
MC inegration and event generation is based on John von Neumann selection-rejection procedure

- sample $u_1 = rnd1, u_2 = rnd2$
- $x = x_{min} + (x_{min} x_{max}) u_1$ $f^* = fmax * u_2$
- check whether or not f(x) > f*
 - If this holds, accept x as a realization of f(x)
 - if not, reject the value of x and repeat the sampling step
- as a results, the x will be generated according to a f(x), N_{accepted}/N_{total}* (x_min-xmax)* f_{max} = square

Events generation with CalcHEP

• format of the event_nn.txt files

```
#CalcHEP version 2.5.1
#Type 2 -> 3
#Initial state
  P1 3=7.000000E+03 P2 3=-7.000000E+03
  StrFun1="PDT:cteq6m(proton)" 2212
  StrFun2="PDT:cteq6m(proton)" 2212
           2(u) - 5(B) - 24(W+) 5(b) - 5(B)
#PROCESS
#MASSES 0.0000000000E+00 3.2588068426E+00 7.9945520808E+01 3.2588068426E+00 3.2
#Cross section(Width) 2.276199E-04
#Number of events
                             0
#Events P1_3 [Gev] P2_3 [Gev] P3_1 [Gev] P3_2 [Gev]
1 1.7923832011E+03 -6.8581781926E+00 1.3284736587E+01 2.9090505045E+0
           1.3346128427E+03 -6.4780880073E+01
                                                   1.6367502247E+01
                                                                       2.8018282294
```

 the idea is to generate events for production and decay process and connect them together into LHE file

Events generation with CalcHEP

```
~/proj/intro to hep tools/calc work 2.5.4/pp wbb ckm1>
../bin/subproc_cycle 1000 1000
#Subprocess 1 ( u, D -> W+, b, B ) Cross section = 9.7505E+00 ,
                                                                  1000 events
#Subprocess 2 ( U, d -> W-, b, B ) Cross section = 5.5019E+00 ,
                                                                  1000 events
#Subprocess 3 ( d, U -> W-, b, B ) Cross section = 5.5315E+00 ,
                                                                  1000 events
#Subprocess 4 ( D, u -> W+, b, B ) Cross section = 9.7105E+00 ,
                                                                  1000 events
#Subprocess 5 (s, C -> W-, b, B) Cross section = 1.5902E+00 ,
                                                                  1000 events
#Subprocess 6 ( S, c \rightarrow W+, b, B ) Cross section = 1.3525E+00 ,
                                                                  1000 events
#Subprocess 7 ( c, S -> W+, b, B ) Cross section = 1.3425E+00
                                                                  1000 events
#Subprocess 8 ( C, s -> W-, b, B ) Cross section = 1.5716E+00
                                                                  1000 events
Sum of distributions is stored in file distr 34 41
Total Cross Section 36.3512 [pb]
~/proj/intro to hep tools/calc work 2.5.4/w decay>
../bin/subproc cycle 1000
width (W+) = 0.67001
\#Subprocess 1 ( \mathbb{W}+ -> E, ne
                              width=2.2339E-01 Br=0.3334129341 Nevents= 334
\#Subprocess 2 ( W+ -> M, nm )
                               width=2.2339E-01 Br=0.3334129341 Nevents= 334
#Subprocess 3 ( W+ -> L, nl
                               width=2.2323E-01 Br=0.3331741317 Nevents= 334
width(W-)=0.67001
#Subprocess 4 ( ₩- -> e, Ne
                              width=2.2339E-01 Br=0.3334129341 Nevents= 334
                               width=2.2339E-01 Br=0.3334129341 Nevents= 334
#Subprocess 5 ( W- -> m, Nm )
#Subprocess 6 ( W- -> 1, Nl
                               width=2.2323E-01 Br=0.3331741317 Nevents= 334
```

 Dirs are accessible at http://www.hep.phys.soton.ac.uk/~belyaev/proj/intro_to_hep_tools/

