Infrared-finite Observables in N=4 Super Yang-Mills Theory

L.Bork², D.Kazakov^{1,2}, G.Vartanov¹ and A.Zhiboedov^{3,1}

¹Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, ²Institute for Theoretical and Experimental Physics ³Physics Department, Moscow State University

10 July, 2009

イロト イポト イヨト イヨト

Calculations for Modern and Future Colliders, L.Bork Infrared-finite Observables in N=4 SYM

Outline

Introduction

- N=4 Syper Yang Mills Theory
- Gluon scattering amplitudes
- 2 Infrared Divergences
 - Weak Coupling Case
 - Strong Coupling Case
- 3 Cancellation of IR Divergences
 - Toy model: electron-quark scattering
 - Gluon scattering in N=4 Super Yang-Mills Theory

-≣->

Introduction

Infrared Divergences Cancellation of IR Divergences Summary and Outlook

N=4 Super Yang Mills Theory Gluon scattering amplitudes

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

Introduction

- N=4 Syper Yang Mills Theory
- Gluon scattering amplitudes
- 2 Infrared Divergences
 - Weak Coupling Case
 - Strong Coupling Case
- 3 Cancellation of IR Divergences
 - Toy model: electron-quark scattering
 - Gluon scattering in N=4 Super Yang-Mills Theory
 - Summary and Outlook

N=4 Super Yang Mills Theory Gluon scattering amplitudes

・ロット (雪) () () () ()

N=4 Super Yang-Mills Theory

- $\mathcal{N} = 4$ Syper Yang-Mills theory is the most supersymmetric theory possible without gravity
- Field content: 1 massless gauge boson, 4 massless (Majorana) spin 1/2 fermions, 6 real (or 3 complex) massless spin 0 bosons
 All fields are in adjoint representation of the gauge group (Take SU(N_c))
- The theory is exactly scale invariant, conformal field theory at quantum level, i.e. the β function identically vanishes at all orders of PT

N=4 Super Yang Mills Theory Gluon scattering amplitudes

ヘロア 人間 アメヨア 人口 ア

N=4 Super Yang-Mills Theory

- $\mathcal{N} = 4$ Syper Yang-Mills theory is the most supersymmetric theory possible without gravity
- Field content: 1 massless gauge boson, 4 massless (Majorana) spin 1/2 fermions, 6 real (or 3 complex) massless spin 0 bosons All fields are in adjoint representation of the gauge group (Take SU(N_c))
- The theory is exactly scale invariant, conformal field theory at quantum level, i.e. the β function identically vanishes at all orders of PT

N=4 Super Yang Mills Theory Gluon scattering amplitudes

ヘロト 人間 ト ヘヨト ヘヨト

N=4 Super Yang-Mills Theory

- $\mathcal{N} = 4$ Syper Yang-Mills theory is the most supersymmetric theory possible without gravity
- Field content: 1 massless gauge boson, 4 massless (Majorana) spin 1/2 fermions, 6 real (or 3 complex) massless spin 0 bosons All fields are in adjoint representation of the gauge group (Take SU(N_c))
- The theory is exactly scale invariant, conformal field theory at quantum level, i.e. the β function identically vanishes at all orders of PT

N=4 Super Yang Mills Theory Gluon scattering amplitudes

ヘロト ヘワト ヘビト ヘビト

- $N_c \rightarrow \infty$ (planar limit) is expected to be integrable and solvable
- Maldacena's conjecture: Planar Limit of N=4 SYM at strong coupling is dual to weakly coupled type II b supergravity in 10 dimensional AdS₅ * S₅ space.
- How might PT series be organized to produce simple strong coupling result?
- The amplitudes on shell possess IR singularities which should cancel in observables. What are the observables in the strong coupling limit?

N=4 Super Yang Mills Theory Gluon scattering amplitudes

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- $N_c \rightarrow \infty$ (planar limit) is expected to be integrable and solvable
- Maldacena's conjecture: Planar Limit of N=4 SYM at strong coupling is dual to weakly coupled type II b supergravity in 10 dimensional AdS₅ * S₅ space.
- How might PT series be organized to produce simple strong coupling result?
- The amplitudes on shell possess IR singularities which should cancel in observables. What are the observables in the strong coupling limit?

N=4 Super Yang Mills Theory Gluon scattering amplitudes

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- $N_c \rightarrow \infty$ (planar limit) is expected to be integrable and solvable
- Maldacena's conjecture: Planar Limit of N=4 SYM at strong coupling is dual to weakly coupled type II b supergravity in 10 dimensional AdS₅ * S₅ space.
- How might PT series be organized to produce simple strong coupling result?
- The amplitudes on shell possess IR singularities which should cancel in observables. What are the observables in the strong coupling limit?

N=4 Super Yang Mills Theory Gluon scattering amplitudes

くロト (過) (目) (日)

- $N_c \rightarrow \infty$ (planar limit) is expected to be integrable and solvable
- Maldacena's conjecture: Planar Limit of N=4 SYM at strong coupling is dual to weakly coupled type II b supergravity in 10 dimensional AdS₅ * S₅ space.
- How might PT series be organized to produce simple strong coupling result?
- The amplitudes on shell possess IR singularities which should cancel in observables. What are the observables in the strong coupling limit?

Introduction

Infrared Divergences Cancellation of IR Divergences Summary and Outlook N=4 Super Yang Mills Theory Gluon scattering amplitudes

- 4 同 ト 4 回 ト 4 回 ト

Outline

- N=4 Syper Yang Mills Theory
- Gluon scattering amplitudes
- 2 Infrared Divergences
 - Weak Coupling Case
 - Strong Coupling Case
- 3 Cancellation of IR Divergences
 - Toy model: electron-quark scattering
 - Gluon scattering in N=4 Super Yang-Mills Theory
 - Summary and Outlook

N=4 Super Yang Mills Theory Gluon scattering amplitudes

Gluon scattering amplitudes

All outgoing gluons with helicity + or on mass shell In the leading N _corder (planar limit)

• Colour decomposition of amplitudes in N=4 SYM theory for $N_c \rightarrow \infty$

$$\mathcal{A}_{n}^{(l)} = g^{n-2} (\frac{g^2 N_c}{16\pi^2})^{l} \sum_{perm} \text{Tr}(T^{a_{\sigma(1)}}, ..., T^{a_{\sigma(n)}}) \mathcal{A}_{n}^{(l)}(a_{\sigma(1)}, ..., a_{\sigma(n)}),$$

where A_n - physical amplitude, A_n - partial amplitude, a_i - is color index of i - th external "gluon"

 Maximal helicity violating (MHV) amplitudes (two negative helicities and the rest positive) have observed a simple structure on tree level (and even in loops) and one can speculate that this is the consequence of SUSY

N=4 Super Yang Mills Theory Gluon scattering amplitudes

Gluon scattering amplitudes

All outgoing gluons with helicity + or on mass shell In the leading N _corder (planar limit)

• Colour decomposition of amplitudes in N=4 SYM theory for $N_c \rightarrow \infty$

$$\mathcal{A}_{n}^{(l)} = g^{n-2} (\frac{g^{2} N_{c}}{16\pi^{2}})^{l} \sum_{perm} \text{Tr}(T^{a_{\sigma(1)}}, ..., T^{a_{\sigma(n)}}) \mathcal{A}_{n}^{(l)}(a_{\sigma(1)}, ..., a_{\sigma(n)}),$$

where A_n - physical amplitude, A_n - partial amplitude, a_i - is color index of i - th external "gluon"

 Maximal helicity violating (MHV) amplitudes (two negative helicities and the rest positive) have observed a simple structure on tree level (and even in loops) and one can speculate that this is the consequence of SUSY

N=4 SYM Theory: Weak Coupling Case AdS/CFT Correspondence: Strong Coupling Case

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

Calculations for Modern and Future Colliders, L.Bork Infrared-finite Observables in N=4 SYM

N=4 SYM Theory: Weak Coupling Case AdS/CFT Correspondence: Strong Coupling Case

・ロト ・ 理 ト ・ ヨ ト ・

3

Perturbation theory

• Bern, Dixon & Smirnov's conjecture: $M_n^{(L)}(\varepsilon) \equiv A_n^{(L)}/A_n^{(0)}$

$$\mathcal{M}_{n} \equiv 1 + \sum_{L=1}^{\infty} \left(\frac{g^{2} N_{c}}{16\pi^{2}} \right)^{L} \mathcal{M}_{n}^{(L)}(\varepsilon) = \exp\left[\sum_{l=1}^{\infty} \left(\frac{g^{2} N_{c}}{16\pi^{2}} \right)^{l} \left(f^{(l)}(\varepsilon) \mathcal{M}_{n}^{(1)}(l\varepsilon) + \mathcal{C}^{(l)} + \mathcal{E}_{n}^{(l)}(\varepsilon) \right) \right]$$
$$f^{(l)}(\varepsilon) = f_{0}^{(l)}(\varepsilon) + \varepsilon f_{1}^{(l)}(\varepsilon) + \varepsilon^{2} f_{2}^{(l)}(\varepsilon)$$

$$\mathcal{M}_{n}(\varepsilon) = \exp\left[-\frac{1}{8}\sum_{l=1}^{\infty} \left(\frac{g^{2}N_{c}}{16\pi^{2}}\right)^{l} \left(\frac{\gamma_{K}^{(l)}}{(l\varepsilon)^{2}} + \frac{2G_{0}^{(l)}}{l\varepsilon}\right) \sum_{i=1}^{n} \left(\frac{\mu^{2}}{-s_{i,i+1}}\right)^{l\varepsilon} + \frac{1}{4}\sum_{l=1}^{\infty} \left(\frac{g^{2}N_{c}}{16\pi^{2}}\right)^{l} \gamma_{K}^{(l)} F_{n}^{(1)}(0)\right]$$

$$F_4^{(1)}(0) = rac{1}{2}\log^2\left(rac{-t}{-s}
ight) + 4\zeta_2$$

N=4 SYM Theory: Weak Coupling Case AdS/CFT Correspondence: Strong Coupling Case

・ロト ・ 理 ト ・ ヨ ト ・

∃ <2 <</p>

Perturbation theory

• Bern, Dixon & Smirnov's conjecture: $M_n^{(L)}(\varepsilon) \equiv A_n^{(L)}/A_n^{(0)}$

$$\mathcal{M}_{n} \equiv 1 + \sum_{L=1}^{\infty} \left(\frac{g^{2} N_{c}}{16\pi^{2}} \right)^{L} \mathcal{M}_{n}^{(L)}(\varepsilon) = \exp\left[\sum_{l=1}^{\infty} \left(\frac{g^{2} N_{c}}{16\pi^{2}} \right)^{l} \left(f^{(l)}(\varepsilon) \mathcal{M}_{n}^{(1)}(l\varepsilon) + \mathcal{C}^{(l)} + \mathcal{E}_{n}^{(l)}(\varepsilon) \right) \right]$$
$$f^{(l)}(\varepsilon) = f_{0}^{(l)}(\varepsilon) + \varepsilon f_{1}^{(l)}(\varepsilon) + \varepsilon^{2} f_{2}^{(l)}(\varepsilon)$$

$$\mathcal{M}_{n}(\varepsilon) = \exp\left[-\frac{1}{8}\sum_{l=1}^{\infty} \left(\frac{g^{2}N_{c}}{16\pi^{2}}\right)^{l} \left(\frac{\gamma_{K}^{(l)}}{(l\varepsilon)^{2}} + \frac{2G_{0}^{(l)}}{l\varepsilon}\right)\sum_{i=1}^{n} \left(\frac{\mu^{2}}{-s_{i,i+1}}\right)^{l\varepsilon} + \frac{1}{4}\sum_{l=1}^{\infty} \left(\frac{g^{2}N_{c}}{16\pi^{2}}\right)^{l} \gamma_{K}^{(l)} F_{n}^{(1)}(0)\right]$$

$$F_4^{(1)}(0) = \frac{1}{2}\log^2\left(\frac{-t}{-s}\right) + 4\zeta_2$$

Calculations for Modern and Future Colliders, L.Bork Infrared-finite Observables in N=4 SYM

