{3} \rightarrow \lambda^{2} s_{3}, \quad t_{1} \rightarrow \lambda^{3} t_{1}, \quad t_{3} \rightarrow \lambda^{3} t_{3}, \quad \lambda \ll 1
\end{aligned}
$$

Q to all orders in ε, the hexagon integral is reduced to: triple sums in NDIM,
3-fold integrals through Mellin-Barnes

Regge factorisation of the n-pt amplitude

$$
\begin{aligned}
& m_{n}(1,2, \ldots, n)=s\left[g C\left(p_{2}, p_{3}\right)\right] \frac{1}{t_{n-3}}\left(\frac{-s_{n-3}}{\tau}\right)^{\alpha\left(t_{n-3}\right)}\left[g V\left(q_{n-3}, q_{n-4}, \kappa_{n-4}\right)\right] \\
& \cdots \times \frac{1}{t_{2}}\left(\frac{-s_{2}}{\tau}\right)^{\alpha\left(t_{2}\right)}\left[g V\left(q_{2}, q_{1}, \kappa_{1}\right)\right] \frac{1}{t_{1}}\left(\frac{-s_{1}}{\tau}\right)^{\alpha\left(t_{1}\right)}\left[g C\left(p_{1}, p_{n}\right)\right]
\end{aligned}
$$

n-pt amplitude in the multi-Regge limit

$$
\begin{aligned}
y_{3} & \gg y_{4} \gg \cdots \gg y_{n} ; \quad\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \ldots \simeq\left|p_{n \perp}\right| \\
s & \gg s_{1}, s_{2}, \ldots, s_{n-3} \gg-t_{1},-t_{2} \ldots,-t_{n-3}
\end{aligned}
$$

Regge factorisation of the n-pt amplitude

$$
\begin{aligned}
& m_{n}(1,2, \ldots, n)=s\left[g C\left(p_{2}, p_{3}\right)\right] \frac{1}{t_{n-3}}\left(\frac{-s_{n-3}}{\tau}\right)^{\alpha\left(t_{n-3}\right)}\left[g V\left(q_{n-3}, q_{n-4}, \kappa_{n-4}\right)\right] \\
& \cdots \times \frac{1}{t_{2}}\left(\frac{-s_{2}}{\tau}\right)^{\alpha\left(t_{2}\right)}\left[g V\left(q_{2}, q_{1}, \kappa_{1}\right)\right] \frac{1}{t_{1}}\left(\frac{-s_{1}}{\tau}\right)^{\alpha\left(t_{1}\right)}\left[g C\left(p_{1}, p_{n}\right)\right]
\end{aligned}
$$

n-pt amplitude in the multi-Regge limit

$$
\begin{aligned}
y_{3} & \gg y_{4} \gg \cdots>y_{n} ; \quad\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \ldots \simeq\left|p_{n \perp}\right| \\
s & \gg s_{1}, s_{2}, \ldots, s_{n-3} \gg-t_{1},-t_{2} \ldots,-t_{n-3}
\end{aligned}
$$

What we said for $n=6$ can be repeated in general: the l-loop n-pt amplitude can be assembled using the l-loop trajectories, vertices and coefficient functions, determined through the I-loop 4-pt and 5-pt amplitudes
no violation of the BDS ansatz can be found in the multi-Regge limit

To have a chance to detect the violation of the BDS ansatz for the 2-loop 6-pt amplitude, that we see in arbitrary kinematics, we must relax the strong-ordering constraints of the multi-Regge kinematics

$n-p t$ amplitude in quasi-multi-Regge kinematics

$$
m_{n}(1,2, \ldots, n)=s\left[g^{2} A\left(p_{2}, p_{3}, p_{4}\right)\right] \frac{1}{t_{n-4}}\left(\frac{-s_{n-4}}{\tau}\right)^{\alpha\left(t_{n-4}\right)}\left[g V\left(q_{n-4}, q_{n-5}, \kappa_{n-5}\right)\right]
$$

$$
\cdots \times \frac{1}{t_{2}}\left(\frac{-s_{2}}{\tau}\right)^{\alpha\left(t_{2}\right)}\left[g V\left(q_{2}, q_{1}, \kappa_{1}\right)\right] \frac{1}{t_{1}}\left(\frac{-s_{1}}{\tau}\right)^{\alpha\left(t_{1}\right)}\left[g C\left(p_{1}, p_{n}\right)\right]
$$

quasi-multi-Regge kinematics

$$
y_{3} \simeq y_{4} \gg \cdots \gg y_{n} ; \quad\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \ldots \simeq\left|p_{n \perp}\right|
$$