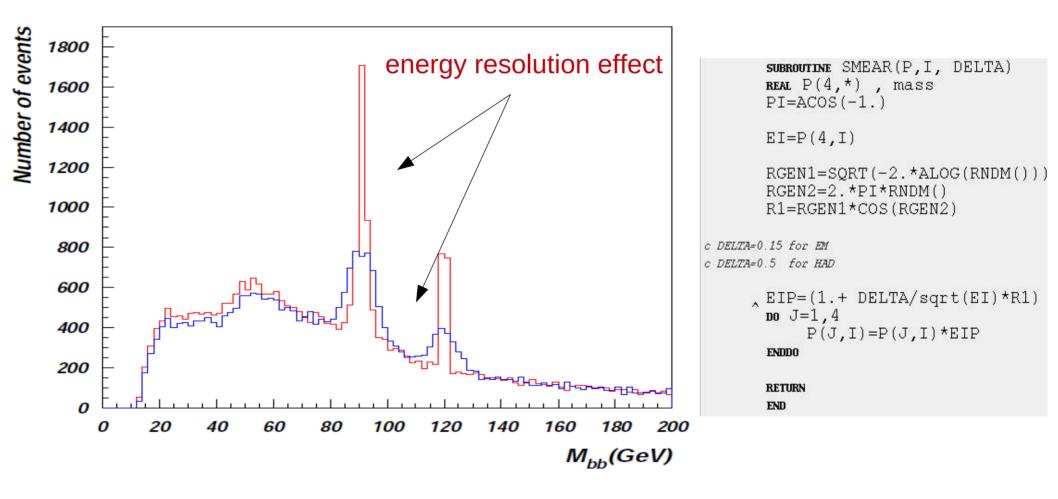
Events generation with CalcHEP

• bin/event_mixer nevents event_dirs

mixes subprocesses and connects scattering and decay events

bin/event_mixer 1000 pp_wbb_ckml w_decay total cross section 1.166E+01 Max number of events 3728

• the output is event_mixer.lhe file


```
<LesHouchesEvents version="1.0">
<1--
File generated with CalcHEP-PYTHIA interface
-->
<header>
<slha>
</slha>
</header>
<init>
  2212 2212 7.0000006860E+03 7.0000006860E+03
                                                                      -1 3
                                                                                   1
                                                           -1
                                                                 -1
                                                     -1
  1.16593335502E+01 0.0000000000E+00 1.000000000E+00
                                                           1
</init>
<event>
         1.0000000E+00
      1
                         2.8420000E+02
                                        -1.000000E+00 -1.000000E+00
        501
                                   0.0000000000E+00
       -3
                                                      0.00000000000E+00
                                                                         1.54424456520E+02
        4
                                   0.0000000000E+00
                                0
                                                      0.0000000000E+00
                                                                       -1.30792414
       24
                                0 -9.99292465447E+01 -1.63668803915E+01
                                                                       -6.48692987742E+01
        5
                                0
                                                      2.15593961832E+01
                                   7.34149473360E+01
                                                                         4.23390519202E+01
       -5
                          0 501
                                   2.65142992097E+01 -5.19251579179E+00
                                                                         4.61622886720E+01
      -11
                                0 -7.19345413730E+01
                                                      7.47572186340E-01 -8.03452022142E+01
       12
                                0 -2.79947051718E+01 -1.71144525779E+01
                                                                        1.54759034400E+01
</event>
```

Alexander Belyaev

What do we do with LHE file?

- one of the options is to convert LHE file into ntuple and use PAW/Root packages to perform event analysis at the parton level
- bin/nt_maker event_mixer.lhe → produces event_mixer_1.nt
- cd paw ; pawX11 ; exe dubna.kumac

calchep_batch batch_file

calchep_batch batch_file Progress information can be found in the html directory. Simply open the following link in your browser: file:///home/belyaev/proj/intro_to_hep_tools/calc_work_2.5.4/html/index.html

Main Features

- Batch file
- Process library
- Runs
- Combines decays
- •Parallelization
- •HTML progress

batch_file

Model: Model changed Gauge:	Standard Model(CKM=1) : False Feynman
	,p->W,b,B ->ll,nn
Composite: W Composite: 1	=u,U,d,D,s,S,c,C,b,B,G =W+,W- l=e,E,m,M,l,L n=ne,Ne,nm,Nm,nl,Nl

file:///home/belyaev/proj/intro_to_hep_tools/calc_work_2.5.4/html/index.html

Home Symbolic Results Numerical Results Events Library Process Library Help

Thank you for using CalcHEP! Please cite arXiv:0000.0000

CalcHEP Batch Details

Standard Model(CKM=1)

Done!