N=4 SYM Theory: Weak Coupling Case AdS/CFT Correspondence: Strong Coupling Case

・ロト ・ 理 ト ・ ヨ ト ・

3

Perturbation theory

• Bern, Dixon & Smirnov's conjecture: $M_n^{(L)}(\varepsilon) \equiv A_n^{(L)}/A_n^{(0)}$

$$\mathcal{M}_{n} \equiv 1 + \sum_{L=1}^{\infty} \left(\frac{g^{2} N_{c}}{16\pi^{2}} \right)^{L} \mathcal{M}_{n}^{(L)}(\varepsilon) = \exp\left[\sum_{l=1}^{\infty} \left(\frac{g^{2} N_{c}}{16\pi^{2}} \right)^{l} \left(f^{(l)}(\varepsilon) \mathcal{M}_{n}^{(1)}(l\varepsilon) + \mathcal{C}^{(l)} + \mathcal{E}_{n}^{(l)}(\varepsilon) \right) \right]$$
$$f^{(l)}(\varepsilon) = f_{0}^{(l)}(\varepsilon) + \varepsilon f_{1}^{(l)}(\varepsilon) + \varepsilon^{2} f_{2}^{(l)}(\varepsilon)$$

$$\mathcal{M}_{n}(\varepsilon) = \exp\left[-\frac{1}{8}\sum_{l=1}^{\infty} \left(\frac{g^{2}N_{c}}{16\pi^{2}}\right)^{l} \left(\frac{\gamma_{K}^{(l)}}{(l\varepsilon)^{2}} + \frac{2G_{0}^{(l)}}{l\varepsilon}\right)\sum_{i=1}^{n} \left(\frac{\mu^{2}}{-s_{i,i+1}}\right)^{l\varepsilon} + \frac{1}{4}\sum_{l=1}^{\infty} \left(\frac{g^{2}N_{c}}{16\pi^{2}}\right)^{l} \gamma_{K}^{(l)} F_{n}^{(1)}(0)\right]$$

$$F_4^{(1)}(0) = \frac{1}{2}\log^2\left(\frac{-t}{-s}\right) + 4\zeta_2$$

N=4 SYM Theory: Weak Coupling Case AdS/CFT Correspondence: Strong Coupling Case

ヘロン ヘアン ヘビン ヘビン

Cusp anomalous dimension

- Cusp anomalous dimension appears in RG eq. for the expectation value of a Wilson line with a cusp
 - Loop expansion $\gamma_{K} = \sum_{l=1}^{\infty} \left(\frac{g^{2}N_{c}}{16\pi^{2}}\right)^{l} \gamma_{K}^{(l)}$ $\gamma_{K}^{(1)} = 8, \ \gamma_{K}^{(2)} = -16\zeta_{2}, \ \gamma_{K}^{(3)} = 176\zeta_{4}, ...$
- It also controls the large spin limit of anomalous dimension of leading-twist operators

$$\begin{split} \mathsf{O}_{j} &\equiv \bar{q} (\gamma_{+} \mathcal{D}^{+})^{j} q \\ \gamma_{j} &= \frac{1}{2} \gamma_{\mathsf{K}} (\alpha) \log j + \mathcal{O}(j^{0}), \quad j \to \infty \end{split}$$

• and large x limit of the DGLAP kernel for p.d.f.

$$P_{gg} = \frac{1}{2} \frac{\gamma \kappa(\alpha)}{(1-x)_{+}} + ..., \quad x \to 1, \quad \gamma(j) = -\int_{0}^{1} dx \; x^{j-1} P(x)$$

N=4 SYM Theory: Weak Coupling Case AdS/CFT Correspondence: Strong Coupling Case

イロト 不得 とくほと くほとう

Cusp anomalous dimension

• Cusp anomalous dimension appears in RG eq. for the expectation value of a Wilson line with a cusp

Loop expansion $\gamma_{\mathcal{K}} = \sum_{l=1}^{\infty} \left(\frac{g^2 N_c}{16\pi^2}\right)^l \gamma_{\mathcal{K}}^{(l)}$ $\gamma_{\mathcal{K}}^{(1)} = 8, \ \gamma_{\mathcal{K}}^{(2)} = -16\zeta_2, \ \gamma_{\mathcal{K}}^{(3)} = 176\zeta_4, \dots$

 It also controls the large spin limit of anomalous dimension of leading-twist operators

$$\begin{split} \mathsf{O}_{j} &\equiv \bar{q} (\gamma_{+} \mathcal{D}^{+})^{j} q \\ \gamma_{j} &= \frac{1}{2} \gamma_{\mathsf{K}} (\alpha) \log j + \mathcal{O}(j^{0}), \quad j \to \infty \end{split}$$

and large x limit of the DGLAP kernel for p.d.f.

$$P_{gg} = \frac{1}{2} \frac{\gamma_{\kappa}(\alpha)}{(1-x)_{+}} + ..., \quad x \to 1, \quad \gamma(j) = -\int_{0}^{1} dx \; x^{j-1} P(x)$$

N=4 SYM Theory: Weak Coupling Case AdS/CFT Correspondence: Strong Coupling Case

ヘロア 人間 アメヨア 人口 ア

Cusp anomalous dimension

• Cusp anomalous dimension appears in RG eq. for the expectation value of a Wilson line with a cusp

Loop expansion
$$\begin{split} \gamma_{\mathcal{K}} &= \sum_{l=1}^{\infty} \left(\frac{g^2 N_c}{16\pi^2} \right)^l \gamma_{\mathcal{K}}^{(l)} \\ \gamma_{\mathcal{K}}^{(1)} &= 8, \ \gamma_{\mathcal{K}}^{(2)} = -16\zeta_2, \ \gamma_{\mathcal{K}}^{(3)} = 176\zeta_4, \ldots \end{split}$$

 It also controls the large spin limit of anomalous dimension of leading-twist operators

$$egin{aligned} \mathsf{O}_j &\equiv ar{q}(\gamma_+\mathcal{D}^+)^j q \ \gamma_j &= rac{1}{2}\gamma_{\mathcal{K}}(lpha)\log j + \mathcal{O}(j^0), \quad j o \infty \end{aligned}$$

and large x limit of the DGLAP kernel for p.d.f.

$$P_{gg} = rac{1}{2} rac{\gamma_{\kappa}(\alpha)}{(1-x)_{+}} + ..., \quad x \to 1, \quad \gamma(j) = -\int_{0}^{1} dx \; x^{j-1} P(x)$$

N=4 SYM Theory: Weak Coupling Case AdS/CFT Correspondence: Strong Coupling Case

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

Calculations for Modern and Future Colliders, L.Bork Infrared-finite Observables in N=4 SYM

N=4 SYM Theory: Weak Coupling Case AdS/CFT Correspondence: Strong Coupling Case

・ロト ・ 理 ト ・ ヨ ト ・

3

Strong coupling expansion/AdS

Classical solution (Alday & Maldacena) for the scattering amplitude

 $\mathcal{M}_4(\varepsilon) = exp[-S_{cl}^{E}]$

•
$$S_{Cl}^{E} = \frac{1}{\varepsilon^{2}} \frac{\sqrt{g^{2}N_{c}}}{\pi} \left[\left(\frac{\mu_{lR}^{2}}{-s} \right)^{\varepsilon/2} + \left(\frac{\mu_{lR}^{2}}{-t} \right)^{\varepsilon/2} \right]$$

 $+ \frac{1}{\varepsilon} \frac{\sqrt{g^{2}N_{c}}}{2\pi} {}^{(1-\log 2)} \left[\left(\frac{\mu_{lR}^{2}}{-s} \right)^{\varepsilon/2} + \left(\frac{\mu_{lR}^{2}}{-t} \right)^{\varepsilon/2} \right] - \frac{\sqrt{g^{2}N_{c}}}{8\pi} \left[\log^{2}(\frac{s}{t}) + c \right] + \mathcal{O}(\varepsilon)$
 $\bullet \gamma_{\kappa}(g^{2}) \sim \frac{\sqrt{g^{2}N_{c}}}{\pi}, \quad G_{0}(g^{2}) \sim \sqrt{g^{2}N_{c}} \frac{1-\log 2}{2\pi}, \quad \text{for } g^{2}N_{c} \to \infty$

N=4 SYM Theory: Weak Coupling Case AdS/CFT Correspondence: Strong Coupling Case

イロン 不得 とくほ とくほ とうほ

Strong coupling expansion/AdS

Classical solution (Alday & Maldacena) for the scattering amplitude

$$\mathcal{M}_4(\varepsilon) = exp[-S^E_{cl}]$$

•
$$S_{Cl}^{E} = \frac{1}{\varepsilon^{2}} \frac{\sqrt{g^{2}N_{c}}}{\pi} \left[\left(\frac{\mu_{IR}^{2}}{-s} \right)^{\varepsilon/2} + \left(\frac{\mu_{IR}^{2}}{-t} \right)^{\varepsilon/2} \right] + \frac{1}{\varepsilon} \frac{\sqrt{g^{2}N_{c}}}{2\pi} (1-\log 2) \left[\left(\frac{\mu_{IR}^{2}}{-s} \right)^{\varepsilon/2} + \left(\frac{\mu_{IR}^{2}}{-t} \right)^{\varepsilon/2} \right] - \frac{\sqrt{g^{2}N_{c}}}{8\pi} \left[\log^{2}(\frac{s}{t}) + c \right] + \mathcal{O}(\varepsilon)$$