$n-p t$ amplitude in quasi-multi-Regge kinematics

$m_{n}(1,2, \ldots, n)=s\left[g^{2} A\left(p_{2}, p_{3}, p_{4}\right)\right] \frac{1}{t_{n-4}}\left(\frac{-s_{n-4}}{\tau}\right)^{\alpha\left(t_{n-4}\right)}\left[g V\left(q_{n-4}, q_{n-5}, \kappa_{n-5}\right)\right]$

$$
\cdots \times \frac{1}{t_{2}}\left(\frac{-s_{2}}{\tau}\right)^{\alpha\left(t_{2}\right)}\left[g V\left(q_{2}, q_{1}, \kappa_{1}\right)\right] \frac{1}{t_{1}}\left(\frac{-s_{1}}{\tau}\right)^{\alpha\left(t_{1}\right)}\left[g C\left(p_{1}, p_{n}\right)\right]
$$

quasi-multi-Regge kinematics

$$
y_{3} \simeq y_{4} \gg \cdots \gg y_{n} ; \quad\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \ldots \simeq\left|p_{n \perp}\right|
$$

A new coefficient function $A\left(p_{2}, p_{3}, p_{4}, \tau\right)$ occurs already at $n=5$, for which the BDS ansatz is fulfilled.

Because no new coefficient functions appear for $n \geq 6$, a violation of the BDS ansatz cannot be found even in this case

n-pt amplitude in quasi-multi-Regge kinematics

$m_{n}(1,2, \ldots, n)=s\left[g^{2} A\left(p_{2}, p_{3}, p_{4}\right)\right] \frac{1}{t_{n-4}}\left(\frac{-s_{n-4}}{\tau}\right)^{\alpha\left(t_{n-4}\right)}\left[g V\left(q_{n-4}, q_{n-5}, \kappa_{n-5}\right)\right]$

$$
\cdots \times \frac{1}{t_{2}}\left(\frac{-s_{2}}{\tau}\right)^{\alpha\left(t_{2}\right)}\left[g V\left(q_{2}, q_{1}, \kappa_{1}\right)\right] \frac{1}{t_{1}}\left(\frac{-s_{1}}{\tau}\right)^{\alpha\left(t_{1}\right)}\left[g C\left(p_{1}, p_{n}\right)\right]
$$

quasi-multi-Regge kinematics

$$
y_{3} \simeq y_{4} \gg \cdots \gg y_{n} ; \quad\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \ldots \simeq\left|p_{n \perp}\right|
$$

A new coefficient function $A\left(p_{2}, p_{3}, p_{4}, \tau\right)$ occurs already at $n=5$, for which the BDS ansatz is fulfilled.

Because no new coefficient functions appear for $n \geq 6$, a violation of the
BDS ansatz cannot be found even in this case
The same can be said for the quasi-multi-Regge kinematics

$$
y_{3} \simeq y_{4} \gg \cdots \gg y_{n-1} \simeq y_{n} ; \quad\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \cdots \simeq\left|p_{n \perp}\right|
$$

in the quasi-multi-Regge kinematics

$$
y_{3} \simeq y_{4} \gg \cdots \gg y_{n} ; \quad\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \ldots \simeq\left|p_{n \perp}\right|
$$

the 3 conformally-invariant cross-ratios

$$
u_{1}=\frac{s_{12} s_{45}}{s_{345} s_{456}}, \quad u_{2}=\frac{s_{23} s_{56}}{s_{234} s_{456}}, \quad u_{3}=\frac{s_{34} s_{61}}{s_{234} s_{345}}
$$

take the values

$$
u_{1}=1+\mathcal{O}\left(\frac{t}{s}\right), \quad u_{2}=\mathcal{O}\left(\frac{t}{s}\right), \quad u_{3}=\mathcal{O}\left(\frac{t}{s}\right)
$$

like in the multi-Regge kinematics and in the collinear limit

More general quasi-multi-Regge kinematics

A necessary condition to see a violation of the BDS ansatz for the 2-loop 6-pt amplitude, is to go to a quasi-multi-Regge kinematics for which new coefficient functions appear for $n \geq 6$