Finished Time(hr)

Symbolic	14/14	0.00
σ	1/1	0.03
Events	1/1	0.05

file:///home/belyaev/proj/intro_to_hep_tools/calc_work_2.5.4/html/index.html

Symbolic Sessions

Home Symbolic Results Numerical Results Events Library Process Library Help

Thank you for using CalcHEP! Please cite arXiv:0000.0000

Standard Model(CKM=1)

Processes Lib PID Time(hr)

u,D->W+,b,B ✓ U,d->₩-,b,B ✓ d,U->W-,b,B ✓ D,u->W+,b,B ✓ s,C->W-,b,B ✓ S.c->W+,b,B ✓ c,S->W+,b,B ✓ C.s->W-.b.B ✓ W+->E.ne1 W+->M,nm 1 W+->L,nl 1 W-->e.Ne 1 W-->m,Nm 1 W-->1.N1 1 Widths 1

file:///home/belyaev/proj/intro_to_hep_tools/calc_work_2.5.4/html/index.html

Home Symbolic Results Numerical Results Events Library Process Library Help

Thank you for using CalcHEP! Please cite arXiv:0000.0000

Numerical Sessions

Standard Model(CKM=1)

Done!

Runs σ (fb) Running Finished Time (hr) N events

Single 12350 0/15	15/15	0.14	50000
		0.14	

file:///home/belyaev/proj/intro_to_hep_tools/calc_work_2.5.4/html/index.html

Standard Model(CKM=1)

Home Symbolic Results Numerical Results Events Library Process Library Help

Thank you for using CalcHEP! Please cite arXiv:0000.0000

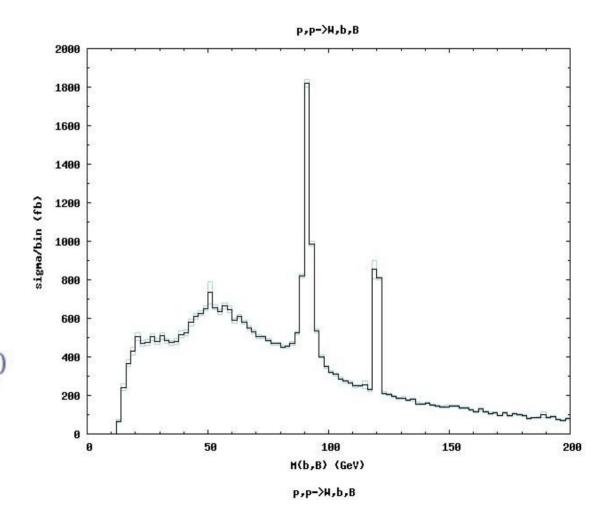
Done!

Processes	σ (fb)	PID	Time (hr)	N events	Details
u,D->W+,b,B	10047	27115	0.02	14910/14910	prt_1 session.dat
U,d->W-,b,B	5636.4	27125	0.01	8364/8364	prt_1 session.dat
d,U->W-,b,B	5567.9	27129	0.01	8263/8263	prt_1 session.dat
D,u->W+,b,B	9850.2	27145	0.02	14618/14618	prt_1 session.dat
s,C->W-,b,B	1609.9	27366	0.01	2389/2389	prt_1 session.dat
S,c->W+,b,B	1359.9	27370	0.01	2018/2018	prt_1 session.dat
c,S->W+,b,B	1374.5	27563	0.01	2039/2039	prt_1 session.dat
C,s->W-,b,B	1614.8	27581	0.01	2396/2396	prt_1 session.dat
Total	37061			54997/54997	
Decays	Γ (GeV)	PID	Time (hr)	N events	Details
W+->E,ne	0.22339	27583	0.01	255000/254999	prt_1 session.dat
W+->M,nm	0.22339	27586	0.01	255000/254999	prt_1 session.dat
W+->L,nl	0.22323	27891	0.01	255000/254999	prt_1 session.dat
W>e,Ne	0.22339	27893	0.01	255000/254999	prt_1 session.dat
W>m,Nm	0.22339	27896	0.01	255000/254999	prt_1 session.dat
W>1,N1	0.22323	27905	0.01	255000/254999	prt_1 session.dat
Widths		PID	Time (hr)		Details
Widths		28254	0.01		session.dat