• $\gamma \epsilon(g^{2}) \sim \frac{\sqrt{g^{2}N_{c}}}{2\pi}, \quad G_{0}(g^{2}) \sim \sqrt{g^{2}N_{c}} = for \ g^{2}N_{c} \to \infty$

N=4 SYM Theory: Weak Coupling Case AdS/CFT Correspondence: Strong Coupling Case

ヘロア 人間 アメヨア 人口 ア

æ

Strong coupling expansion/AdS

Classical solution (Alday & Maldacena) for the scattering amplitude

$$\mathcal{M}_4(\varepsilon) = exp[-S_{cl}^E]$$

•
$$S_{Cl}^{E} = \frac{1}{\varepsilon^{2}} \frac{\sqrt{g^{2}N_{c}}}{\pi} \left[\left(\frac{\mu_{IR}^{2}}{-s} \right)^{\varepsilon/2} + \left(\frac{\mu_{IR}^{2}}{-t} \right)^{\varepsilon/2} \right]$$

 $+ \frac{1}{\varepsilon} \frac{\sqrt{g^{2}N_{c}}}{2\pi} (1 - \log 2) \left[\left(\frac{\mu_{IR}^{2}}{-s} \right)^{\varepsilon/2} + \left(\frac{\mu_{IR}^{2}}{-t} \right)^{\varepsilon/2} \right] - \frac{\sqrt{g^{2}N_{c}}}{8\pi} \left[\log^{2}(\frac{s}{t}) + c \right] + \mathcal{O}(\varepsilon)$
 $\bullet \gamma \kappa(g^{2}) \sim \frac{\sqrt{g^{2}N_{c}}}{\pi}, \quad G_{0}(g^{2}) \sim \sqrt{g^{2}N_{c}} \frac{1 - \log 2}{2\pi}, \quad \text{for } g^{2}N_{c} \to \infty$

N=4 SYM Theory: Weak Coupling Case AdS/CFT Correspondence: Strong Coupling Case

ヘロト 人間 ト ヘヨト ヘヨト

æ

Strong coupling expansion/AdS

Classical solution (Alday & Maldacena) for the scattering amplitude

$$\mathcal{M}_4(arepsilon) = exp[-S^E_{cl}]$$

•
$$S_{Cl}^{E} = \frac{1}{\varepsilon^{2}} \frac{\sqrt{g^{2}N_{c}}}{\pi} \left[\left(\frac{\mu_{IR}^{2}}{-s} \right)^{\varepsilon/2} + \left(\frac{\mu_{IR}^{2}}{-t} \right)^{\varepsilon/2} \right]$$

 $+ \frac{1}{\varepsilon} \frac{\sqrt{g^{2}N_{c}}}{2\pi} (1-\log 2) \left[\left(\frac{\mu_{IR}^{2}}{-s} \right)^{\varepsilon/2} + \left(\frac{\mu_{IR}^{2}}{-t} \right)^{\varepsilon/2} \right] - \frac{\sqrt{g^{2}N_{c}}}{8\pi} \left[\log^{2}(\frac{s}{t}) + c \right] + \mathcal{O}(\varepsilon)$
 • $\gamma \kappa(g^{2}) \sim \frac{\sqrt{g^{2}N_{c}}}{\pi}, \quad G_{0}(g^{2}) \sim \sqrt{g^{2}N_{c}} \frac{1-\log 2}{2\pi}, \quad \text{for } g^{2}N_{c} \to \infty$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

イロト イポト イヨト イヨト

Cancellation of IR divergences

• How and where the IR divergences cancel?

• What is left after cancellation of IR divergences?

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

イロト イポト イヨト イヨト

Cancellation of IR divergences

• How and where the IR divergences cancel?

• What is left after cancellation of IR divergences?

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

ヘロト ヘ戸ト ヘヨト ヘヨト

Cancellation of IR divergences

• How and where the IR divergences cancel?

• What is left after cancellation of IR divergences?

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Cancellation of IR divergences

• How and where the IR divergences cancel?

• What is left after cancellation of IR divergences?

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

イロト イポト イヨト イヨト

Outline

Calculations for Modern and Future Colliders, L.Bork Infrared-finite Observables in N=4 SYM

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

★ E → ★ E →

э

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Electron-quark scattering

Virtual Correction

$$\left(\frac{d\sigma}{d\Omega}\right)_{0} = \frac{\alpha^{2}}{2E^{2}} \left(\frac{s^{2} + u^{2} - \varepsilon t^{2}}{t^{2}}\right) \left(\frac{\mu^{2}}{s}\right)^{\varepsilon}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{virt} = \left(\frac{d\sigma}{d\Omega}\right)_0 \left[1 - 2C_F \frac{\alpha_s}{4\pi} \left(\frac{\mu^2}{-t}\right)^\varepsilon \left(\frac{2}{\varepsilon^2} + \frac{3}{\varepsilon} + 8\right)\right]$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

э

Electron-quark scattering

Virtual Correction

$$\left(\frac{d\sigma}{d\Omega}\right)_{0} = \frac{\alpha^{2}}{2E^{2}} \left(\frac{s^{2} + u^{2} - \varepsilon t^{2}}{t^{2}}\right) \left(\frac{\mu^{2}}{s}\right)^{\varepsilon}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{virt} = \left(\frac{d\sigma}{d\Omega}\right)_0 \left[1 - 2C_F \frac{\alpha_s}{4\pi} \left(\frac{\mu^2}{-t}\right)^{\varepsilon} \left(\frac{2}{\varepsilon^2} + \frac{3}{\varepsilon} + 8\right)\right]$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

ヘロト ヘワト ヘビト ヘビト

Electron-quark scattering

Virtual Correction

$$\left(\frac{d\sigma}{d\Omega}\right)_{0} = \frac{\alpha^{2}}{2E^{2}} \left(\frac{s^{2} + u^{2} - \varepsilon t^{2}}{t^{2}}\right) \left(\frac{\mu^{2}}{s}\right)^{\varepsilon}$$

 $\left(\frac{d\sigma}{d\Omega}\right)_{virt} = \left(\frac{d\sigma}{d\Omega}\right)_0 \left[1 - 2C_F \frac{\alpha_s}{4\pi} \left(\frac{\mu^2}{-t}\right)^{\varepsilon} \left(\frac{2}{\varepsilon^2} + \frac{3}{\varepsilon} + 8\right)\right]$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

<ロ> (四) (四) (三) (三) (三)

Real Emission

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{real} = \left(\frac{d\sigma}{d\Omega} \right)_0 \left[2C_F \frac{\alpha_s}{4\pi} \left(\frac{\mu^2}{-t} \right)^{\varepsilon} \left(\frac{2}{\varepsilon^2} + \frac{3}{\varepsilon} + 8 \right) \right]$$

+ $C_F \frac{\alpha^2}{E^2} \frac{\alpha_s}{4\pi} \left(\frac{\mu^2}{s} \right)^{\varepsilon} \left(\frac{\mu^2}{-t} \right)^{\varepsilon} \left(\frac{f_1}{\varepsilon} + f_2 \right),$

• where the functions f_1 and f_2 in the c.m. frame are ($c = \cos \theta$)

$$f_{1} = -2 \frac{(c^{3} + 5c^{2} - 3c + 5)\log(\frac{1-c}{2}) + (1-c^{2})(c-11)/4}{(1-c)(1+c)^{2}}$$

$$f_{2} = -\frac{1}{(1-c^{2})^{2}} \left[(1-c)(c^{3} + 5c^{2} - 3c + 5)\log^{2}(\frac{1-c}{2}) + \frac{1}{2}(1-c)(3c^{3} + 15c^{2} + 77c - 31)\log(\frac{1-c}{2}) + \frac{1}{2}(1-c^{2})(5c^{2} - 42c - 23) + (1+c)^{2}(c^{2} + 5c + 3)\pi^{2} - 12(9c^{2} + 2c + 5)Li_{2}(\frac{1+c}{2}) \right].$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

ヘロト 人間 とくほとく ほとう

3

Real Emission

۲

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{real} = \left(\frac{d\sigma}{d\Omega} \right)_0 \left[2C_F \frac{\alpha_s}{4\pi} \left(\frac{\mu^2}{-t} \right)^{\varepsilon} \left(\frac{2}{\varepsilon^2} + \frac{3}{\varepsilon} + 8 \right) \right]$$

+ $C_F \frac{\alpha^2}{E^2} \frac{\alpha_s}{4\pi} \left(\frac{\mu^2}{s} \right)^{\varepsilon} \left(\frac{\mu^2}{-t} \right)^{\varepsilon} \left(\frac{f_1}{\varepsilon} + f_2 \right),$

• where the functions f_1 and f_2 in the c.m. frame are ($c = \cos \theta$)

$$f_{1} = -2 \frac{(c^{3} + 5c^{2} - 3c + 5)\log(\frac{1-c}{2}) + (1-c^{2})(c-11)/4}{(1-c)(1+c)^{2}}$$

$$f_{2} = -\frac{1}{(1-c^{2})^{2}} \left[(1-c)(c^{3} + 5c^{2} - 3c + 5)\log^{2}(\frac{1-c}{2}) + \frac{1}{2}(1-c)(3c^{3} + 15c^{2} + 77c - 31)\log(\frac{1-c}{2}) + \frac{1}{2}(1-c^{2})(5c^{2} - 42c - 23) + (1+c)^{2}(c^{2} + 5c + 3)\pi^{2} - 12(9c^{2} + 2c + 5)Li_{2}(\frac{1+c}{2}) \right].$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

<ロ> <同> <同> <同> <同> <同> <同> <同> <

Real Emission

۲

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{real} = \left(\frac{d\sigma}{d\Omega} \right)_{0} \left[2C_{F} \frac{\alpha_{s}}{4\pi} \left(\frac{\mu^{2}}{-t} \right)^{\varepsilon} \left(\frac{2}{\varepsilon^{2}} + \frac{3}{\varepsilon} + 8 \right) \right]$$

+ $C_{F} \frac{\alpha^{2}}{E^{2}} \frac{\alpha_{s}}{4\pi} \left(\frac{\mu^{2}}{s} \right)^{\varepsilon} \left(\frac{\mu^{2}}{-t} \right)^{\varepsilon} \left(\frac{f_{1}}{\varepsilon} + f_{2} \right),$