More general quasi-multi-Regge kinematics

A necessary condition to see a violation of the BDS ansatz for the 2-loop 6-pt amplitude, is to go to a quasi-multi-Regge kinematics for which new coefficient functions appear for $n \geq 6$
two such quasi-multi-Regge kinematics are

More general quasi-multi-Regge kinematics

A necessary condition to see a violation of the BDS ansatz for the 2-loop 6-pt amplitude, is to go to a quasi-multi-Regge kinematics for which new coefficient functions appear for $n \geq 6$
two such quasi-multi-Regge kinematics are

(b)

in both cases, the 3 conformally-invariant cross-ratios take values

$$
u_{1}=\mathcal{O}(1), \quad u_{2}=\mathcal{O}(1), \quad u_{3}=\mathcal{O}(1)
$$

it remains to be seen if these kinematics harbour a violation of the BDS ansatz

Conclusions

in multi-Regge kinematics, we have computed analytically the (6-2ع)-dim pentagon integral, and so the I-loop 5-pt amplitude through $O\left(\varepsilon^{2}\right)$

Duhr's talk on Friday

Conclusions

in multi-Regge kinematics, we have computed analytically the (6-2 2)-dim pentagon integral, and so the I-loop 5-pt amplitude through $O\left(\varepsilon^{2}\right)$

Duhr's talk on Friday
9
by the ABDK/BDS iteration, we can get the 2-loop 5-pt amplitude up to finite terms

Conclusions

9
in multi-Regge kinematics, we have computed analytically the (6-2 2)-dim pentagon integral, and so the I-loop 5-pt amplitude through $O\left(\varepsilon^{2}\right)$

Duhr's talk on Friday
9
by the ABDK/BDS iteration, we can get the 2-loop 5-pt amplitude up to finite terms
by the Regge factorisation, the I-loop 5-pt amplitude allows us to extract the I-loop gluon-production vertex through $O\left(\varepsilon^{2}\right)$, and by the ABDK/BDS iteration the 2-loop gluon-production vertex up to finite terms

Conclusions

9
in multi-Regge kinematics, we have computed analytically the (6-2 2)-dim pentagon integral, and so the I-loop 5-pt amplitude through $O\left(\varepsilon^{2}\right)$

Duhr's talk on Friday
9
by the ABDK/BDS iteration, we can get the 2-loop 5-pt amplitude up to finite terms
by the Regge factorisation, the I-loop 5-pt amplitude allows us to extract the I-loop gluon-production vertex through $O\left(\varepsilon^{2}\right)$, and by the ABDK/BDS iteration the 2-loop gluon-production vertex up to finite terms
by the factorisation of the l-loop n-pt amplitude in multi-Regge kinematics, we can build the amplitude in terms of l-loop coefficient functions and gluon-production vertices

Conclusions

9
in multi-Regge kinematics, we have computed analytically the (6-2 2)-dim pentagon integral, and so the I-loop 5-pt amplitude through $O\left(\varepsilon^{2}\right)$

Duhr's talk on Friday
by the ABDK/BDS iteration, we can get the 2-loop 5-pt amplitude up to finite terms
by the Regge factorisation, the I-loop 5-pt amplitude allows us to extract the I-loop gluon-production vertex through $O\left(\varepsilon^{2}\right)$, and by the ABDK/BDS iteration the 2-loop gluon-production vertex up to finite terms
by the factorisation of the l-loop n-pt amplitude in multi-Regge kinematics, we can build the amplitude in terms of l-loop coefficient functions and gluon-production vertices
the l-loop n-pt amplitude so built fulfils the BDS ansatz, thus any ansatz violation must be searched in less constraining (quasi-multi-Regge ?) kinematics