0.14

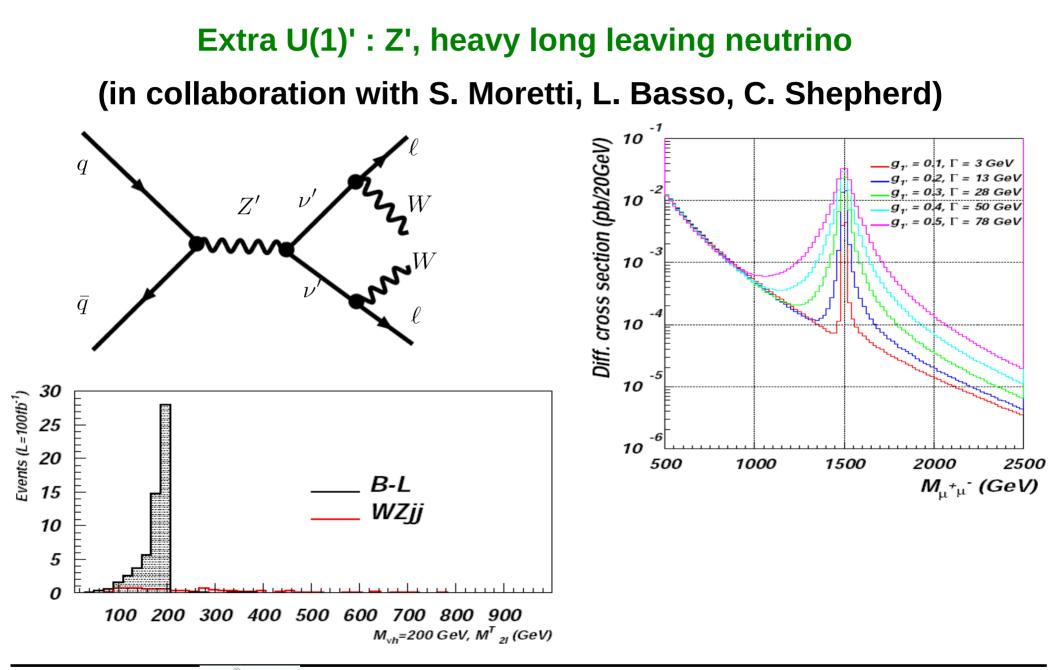
Total

12350

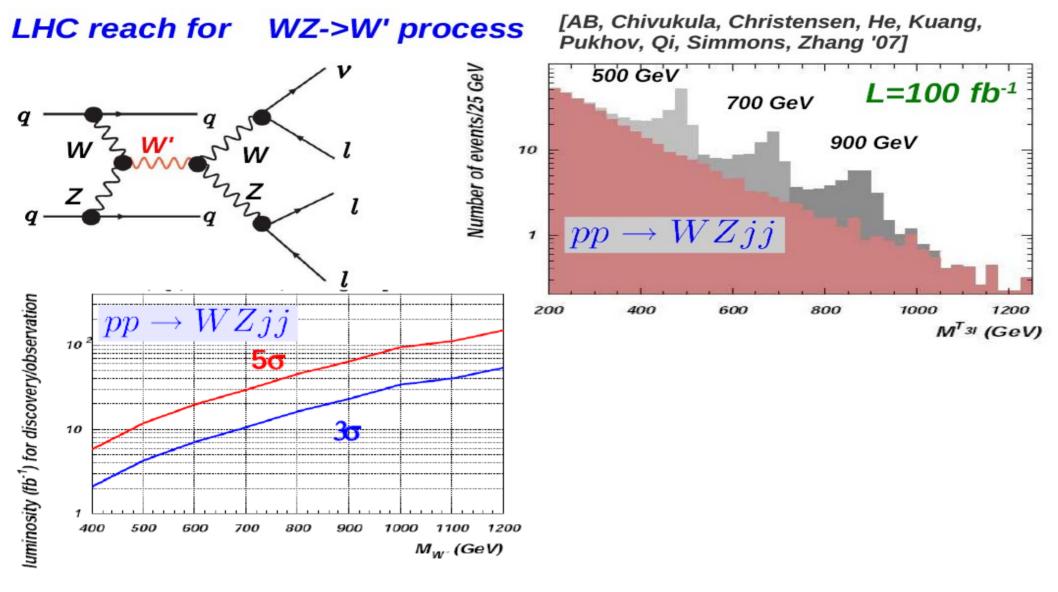

N

"Collider phenomenology with CalcHEP"

file:///home/belyaev/proj/intro_to_hep_tools/calc_work_2.5.4/html/index.html Distributions