• where the functions f_1 and f_2 in the c.m. frame are ($c = \cos \theta$)

$$\begin{split} f_1 &= -2 \frac{(c^3 + 5c^2 - 3c + 5)\log(\frac{1-c}{2}) + (1-c^2)(c-11)/4}{(1-c)(1+c)^2} \\ f_2 &= -\frac{1}{(1-c^2)^2} \left[(1-c)(c^3 + 5c^2 - 3c + 5)\log^2(\frac{1-c}{2}) \right. \\ &+ \frac{1}{2}(1-c)(3c^3 + 15c^2 + 77c - 31)\log(\frac{1-c}{2}) + \frac{1}{2}(1-c^2)(5c^2 - 42c - 23) \\ &+ (1+c)^2(c^2 + 5c + 3)\pi^2 - 12(9c^2 + 2c + 5)Li_2(\frac{1+c}{2}) \right]. \end{split}$$
Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

ヘロト 人間 とくほとくほとう

Initial state splitting

$$\left(\frac{d\sigma}{d\Omega}\right)_{split} = \frac{1}{\varepsilon} \frac{\alpha_s}{2\pi} \int_0^1 dz \left(\frac{\mu^2}{Q_f^2}\right)^\varepsilon P_{qq}(z) \frac{d\sigma_0}{d\Omega}(pz)$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{split} = C_F \frac{\alpha^2}{2E^2} \frac{\alpha_s}{2\pi} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{-t}\right)^{\varepsilon} \left(-\frac{f_1}{\varepsilon} + f_3\right),$$

• where for
$$Q_f^2 = \hat{t}$$

$$f_{3} = -\frac{1}{(1-c)^{2}(1+c)^{2}} \left[2(1-c)(c^{3}+c^{2}-33c+7)\log(\frac{1-c}{2}) + 12(9c^{2}+2c+5)Li_{2}(\frac{1+c}{2}) - (1+c)^{2}(c^{2}+5c+3)\pi^{2} - \frac{1}{2}(1-c)(1+c)(11c^{2}-19) \right].$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

ヘロト 人間 とくほとくほとう

Initial state splitting

۰

$$\left(\frac{d\sigma}{d\Omega}\right)_{split} = \frac{1}{\varepsilon} \frac{\alpha_s}{2\pi} \int_0^1 dz \left(\frac{\mu^2}{Q_f^2}\right)^\varepsilon P_{qq}(z) \frac{d\sigma_0}{d\Omega}(\rho z)$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{split} = C_F \frac{\alpha^2}{2E^2} \frac{\alpha_s}{2\pi} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{-t}\right)^{\varepsilon} \left(-\frac{f_1}{\varepsilon} + f_3\right),$$

• where for
$$Q_f^2 = \hat{t}$$

$$f_{3} = -\frac{1}{(1-c)^{2}(1+c)^{2}} \left[2(1-c)(c^{3}+c^{2}-33c+7)\log(\frac{1-c}{2}) + 12(9c^{2}+2c+5)Li_{2}(\frac{1+c}{2}) - (1+c)^{2}(c^{2}+5c+3)\pi^{2} - \frac{1}{2}(1-c)(1+c)(11c^{2}-19) \right].$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

ヘロト 人間 とくほとく ほとう

Initial state splitting

۰

$$\left(\frac{d\sigma}{d\Omega}\right)_{split} = \frac{1}{\varepsilon} \frac{\alpha_s}{2\pi} \int_0^1 dz \left(\frac{\mu^2}{Q_f^2}\right)^\varepsilon P_{qq}(z) \frac{d\sigma_0}{d\Omega}(\rho z)$$
$$\left(\frac{d\sigma}{d\Omega}\right)_{split} = C_F \frac{\alpha^2}{2E^2} \frac{\alpha_s}{2\pi} \left(\frac{\mu^2}{s}\right)^\varepsilon \left(\frac{\mu^2}{-t}\right)^\varepsilon \left(-\frac{f_1}{\varepsilon} + f_3\right),$$

• where for
$$Q_f^2 = \hat{t}$$

$$f_{3} = -\frac{1}{(1-c)^{2}(1+c)^{2}} \left[2(1-c)(c^{3}+c^{2}-33c+7)\log(\frac{1-c}{2}) + 12(9c^{2}+2c+5)Li_{2}(\frac{1+c}{2}) - (1+c)^{2}(c^{2}+5c+3)\pi^{2} - \frac{1}{2}(1-c)(1+c)(11c^{2}-19) \right].$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

ヘロト 人間 とくほとくほとう

Initial state splitting

۰

$$\left(\frac{d\sigma}{d\Omega}\right)_{split} = \frac{1}{\varepsilon} \frac{\alpha_s}{2\pi} \int_0^1 dz \left(\frac{\mu^2}{Q_f^2}\right)^\varepsilon P_{qq}(z) \frac{d\sigma_0}{d\Omega}(\rho z)$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{split} = C_F \frac{\alpha^2}{2E^2} \frac{\alpha_s}{2\pi} \left(\frac{\mu^2}{s}\right)^\varepsilon \left(\frac{\mu^2}{-t}\right)^\varepsilon \left(-\frac{f_1}{\varepsilon} + f_3\right),$$

• where for
$$Q_f^2 = \hat{t}$$

$$f_{3} = -\frac{1}{(1-c)^{2}(1+c)^{2}} \left[2(1-c)(c^{3}+c^{2}-33c+7)\log(\frac{1-c}{2}) + 12(9c^{2}+2c+5)Li_{2}(\frac{1+c}{2}) - (1+c)^{2}(c^{2}+5c+3)\pi^{2} - \frac{1}{2}(1-c)(1+c)(11c^{2}-19) \right].$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

ヘロト 人間 ト ヘヨト ヘヨト

3

Infrared-free observable = inclusive cross-section

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{observ} = \left(\frac{d\sigma}{d\Omega} \right)_{virt}^{2 \to 2} + \left(\frac{d\sigma}{d\Omega} \right)_{real}^{2 \to 3} + \left(\frac{d\sigma}{d\Omega} \right)_{split}^{2 \to 2}$$

$$= \frac{\alpha^2}{2E^2} \left\{ \frac{c^2 + 2c + 5}{(1 - c)^2} \right.$$

$$- \frac{\alpha_s}{2\pi} \frac{C_F}{(1 - c)(1 + c)^2} \left[(c^3 + 5c^2 - 3c + 5) \log^2 \frac{1 - c}{2} \right.$$

$$+ \frac{1}{2} (7c^3 + 19c^2 - 55c - 3) \log \frac{1 - c}{2} - (1 + c)(3c^2 + 21c + 2) \right] \right\}$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

イロト イポト イヨト イヨト

Outline

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

From partial amplitudes to cross-sections

To obtain the cross sections from partial amplitudes one have to compute the square of them. In the the planar limit it is just:

$$\begin{split} \Phi_n(p_1^{\pm},...,p_n^{\pm}) &= g^{2n-4} (\frac{g^2 N_c}{16\pi^2})^{2l} \sum_{colors} \mathcal{A}_n^{(l)} \mathcal{A}_n^{(l)*} = \\ 2g^{2n-4} N_c^{n-2} (N_c^2-1) (\frac{g^2 N_c}{16\pi^2})^{2l} \sum_{perm} |\mathcal{A}_n^{(l)}(a_{\sigma(1)},...,a_{\sigma(n-1)},a_n)|^2 \end{split}$$

Then the cross-section is

$$d\sigma_n(p_{in}) = \Phi_n(p_1^{\pm},...,p_n^{\pm})d\phi_k,$$

where $d\phi_k$ is the phase space of the outgoing particles:

$$d\phi_k \sim \delta^D(p_{in} - p_{fin})S_n \prod_k \delta^+(p_k^2) d^D p_k,$$

where S_n - is so called measurement function and integration goes over $D = 4 - 2\varepsilon$ dimensions.

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Phase space integration features

The pase space integral can be rewritten as

$$d\phi_{3} \sim \delta^{D}(p_{1} + p_{2} - p_{3} - p_{4} - p_{5}) \prod_{k=3}^{5} \delta^{+}(p_{k}^{2}) d^{D}p_{k} = \\\delta^{D}(p_{1} + p_{2} - p_{3} - \mathbf{p}_{4}) \delta^{+}(p_{3}^{2}) d^{D}p_{3} d^{D}p_{4} \{\delta^{+}(k^{2})\delta^{+}([\mathbf{p}_{4} - k]^{2}) d^{D}k\},$$

and the typical integrant looks like

$$\int d^D k rac{\delta^+(k^2)\delta^+([{f p}_4-k]^2)}{(
ho_i,k)(
ho_j,{f p}_4-k)} \sim Im(I_4^{m1}).$$

After performing integration over $d^{D}k$ we have left with integrals of the typical following form

$$\int_0^1 dx \frac{x^a(1-x)^b}{(1+\rho x)^d} F_{2,1}(1,-\varepsilon,1-\varepsilon,-qx^m(1-x)^n).$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

イロト 不得 とくほ とくほとう

Phase space integration features

For d = 0 and "small" a, b, m, n this integral can be reduced to particular Meijer G-function and can be represented in terms of hypergeometric functions $F_{3,2}$ which can be than expanded to any order in ϵ .

$$I_{a,b,c}(\alpha,\beta,m,n,q) = \int_0^1 dx x^{\alpha-1} (1-x)^{\beta-1} F_{2,1}(a,b;c;-qx^m(1-x)^n)$$

Let's consider example for: m = 1, n = -2

$$\begin{split} I_{a,b,c}(\alpha,\beta,1,-2,q) &= \\ &= \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} (2\pi)^{-\frac{1}{2}} 2^{\beta-\frac{1}{2}} G_{4,4}^{3,3}(\frac{4}{q}|1,1-\frac{\beta}{2},\frac{1}{2}-\frac{\beta}{2},c;a,b,\alpha,1-\alpha-\beta). \end{split}$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

æ

Virtual Correction (MHV)

$$\begin{split} \left(\frac{d\sigma}{d\Omega}\right)_{0}^{--++} &= \frac{\alpha^{2}N_{c}^{2}}{8E^{2}} \frac{s^{4}(s^{2}+t^{2}+u^{2})}{s^{2}t^{2}u^{2}} \left(\frac{\mu^{2}}{s}\right)^{\varepsilon} = \frac{\alpha^{2}N_{c}^{2}}{E^{2}} \left(\frac{\mu^{2}}{s}\right)^{\varepsilon} \frac{3+c^{2}}{(1-c^{2})^{2}} \\ &\left(\frac{d\sigma}{d\Omega}\right)_{virt}^{--++} = \frac{\alpha^{2}N_{c}^{2}}{8E^{2}} \left(\frac{\mu^{2}}{s}\right)^{\varepsilon} \left\{\frac{\alpha N_{c}}{2\pi} \frac{s^{4}}{s^{2}t^{2}u^{2}} \left[-\frac{8}{\varepsilon^{2}} \left(\left((\frac{\mu^{2}}{-t})^{\varepsilon}+(\frac{\mu^{2}}{-u})^{\varepsilon}\right)s^{2}\right)\right. \\ &\left. +\left(\left(\frac{\mu^{2}}{s}\right)^{\varepsilon}+(\frac{\mu^{2}}{-t}\right)^{\varepsilon}\right)u^{2}+\left(\left(\frac{\mu^{2}}{s}\right)^{\varepsilon}+(\frac{\mu^{2}}{-u})^{\varepsilon}\right)t^{2}\right) \\ &\left. +\frac{16}{3}\pi^{2}(s^{2}+t^{2}+u^{2})+4(u^{2}\log^{2}(\frac{-S}{t})+t^{2}\log^{2}(\frac{-S}{u})+s^{2}\log^{2}(\frac{t}{u}))\right]\right\} \\ &= \frac{\alpha^{2}N_{c}^{2}}{E^{2}} \left(\frac{\mu^{2}}{s}\right)^{2\varepsilon} \left\{\frac{\alpha N_{c}}{2\pi} \left[-\frac{16}{\varepsilon^{2}}\frac{3+c^{2}}{(1-c^{2})^{2}}+\frac{4}{\varepsilon} \left(\frac{5+2c+c^{2}}{(1-c^{2})^{2}}\log(\frac{1-c}{2})\right) \\ &\left. +(c\leftrightarrow-c)\right) +\frac{16(3+c^{2})\pi^{2}}{3(1-c^{2})^{2}}-\frac{16}{(1-c^{2})^{2}}\log(\frac{1-c}{2})\log(\frac{1+c}{2})\right]\right\} \end{split}$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

Virtual Correction (MHV)

۲ $\left(\frac{d\sigma}{d\Omega}\right)_{c}^{--++} = \frac{\alpha^2 N_c^2}{8E^2} \frac{s^4 (s^2 + t^2 + u^2)}{s^2 t^2 u^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \frac{3 + c^2}{(1 - c^2)^2}$ ・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

Virtual Correction (MHV)

۲ $\left(\frac{d\sigma}{d\Omega}\right)_{0}^{--++} = \frac{\alpha^{2}N_{c}^{2}}{8E^{2}} \frac{s^{4}(s^{2}+t^{2}+u^{2})}{s^{2}t^{2}u^{2}} \left(\frac{\mu^{2}}{s}\right)^{\varepsilon} = \frac{\alpha^{2}N_{c}^{2}}{E^{2}} \left(\frac{\mu^{2}}{s}\right)^{\varepsilon} \frac{3+c^{2}}{(1-c^{2})^{2}}$ $\left(\frac{d\sigma}{d\Omega}\right)^{--++} = \frac{\alpha^2 N_c^2}{8F^2} \left(\frac{\mu^2}{8}\right)^{\varepsilon} \left\{\frac{\alpha N_c}{2\pi} \frac{s^4}{8^2 t^2 \mu^2} \left[-\frac{8}{\varepsilon^2} \left(\left(\left(\frac{\mu^2}{-t}\right)^{\varepsilon} + \left(\frac{\mu^2}{-\mu}\right)^{\varepsilon}\right)s^2\right)\right]\right\}$ $+\left(\left(\frac{\mu^2}{s}\right)^{\varepsilon}+\left(\frac{\mu^2}{-t}\right)^{\varepsilon}\right)u^2+\left(\left(\frac{\mu^2}{s}\right)^{\varepsilon}+\left(\frac{\mu^2}{-\mu}\right)^{\varepsilon}\right)t^2\right)$ $+\frac{16}{3}\pi^{2}(s^{2}+t^{2}+u^{2})+4(u^{2}\log^{2}(\frac{-s}{t})+t^{2}\log^{2}(\frac{-s}{u})+s^{2}\log^{2}(\frac{t}{u}))\Big|\Big\}$ (個) (日) (日) 日

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

Virtual Correction (MHV)

$$\left(\frac{d\sigma}{d\Omega}\right)_{0}^{--++} = \frac{\alpha^{2}N_{c}^{2}}{8E^{2}} \frac{s^{4}(s^{2}+t^{2}+u^{2})}{s^{2}t^{2}u^{2}} \left(\frac{\mu^{2}}{s}\right)^{\varepsilon} = \frac{\alpha^{2}N_{c}^{2}}{E^{2}} \left(\frac{\mu^{2}}{s}\right)^{\varepsilon} \frac{3+c^{2}}{(1-c^{2})^{2}} \\ \left(\frac{d\sigma}{d\Omega}\right)_{virt}^{--++} = \frac{\alpha^{2}N_{c}^{2}}{8E^{2}} \left(\frac{\mu^{2}}{s}\right)^{\varepsilon} \left\{\frac{\alpha N_{c}}{2\pi} \frac{s^{4}}{s^{2}t^{2}u^{2}} \left[-\frac{8}{\varepsilon^{2}} \left(\left((\frac{\mu^{2}}{-t})^{\varepsilon}+(\frac{\mu^{2}}{-u})^{\varepsilon}\right)s^{2}\right)\right. \\ \left.+\left(\left(\frac{\mu^{2}}{s}\right)^{\varepsilon}+\left(\frac{\mu^{2}}{-t}\right)^{\varepsilon}\right)u^{2}+\left(\left(\frac{\mu^{2}}{s}\right)^{\varepsilon}+\left(\frac{\mu^{2}}{-u}\right)^{\varepsilon}\right)t^{2}\right) \\ \left.+\frac{16}{3}\pi^{2}(s^{2}+t^{2}+u^{2})+4(u^{2}\log^{2}(\frac{-s}{t})+t^{2}\log^{2}(\frac{-s}{u})+s^{2}\log^{2}(\frac{t}{u}))\right]\right\} \\ = \frac{\alpha^{2}N_{c}^{2}}{E^{2}} \left(\frac{\mu^{2}}{s}\right)^{2\varepsilon} \left\{\frac{\alpha N_{c}}{2\pi} \left[-\frac{16}{\varepsilon^{2}}\frac{3+c^{2}}{(1-c^{2})^{2}}+\frac{4}{\varepsilon} \left(\frac{5+2c+c^{2}}{(1-c^{2})^{2}}\log(\frac{1-c}{2})\right) \\ \left.+\left(c\leftrightarrow-c\right)\right)+\frac{16(3+c^{2})\pi^{2}}{3(1-c^{2})^{2}}-\frac{16}{(1-c^{2})^{2}}\log(\frac{1-c}{2})\log(\frac{1+c}{2})\right]\right\}$$

Calculations for Modern and Future Colliders, L.Bork

2

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Real Emission (MHV)

$$\begin{split} &\left(\frac{d\sigma}{d\Omega_{14}}\right)_{Bom}^{(--+++)} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{2\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon^2} \frac{8(3+c^2)}{(1-c^2)^2} \right. \\ &\left. + \frac{1}{\varepsilon} \left[\frac{2}{(1+c)^2} \log(\frac{1-c}{2}) + \frac{2}{(1-c)^2} \log(\frac{1+c}{2}) + \frac{16\delta(2\delta-3)}{(1-c^2)^2(1-\delta)^2} \right. \\ &\left. + \frac{12(3+c^2)(\log(1-\delta) - \log(\delta))}{(1-c^2)^2}\right] + \text{Finite part} \right\} \end{split}$$

- What is δ ? One has a singularity as $\delta \rightarrow 1$.
- ► This is the cut-off in external momenta of the scattered gluon: $|\vec{p}| \leq \frac{E}{2}(1 \delta)$.
- > This allows one to distinguish identical final gluons, so that the gluon scattered at angle θ has non-zero momentum

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Real Emission (MHV)

$$\begin{split} &\left(\frac{d\sigma}{d\Omega_{14}}\right)_{Born}^{(--+++)} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{2\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon^2} \frac{8(3+c^2)}{(1-c^2)^2} \right. \\ &\left. + \frac{1}{\varepsilon} \left[\frac{2}{(1+c)^2} \log(\frac{1-c}{2}) + \frac{2}{(1-c)^2} \log(\frac{1+c}{2}) + \frac{16\delta(2\delta-3)}{(1-c^2)^2(1-\delta)^2} \right. \\ &\left. + \frac{12(3+c^2)(\log(1-\delta) - \log(\delta))}{(1-c^2)^2} \right] + \text{Finite part} \right\} \end{split}$$

- What is δ ? One has a singularity as $\delta \rightarrow 1$.
- ► This is the cut-off in external momenta of the scattered gluon: $|\vec{p}| \leq \frac{E}{2}(1 - \delta).$
- ► This allows one to distinguish identical final gluons, so that the gluon scattered at angle θ has non-zero momentum

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Real Emission (MHV)

$$\begin{split} &\left(\frac{d\sigma}{d\Omega_{14}}\right)_{Born}^{(--+++)} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{2\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon^2} \frac{8(3+c^2)}{(1-c^2)^2} \right. \\ &\left. + \frac{1}{\varepsilon} \left[\frac{2}{(1+c)^2} \log(\frac{1-c}{2}) + \frac{2}{(1-c)^2} \log(\frac{1+c}{2}) + \frac{16\delta(2\delta-3)}{(1-c^2)^2(1-\delta)^2} \right. \\ &\left. + \frac{12(3+c^2)(\log(1-\delta) - \log(\delta))}{(1-c^2)^2} \right] + \text{Finite part} \right\} \end{split}$$

• What is δ ? One has a singularity as $\delta \rightarrow 1$.