Home Symbolic Results Numerical Results Events Library Process Library Help

Thank you for using CalcHEP! Please cite arXiv:0000.0000


Applications: B-L extension of SM

Applications: W' 3-lepton signatures from 3-site Higgsless model

CMS: W' 3-lepton signatures from 3-site Higgsless model

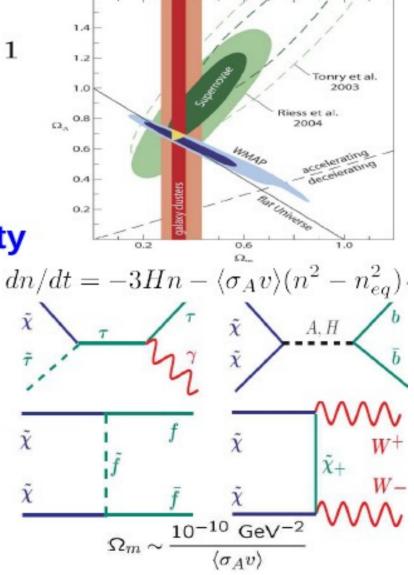
Applications: Dark matter relic density – IsaRed and MicorMegas

Crucial constraint from Cosmology: DM candidate should be heavy, neutral, stable, non-baryonic Dark Matter candidate

$$\Omega = \Omega_m + \Omega_\Lambda =
ho_{tot} /
ho_{crit} \simeq 1$$

Baryons: 4%± 0.4% Dark Matter: 23%±4% Dark Energy: 73%±4%

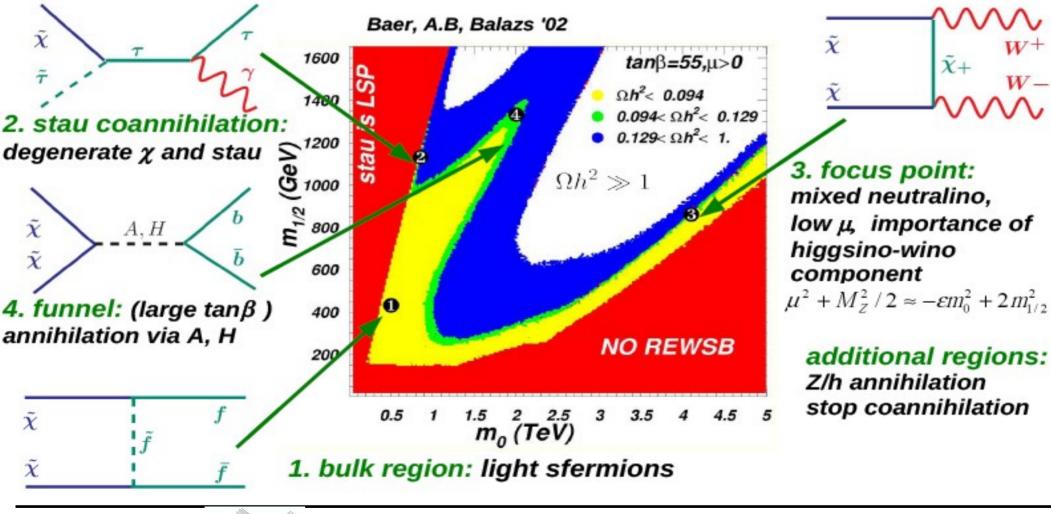
Evolution of neutralino relic density


◆ Challenge is to evaluate thousands annihilation/co-annihilation diagrams relic density depends crucially on $\langle \sigma_A v \rangle$ thermal equilibrium stage: $T > m_{\chi}, \ \chi\chi \leftrightarrow f\bar{f}$ universe cools: $T \leq m_{\chi}, \ \chi\chi \not\leftrightarrow f\bar{f}$, $n = n_{eq} \sim e^{-m/T}$ neutralinos "freeze-out" at $T_F \sim m/25$