- ► This is the cut-off in external momenta of the scattered gluon: $|\vec{p}| \leq \frac{E}{2}(1 - \delta).$
- ► This allows one to distinguish identical final gluons, so that the gluon scattered at angle θ has non-zero momentum

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Real Emission (MHV)

$$\begin{split} &\left(\frac{d\sigma}{d\Omega_{14}}\right)_{Born}^{(--+++)} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{2\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon^2} \frac{8(3+c^2)}{(1-c^2)^2} \right. \\ &\left. + \frac{1}{\varepsilon} \left[\frac{2}{(1+c)^2} \log(\frac{1-c}{2}) + \frac{2}{(1-c)^2} \log(\frac{1+c}{2}) + \frac{16\delta(2\delta-3)}{(1-c^2)^2(1-\delta)^2} \right. \\ &\left. + \frac{12(3+c^2)(\log(1-\delta) - \log(\delta))}{(1-c^2)^2} \right] + \text{Finite part} \right\} \end{split}$$

- What is δ ? One has a singularity as $\delta \rightarrow 1$.
- ► This is the cut-off in external momenta of the scattered gluon: $|\vec{p}| \leq \frac{E}{2}(1 - \delta).$
- ► This allows one to distinguish identical final gluons, so that the gluon scattered at angle θ has non-zero momentum

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

イロン 不得 とくほど 不良 とうほう

Real Emission (MHV)

$$\begin{split} &\left(\frac{d\sigma}{d\Omega_{14}}\right)_{Born}^{(--+++)} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{2\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon^2} \frac{8(3+c^2)}{(1-c^2)^2} \right. \\ &\left. + \frac{1}{\varepsilon} \left[\frac{2}{(1+c)^2} \log(\frac{1-c}{2}) + \frac{2}{(1-c)^2} \log(\frac{1+c}{2}) + \frac{16\delta(2\delta-3)}{(1-c^2)^2(1-\delta)^2} \right. \\ &\left. + \frac{12(3+c^2)(\log(1-\delta) - \log(\delta))}{(1-c^2)^2} \right] + \text{Finite part} \right\} \end{split}$$

- What is δ ? One has a singularity as $\delta \rightarrow 1$.
- ► This is the cut-off in external momenta of the scattered gluon: $|\vec{p}| \leq \frac{E}{2}(1 - \delta).$
- ► This allows one to distinguish identical final gluons, so that the gluon scattered at angle θ has non-zero momentum

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

ヘロト ヘアト ヘビト ヘビト

Real Emission (Anti MHV)

 $\left(\frac{d\sigma}{d\Omega_{14}}\right)_{Born}^{(--++-)} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{2\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon^2} \frac{8(3+c^2)}{(1-c^2)^2} + \frac{2}{\varepsilon} \left[\frac{64}{3(1-c^2)^3} + \delta \frac{(6\delta^2 - 3\delta + 30)c^2 + (10\delta^2 - 57\delta + 66)}{3(1-c^2)^2} - \frac{6(c^2 + 3)\log\delta}{(1-c^2)^2} + \frac{(3c^2 - 24c + 85}{(1-c)(1+c)^3}\log\frac{1-c}{2} - \frac{4(c^2 - 6c + 21)}{(1-c)(1+c)^3}\log\frac{1+\delta - (1-\delta)c}{2} + \frac{16\delta(5-c)}{(1-c^2)^2(1+\delta - (1-\delta)c)} - \frac{32(1-c)}{3(1+c)^3(1+\delta - (1-\delta)c)^3} + (c \leftrightarrow -c)\right)\right] + \text{Finite part} \right\}$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

ヘロト 人間 とくほとくほとう

æ –

Real Emission (Anti MHV)

۲

$$\left(\frac{d\sigma}{d\Omega_{14}}\right)_{Born}^{(--++-)} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{2\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon^2} \frac{8(3+c^2)}{(1-c^2)^2} + \frac{2}{\varepsilon} \left[\frac{64}{3(1-c^2)^3} + \delta \frac{(6\delta^2 - 3\delta + 30)c^2 + (10\delta^2 - 57\delta + 66)}{3(1-c^2)^2} - \frac{6(c^2 + 3)\log\delta}{(1-c^2)^2} + \frac{(3c^2 - 24c + 85}{(1-c)(1+c)^3}\log\frac{1-c}{2} - \frac{4(c^2 - 6c + 21)}{(1-c)(1+c)^3}\log\frac{1+\delta - (1-\delta)c}{2} + \frac{16\delta(5-c)}{(1-c^2)^2(1+\delta - (1-\delta)c)} - \frac{32(1-c)}{3(1+c)^3(1+\delta - (1-\delta)c)^3} + (c \leftrightarrow -c)\right)\right] + \text{Finite part} \right\}$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Real Emission (Matter)($\delta = 1$)

Fermions

$$\left(\frac{d\sigma}{d\Omega_{14}}\right)_{Real}^{(--+\tilde{q}q)} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{2\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{4}{\varepsilon} \left[\frac{32(79-25c^2)}{3(1-c^2)^2}\right] + \frac{64(3-c)^2}{(1-c)(1+c)^3} \log(\frac{1-c}{2}) + \frac{64(3+c)^2}{(1-c)^3(1+c)} \log(\frac{1+c}{2})\right] + \text{Finite part} \right\}$$

$$\left(\frac{d\sigma}{d\Omega_{14}}\right)_{Real}^{(--+\bar{q}\bar{q})} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{2\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon} \left[-\frac{128(10+7c^2)}{(1-c^2)^2} -\frac{192(5-c)}{(1+c)^3}\log(\frac{1-c}{2}) - \frac{192(5+c)}{(1-c)^3}\log(\frac{1+c}{2})\right] + \text{Finite part}\right\}$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Real Emission (Matter)($\delta = 1$)

Fermions

$$\begin{split} \left(\frac{d\sigma}{d\Omega_{14}}\right)_{Real}^{(--+\bar{q}q)} &= \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{2\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{4}{\varepsilon} \left[\frac{32(79-25c^2)}{3(1-c^2)^2}\right] \\ &+ \frac{64(3-c)^2}{(1-c)(1+c)^3} \log(\frac{1-c}{2}) + \frac{64(3+c)^2}{(1-c)^3(1+c)} \log(\frac{1+c}{2})\right] + \text{Finite part} \right\} \end{split}$$

$$\left(\frac{d\sigma}{d\Omega_{14}}\right)_{Real}^{(--+\bar{q}\bar{q})} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{2\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon} \left[-\frac{128(10+7c^2)}{(1-c^2)^2} -\frac{192(5-c)}{(1+c)^3}\log(\frac{1-c}{2}) - \frac{192(5+c)}{(1-c)^3}\log(\frac{1+c}{2})\right] + \text{Finite part}\right\}$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Real Emission (Matter)($\delta = 1$)

Fermions

$$\begin{split} \left(\frac{d\sigma}{d\Omega_{14}}\right)_{Real}^{(--+\bar{q}q)} &= \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{2\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{4}{\varepsilon} \left[\frac{32(79-25c^2)}{3(1-c^2)^2}\right] \\ &+ \frac{64(3-c)^2}{(1-c)(1+c)^3} \log(\frac{1-c}{2}) + \frac{64(3+c)^2}{(1-c)^3(1+c)} \log(\frac{1+c}{2})\right] + \text{Finite part} \right\} \end{split}$$

$$\left(\frac{d\sigma}{d\Omega_{14}}\right)_{Real}^{(--+\bar{q}\bar{q})} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{2\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon} \left[-\frac{128(10+7c^2)}{(1-c^2)^2} -\frac{192(5-c)}{(1+c)^3}\log(\frac{1-c}{2}) - \frac{192(5+c)}{(1-c)^3}\log(\frac{1+c}{2})\right] + \text{Finite part}\right\}$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

ヘロト 人間 とくほとく ほとう

₹ 990

Initial and final state splitting (MHV)

Initial

$$\begin{split} \left(\frac{d\sigma}{d\Omega_{14}}\right)_{InSplit}^{(--+++)} &= \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{Q_f^2}\right)^{\varepsilon} \\ \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon} \left[-\frac{4(c^2+3)}{(1-c^2)^2} \left(\log\frac{1-c}{2}+\log\frac{1+c}{2}\right) - \frac{8(c^2+3)}{(1-c^2)^2}\log\frac{1-\delta}{\delta} - \frac{16\delta(2\delta-3)}{(1-\delta^2)(1-c^2)^2}\right] + \text{Finite part} \right\} \end{split}$$

$$\left(\frac{d\sigma}{d\Omega_{14}}\right)_{FnSplit}^{(--+++)} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{Q_f^2}\right)^{\varepsilon}$$
$$\frac{\alpha N_c}{2\pi} \left\{-\frac{1}{\varepsilon} \frac{4(c^2+3)}{(1-c^2)^2} \log \frac{1-\delta}{\delta} + \text{Finite part}\right\}$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

ヘロト 人間 とくほとくほとう

₹ 990

Initial and final state splitting (MHV)

Initial

$$\begin{split} \left(\frac{d\sigma}{d\Omega_{14}}\right)_{InSplit}^{(--+++)} &= \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{Q_f^2}\right)^{\varepsilon} \\ \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon} \left[-\frac{4(c^2+3)}{(1-c^2)^2} \left(\log\frac{1-c}{2}+\log\frac{1+c}{2}\right) - \frac{8(c^2+3)}{(1-c^2)^2}\log\frac{1-\delta}{\delta} - \frac{16\delta(2\delta-3)}{(1-\delta^2)(1-c^2)^2}\right] + \text{Finite part} \right\} \end{split}$$

$$\left(\frac{d\sigma}{d\Omega_{14}}\right)_{FnSplit}^{(--+++)} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{Q_f^2}\right)^{\varepsilon}$$
$$\frac{\alpha N_c}{2\pi} \left\{ -\frac{1}{\varepsilon} \frac{4(c^2+3)}{(1-c^2)^2} \log \frac{1-\delta}{\delta} + \text{Finite part} \right\}$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

ヘロト 人間 とくほとくほとう

₹ 990

Initial and final state splitting (MHV)

Initial

$$\begin{split} \left(\frac{d\sigma}{d\Omega_{14}}\right)_{InSplit}^{(--+++)} &= \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{Q_f^2}\right)^{\varepsilon} \\ \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon} \left[-\frac{4(c^2+3)}{(1-c^2)^2} \left(\log\frac{1-c}{2}+\log\frac{1+c}{2}\right) - \frac{8(c^2+3)}{(1-c^2)^2}\log\frac{1-\delta}{\delta} - \frac{16\delta(2\delta-3)}{(1-\delta^2)(1-c^2)^2}\right] + \text{Finite part} \right\} \end{split}$$

$$\left(\frac{d\sigma}{d\Omega_{14}}\right)_{FnSplit}^{(--+++)} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{Q_f^2}\right)^{\varepsilon} \frac{\alpha N_c}{2\pi} \left\{-\frac{1}{\varepsilon} \frac{4(c^2+3)}{(1-c^2)^2} \log \frac{1-\delta}{\delta} + \text{Finite part}\right\}$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Initial and final state splitting (Anti MHV)

Initial

$$\begin{split} \left(\frac{d\sigma}{d\Omega_{14}}\right)_{lnSplit}^{(--++-)} &= \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{Q_t^2}\right)^{\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon} \left[\left(\frac{4(c^3-15c^2+51c-45)}{(1-c)^2(1+c)^3} \log \frac{1-c}{2}\right)^{-\frac{16(c^2-3c+3)}{(1-c)^2(1+c)^3}} \log \frac{1+\delta-c(1-\delta)}{2} + \frac{8(c^2+3)}{(1-c^2)^2} \log \delta + (c\leftrightarrow -c) \right) \right. \\ &- \frac{4\delta}{3(1-c^2)^2((1+\delta)^2-c^2(1-\delta)^2)^3} \left(c^8(1-\delta)^6(2\delta^2+3\delta+6) - 4c^6(1-\delta)^4(\delta^4+10\delta^3-2\delta^2+114\delta-33) + 2c^4(1-\delta)^2(39\delta^5-102\delta^4+86\delta^3+658\delta^2+183\delta-312) \right. \\ &+ 4c^2(\delta^8-12\delta^7+39\delta^6+216\delta^5-42\delta^4-720\delta^3-421\delta^2+300\delta+208) \\ &- (1+\delta)^3(2\delta^5-9\delta^4+63\delta^3+455\delta^2+579\delta+198) \right) \right] + \text{Finite part} \bigg\} \end{split}$$

$$\left(\frac{d\sigma}{d\Omega_{14}}\right)_{\text{FnSplit}}^{(--++-)} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{Q_f^2}\right)^{\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon} \frac{4(c^2+3)}{(1-c^2)^2} \left[\log \delta - \frac{\delta}{3}(2\delta^2 - 9\delta + 18)\right] + \text{F.p.}\right\}$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

ヘロト 人間 とくほとくほとう

æ –

Initial and final state splitting (Anti MHV)

Initial

$$\begin{split} & \left(\frac{d\sigma}{d\Omega_{14}}\right)_{lnSplit}^{(--++-)} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{Q_f^2}\right)^{\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon} \left[\left(\frac{4(c^3 - 15c^2 + 51c - 45)}{(1 - c)^2(1 + c)^3} \log \frac{1 - c}{2}\right) - \frac{16(c^2 - 3c + 3)}{(1 - c)^2(1 + c)^3} \log \frac{1 + \delta - c(1 - \delta)}{2} + \frac{8(c^2 + 3)}{(1 - c^2)^2} \log \delta + (c \leftrightarrow -c) \right) - \frac{4\delta}{3(1 - c^2)^2((1 + \delta)^2 - c^2(1 - \delta)^2)^3} \left(c^8(1 - \delta)^6(2\delta^2 + 3\delta + 6) - 4c^6(1 - \delta)^4(\delta^4 + 10\delta^3 - 23\delta^2 + 114\delta - 33) + 2c^4(1 - \delta)^2(39\delta^5 - 102\delta^4 + 86\delta^3 + 658\delta^2 + 183\delta - 312) + 4c^2(\delta^8 - 12\delta^7 + 39\delta^6 + 216\delta^5 - 42\delta^4 - 720\delta^3 - 421\delta^2 + 300\delta + 208) - (1 + \delta)^3(2\delta^5 - 9\delta^4 + 63\delta^3 + 455\delta^2 + 579\delta + 198) \right] + \text{Finite part} \right\} \end{split}$$

$$\left(\frac{d\sigma}{d\Omega_{14}}\right)_{\text{FnSplit}}^{(--++-)} \stackrel{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{Q_f^2}\right)^{\varepsilon} \stackrel{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon} \frac{4(c^2+3)}{(1-c^2)^2} \left[\log \delta - \frac{\delta}{3}(2\delta^2 - 9\delta + 18)\right] + \text{F.p.}\right\}$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

ヘロト 人間 とくほとくほとう

₹ 990

Initial and final state splitting (Anti MHV)

Initial

$$\begin{split} & \left(\frac{d\sigma}{d\Omega_{14}}\right)_{lnSplit}^{(--++-)} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{Q_f^2}\right)^{\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon} \left[\left(\frac{4(c^3 - 15c^2 + 51c - 45)}{(1 - c)^2(1 + c)^3} \log \frac{1 - c}{2}\right) - \frac{16(c^2 - 3c + 3)}{(1 - c)^2(1 + c)^3} \log \frac{1 + \delta - c(1 - \delta)}{2} + \frac{8(c^2 + 3)}{(1 - c^2)^2} \log \delta + (c \leftrightarrow -c) \right) - \frac{4\delta}{3(1 - c^2)^2((1 + \delta)^2 - c^2(1 - \delta)^2)^3} \left(c^8(1 - \delta)^6(2\delta^2 + 3\delta + 6) - 4c^6(1 - \delta)^4(\delta^4 + 10\delta^3 - 23\delta^2 + 114\delta - 33) + 2c^4(1 - \delta)^2(39\delta^5 - 102\delta^4 + 86\delta^3 + 658\delta^2 + 183\delta - 312) + 4c^2(\delta^8 - 12\delta^7 + 39\delta^6 + 216\delta^5 - 42\delta^4 - 720\delta^3 - 421\delta^2 + 300\delta + 208) - (1 + \delta)^3(2\delta^5 - 9\delta^4 + 63\delta^3 + 455\delta^2 + 579\delta + 198) \right] + \text{Finite part} \right\} \end{split}$$

$$\left(\frac{d\sigma}{d\Omega_{14}}\right)_{FnSplit}^{(--++-)} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{Q_f^2}\right)^{\frac{\varepsilon}{2}} \frac{M_c}{2\pi} \left\{\frac{1}{\varepsilon} \frac{4(c^2+3)}{(1-c^2)^2} \left[\log \delta - \frac{\delta}{3}(2\delta^2 - 9\delta + 18)\right] + F.p.\right\}$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Initial state splitting (Matter) ($\delta = 1$)

Fermions

$$\left(\frac{d\sigma}{d\Omega_{14}}\right)_{lnSplit}^{(--+\bar{q}q)} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{Q_f^2}\right)^{\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{4}{\varepsilon} \left[\frac{32(79-25c^2)}{3(1-c^2)^2}\right] + \frac{64(3-c)^2}{(1-c)(1+c)^3} \log(\frac{1-c}{2}) + \frac{64(3+c)^2}{(1-c)^3(1+c)} \log(\frac{1+c}{2})\right] + \text{Finite part} \right\}$$

$$\left(\frac{d\sigma}{d\Omega_{14}}\right)_{InSplit}^{(--+\bar{q}\bar{q})} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{Q_f^2}\right)^{\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon} \left[-\frac{128(10+7c^2)}{(1-c^2)^2} -\frac{192(5-c)}{(1+c)^3}\log(\frac{1-c}{2}) - \frac{192(5+c)}{(1-c)^3}\log(\frac{1+c}{2})\right] + \text{Finite part}\right\}$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Initial state splitting (Matter) ($\delta = 1$)

Fermions

$$\begin{split} \left(\frac{d\sigma}{d\Omega_{14}}\right)_{lnSplit}^{(--+\bar{q}q)} &= \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{Q_f^2}\right)^{\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{4}{\varepsilon} \left[\frac{32(79-25c^2)}{3(1-c^2)^2}\right] \\ &+ \frac{64(3-c)^2}{(1-c)(1+c)^3} \log(\frac{1-c}{2}) + \frac{64(3+c)^2}{(1-c)^3(1+c)} \log(\frac{1+c}{2})\right] + \text{Finite part} \right\} \end{split}$$

$$\left(\frac{d\sigma}{d\Omega_{14}}\right)_{InSplit}^{(--+\frac{5}{q}\bar{q})} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{Q_f^2}\right)^{\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon} \left[-\frac{128(10+7c^2)}{(1-c^2)^2} -\frac{192(5-c)}{(1+c)^3}\log(\frac{1-c}{2}) - \frac{192(5+c)}{(1-c)^3}\log(\frac{1+c}{2})\right] + \text{Finite part}\right\}$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Initial state splitting (Matter) ($\delta = 1$)

Fermions

$$\begin{split} \left(\frac{d\sigma}{d\Omega_{14}}\right)_{lnSplit}^{(--+\bar{q}q)} &= \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{Q_f^2}\right)^{\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{4}{\varepsilon} \left[\frac{32(79-25c^2)}{3(1-c^2)^2}\right] \\ &+ \frac{64(3-c)^2}{(1-c)(1+c)^3} \log(\frac{1-c}{2}) + \frac{64(3+c)^2}{(1-c)^3(1+c)} \log(\frac{1+c}{2})\right] + \text{Finite part} \right\} \end{split}$$

$$\left(\frac{d\sigma}{d\Omega_{14}}\right)_{InSplit}^{(--+\bar{q}\bar{q})} = \frac{\alpha^2 N_c^2}{E^2} \left(\frac{\mu^2}{s}\right)^{\varepsilon} \left(\frac{\mu^2}{Q_f^2}\right)^{\varepsilon} \frac{\alpha N_c}{2\pi} \left\{\frac{1}{\varepsilon} \left[-\frac{128(10+7c^2)}{(1-c^2)^2} -\frac{192(5-c)}{(1-c^2)^2}\log(\frac{1-c}{2}) -\frac{192(5+c)}{(1-c)^3}\log(\frac{1+c}{2})\right] + \text{Finite part}\right\}$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

イロト イポト イヨト イヨト

Infrared-free sets (for any arbitrary δ)

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Infrared-free sets (for any arbitrary δ)

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

・ロト ・ 理 ト ・ ヨ ト ・

Infrared-free sets (for any arbitrary δ)

$$\begin{split} \mathcal{A}^{MHV} &= \frac{1}{2} \left(\frac{d\sigma}{d\Omega_{14}} \right)_{Virt}^{(--++)} + \left(\frac{d\sigma}{d\Omega_{14}} \right)_{Real}^{(--+++)} + \left(\frac{d\sigma}{d\Omega_{14}} \right)_{InSplit}^{(--+++)} + \left(\frac{d\sigma}{d\Omega_{14}} \right)_{FnSplit}^{(--+++)} \\ \mathbf{B}^{AntiMHV} &= \frac{1}{2} \left(\frac{d\sigma}{d\Omega_{14}} \right)_{Virt}^{(--++)} + \left(\frac{d\sigma}{d\Omega_{14}} \right)_{Real}^{(--++-)} + \left(\frac{d\sigma}{d\Omega_{14}} \right)_{InSplit}^{(--++-)} + \left(\frac{d\sigma}{d\Omega_{14}} \right)_{FnSplit}^{(--++-)} \\ \mathbf{C}^{Matter} &= \left(\frac{d\sigma}{d\Omega_{14}} \right)_{Real}^{(--+\bar{q}q,\bar{q}\bar{q})} + \left(\frac{d\sigma}{d\Omega_{14}} \right)_{InSplit}^{(--+\bar{q}q,\bar{q}\bar{q})} + \left(\frac{d\sigma}{d\Omega_{14}} \right)_{FnSplit}^{(--+\bar{q}q,\bar{q}\bar{q})} \end{split}$$

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

ヘロン 人間 とくほ とくほ とう

Infrared-free sets (for any arbitrary δ)

 $A^{MHV} = \frac{1}{2} \left(\frac{d\sigma}{d\Omega_{14}} \right)_{Virt}^{(--++)} + \left(\frac{d\sigma}{d\Omega_{14}} \right)_{Real}^{(--+++)} + \left(\frac{d\sigma}{d\Omega_{14}} \right)_{InSplit}^{(--+++)} + \left(\frac{d\sigma}{d\Omega_{14}} \right)_{FnSplit}^{(--+++)}$ $B^{AntiMHV} = \frac{1}{2} \left(\frac{d\sigma}{d\Omega_{14}} \right)_{Virt}^{(--++)} + \left(\frac{d\sigma}{d\Omega_{14}} \right)_{Real}^{(--++-)} + \left(\frac{d\sigma}{d\Omega_{14}} \right)_{InSplit}^{(--++-)} + \left(\frac{d\sigma}{d\Omega_{14}} \right)_{FnSplit}^{(--++-)}$ $C^{Matter} = \left(\frac{d\sigma}{d\Omega_{14}} \right)_{Sult}^{(--+\bar{q}q,\tilde{q}\tilde{q})} + \left(\frac{d\sigma}{d\Omega_{14}} \right)_{LSult}^{(--+\bar{q}q,\tilde{q}\tilde{q})} + \left(\frac{d\sigma}{d\Omega_{14}} \right)_{LSult}^{(--+\bar{q}q,\tilde{q}\tilde{q})}$
Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

Infrared-free observables

• Registration of two fastest gluons of positive chirality

$$A^{MHV}\Big|_{\delta=2/3}+B^{AntiMHV}\Big|_{\delta=1}$$

Registration of <u>one fastest</u> gluon of positive chirality

$$\left. A^{MHV} \right|_{\delta=2/3} + \left. B^{AntiMHV} \right|_{\delta=2/3} + \left. C^{Matter} \right|_{\delta=1}$$

Anti MHV cross-section

$$B^{\text{AntiMHV}}\Big|_{\delta=1} + C^{\text{Matter}}\Big|_{\delta=1} \Rightarrow \text{Finite Part}$$

・ロト ・ 理 ト ・ ヨ ト ・

3

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

Infrared-free observables

• Registration of two fastest gluons of positive chirality

$$\left. A^{MHV} \right|_{\delta=2/3} + \left. B^{AntiMHV} \right|_{\delta=1}$$

Registration of <u>one fastest</u> gluon of positive chirality

$$A^{MHV}\Big|_{\delta=2/3} + B^{AntiMHV}\Big|_{\delta=2/3} + C^{Matter}\Big|_{\delta=1}$$

Anti MHV cross-section

$$B^{AntiMHV}\Big|_{\delta=1} + C^{Matter}\Big|_{\delta=1} \Rightarrow Finite Part$$

・ロト ・ 理 ト ・ ヨ ト ・

3

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

Infrared-free observables

• Registration of two fastest gluons of positive chirality

$$\left. A^{MHV} \right|_{\delta=2/3} + \left. B^{AntiMHV} \right|_{\delta=1}$$

Registration of <u>one fastest</u> gluon of positive chirality

$$\left. A^{MHV} \right|_{\delta=2/3} + \left. B^{AntiMHV} \right|_{\delta=2/3} + \left. C^{Matter} \right|_{\delta=1}$$

Anti MHV cross-section

$$B^{AntiMHV}\Big|_{\delta=1} + C^{Matter}\Big|_{\delta=1} \Rightarrow Finite Part$$

・ロト ・ 理 ト ・ ヨ ト ・

3

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

Infrared-free observables

• Registration of two fastest gluons of positive chirality

$$\left. A^{MHV} \right|_{\delta=2/3} + \left. B^{AntiMHV} \right|_{\delta=1}$$

Registration of <u>one fastest</u> gluon of positive chirality

$$\left. A^{MHV} \right|_{\delta=2/3} + \left. B^{AntiMHV} \right|_{\delta=2/3} + \left. C^{Matter} \right|_{\delta=1}$$

Anti MHV cross-section

$$B^{\text{AntiMHV}}\Big|_{\delta=1} + C^{\text{Matter}}\Big|_{\delta=1} \Rightarrow \text{Finite Part}$$

・ロト ・ 理 ト ・ ヨ ト ・

3

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

Infrared-free observables

• Registration of two fastest gluons of positive chirality

$$\left. A^{MHV} \right|_{\delta=2/3} + \left. B^{AntiMHV} \right|_{\delta=1}$$

Registration of <u>one fastest</u> gluon of positive chirality

$$\left. A^{MHV} \right|_{\delta=2/3} + \left. B^{AntiMHV} \right|_{\delta=2/3} + \left. C^{Matter} \right|_{\delta=1}$$

Anti MHV cross-section

$$B^{\text{AntiMHV}}\Big|_{\delta=1} + C^{\text{Matter}}\Big|_{\delta=1} \Rightarrow \text{Finite Part}$$

・ロト ・ 理 ト ・ ヨ ト ・

3

Toy model: electron-quark scattering Gluon scattering in N=4 Super Yang-Mills Theory

イロト 不得 とくほ とくほ とう

3

The simplest IR finite answer so far ($Q_f = E$): N=4 SYM Anti MHV

$$\begin{pmatrix} \frac{d\sigma}{d\Omega_{14}} \end{pmatrix}_{AntiMHV} = \frac{\alpha^2 N_c^2}{E^2} \left\{ \frac{3+c^2}{(1-c^2)^2} \\ -\frac{\alpha N_c}{2\pi} \left[2 \frac{(c^4+2c^3+4c^2+6c+19)\log^2(\frac{1-c}{2})}{(1-c)^2(1+c)^4} + 2 \frac{(c^4-2c^3+4c^2-6c+19)\log^2(\frac{1+c}{2})}{(1-c)^4(1+c)^2} \\ -8 \frac{(c^2+1)\log(\frac{1+c}{2})\log(\frac{1-c}{2})}{(1-c^2)^2} - \frac{6\pi^2(c^2-1)+5(61c^2+99)}{9(1-c^2)^2} \\ +2 \frac{(11c^3+31c^2-47c+133)\log(\frac{1+c}{2})}{3(1-c)^3(1+c)^2} - 2 \frac{(11c^3-31c^2-47c-133)\log(\frac{1-c}{2})}{3(1+c)^3(1-c)^2} \right] \right\}$$

Summary

 In observable cross-sections the IR divergences do cancel in accordance with Kinoshita-Lee-Nauenberg theorem

$$d\sigma_{obs}^{incl} = \sum_{n=2}^{\infty} \int_{0}^{1} dz_{1} q_{1}(z_{1}, \frac{Q_{f}^{2}}{\mu^{2}}) \int_{0}^{1} dz_{2} q_{2}(z_{2}, \frac{Q_{f}^{2}}{\mu^{2}}) \prod_{i=1}^{n} \int_{0}^{1} dx_{i} q_{i}(x_{i}, \frac{Q_{f}^{2}}{\mu^{2}}) \times d\sigma^{2 \to n}(z_{1}p_{1}, z_{2}p_{2})$$

- The simple structure of the MHV amplitude DOES NOT reveal at the level of IR finite cross-sections;
- In some cases the cancellation of complicated functions occurs, though not always;

Summary

 In observable cross-sections the IR divergences do cancel in accordance with Kinoshita-Lee-Nauenberg theorem

$$d\sigma_{obs}^{incl} = \sum_{n=2}^{\infty} \int_{0}^{1} dz_{1} q_{1}(z_{1}, \frac{Q_{f}^{2}}{\mu^{2}}) \int_{0}^{1} dz_{2} q_{2}(z_{2}, \frac{Q_{f}^{2}}{\mu^{2}}) \prod_{i=1}^{n} \int_{0}^{1} dx_{i} q_{i}(x_{i}, \frac{Q_{f}^{2}}{\mu^{2}}) \times d\sigma^{2 \to n}(z_{1} \rho_{1}, z_{2} \rho_{2})$$

- The simple structure of the MHV amplitude DOES NOT reveal at the level of IR finite cross-sections;
- In some cases the cancellation of complicated functions occurs, though not always;

ヘロト ヘワト ヘビト ヘビト

Summary

 In observable cross-sections the IR divergences do cancel in accordance with Kinoshita-Lee-Nauenberg theorem

$$d\sigma_{obs}^{incl} = \sum_{n=2}^{\infty} \int_{0}^{1} dz_{1}q_{1}(z_{1}, \frac{Q_{f}^{2}}{\mu^{2}}) \int_{0}^{1} dz_{2}q_{2}(z_{2}, \frac{Q_{f}^{2}}{\mu^{2}}) \prod_{i=1}^{n} \int_{0}^{1} dx_{i}q_{i}(x_{i}, \frac{Q_{f}^{2}}{\mu^{2}}) \times d\sigma^{2 \to n}(z_{1}p_{1}, z_{2}p_{2})$$

- The simple structure of the MHV amplitude DOES NOT reveal at the level of IR finite cross-sections;
- In some cases the cancellation of complicated functions occurs, though not always;

Summary

 In observable cross-sections the IR divergences do cancel in accordance with Kinoshita-Lee-Nauenberg theorem

$$d\sigma_{obs}^{incl} = \sum_{n=2}^{\infty} \int_{0}^{1} dz_{1}q_{1}(z_{1}, \frac{Q_{f}^{2}}{\mu^{2}}) \int_{0}^{1} dz_{2}q_{2}(z_{2}, \frac{Q_{f}^{2}}{\mu^{2}}) \prod_{i=1}^{n} \int_{0}^{1} dx_{i}q_{i}(x_{i}, \frac{Q_{f}^{2}}{\mu^{2}}) \times d\sigma^{2 \to n}(z_{1}p_{1}, z_{2}p_{2})$$

- The simple structure of the MHV amplitude DOES NOT reveal at the level of IR finite cross-sections;
- In some cases the cancellation of complicated functions occurs, though not always;

Outlook

- What are the IR safe observables in the strong coupling limit?
- Which IR finite quantities have a simple (integrable) structure?
- What are the true scale invariant quantities in conformal theories?

ヘロト ヘワト ヘビト ヘビト

Outlook

- What are the IR safe observables in the strong coupling limit?
- Which IR finite quantities have a simple (integrable) structure?
- What are the true scale invariant quantities in conformal theories?

ヘロト ヘワト ヘビト ヘビト

Outlook

- What are the IR safe observables in the strong coupling limit?
- Which IR finite quantities have a simple (integrable) structure?
- What are the true scale invariant quantities in conformal theories?

Outlook

- What are the IR safe observables in the strong coupling limit?
- Which IR finite quantities have a simple (integrable) structure?
- What are the true scale invariant quantities in conformal theories?

イロト イポト イヨト イヨト

æ