ISARED code: complete set of processes

NE

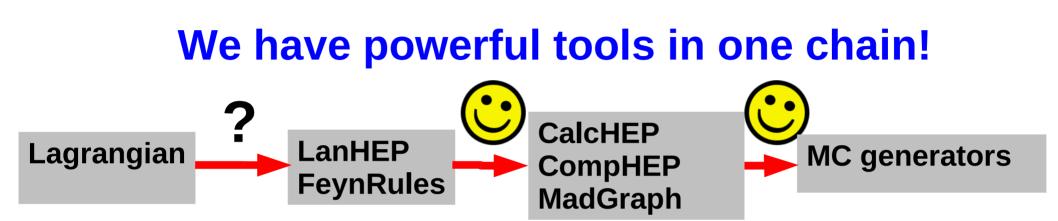
Baer, A.B., Balazs '02


exact tree-level calculations using CompHEP

Applications: Dark matter relic density – IsaRed and MicorMegas

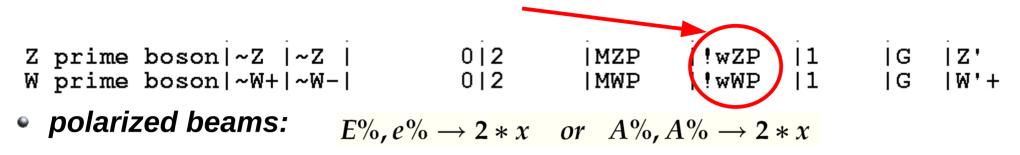
Neutralino relic density in mSUGRA

most of the parameter space is ruled out! $\Omega h^2 \gg 1$ special regions with high σ_A are required to get $0.094 < \Omega h^2 < 0.129$


We have powerful tools in one chain!

What is the most time consuming link?

Alexander Belyaev


What is the most time consuming link?

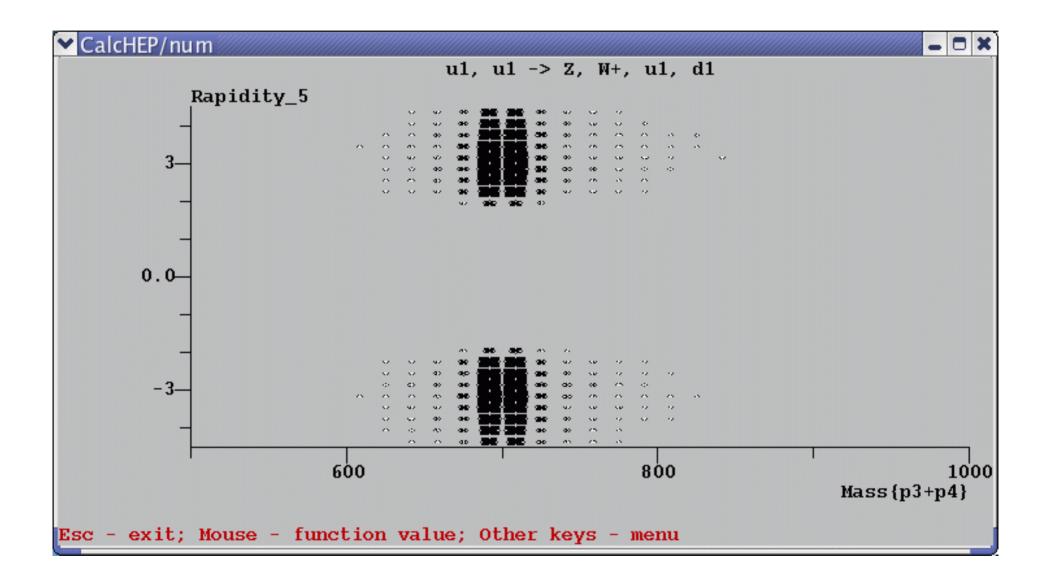
Alexander Belyaev

CalcHEP 2.5:recap of important new features

automatic witdh calculation ("on the fly")

• ppin 3/2 and spin 2 massive particles are available in CalcHEP now

• 2d distributions


• PAW and Gnuplot for plots

# GNUPLOT section		#]	PAW section
#GNUPLOT set title '	E,e ->m,M'	#PAW	TITLE 'E,e ->m,M'
#GNUPLOT set xlabel '	cos(p1,p3)'	#PAW	vector/Create X1(101)
#GNUPLOT set ylabel '	Diff. cross section [pb]'	#PAW	sigma X1=ARRAY(101,-1#1)
#GNUPLOT plot[-1:1] '	plot_1.txt' using (-1 +\$0*0.02):1 w l	#PAW	vector/Create Y1(101)
		#PAW	<pre>vector/Read Y1 'plot_1.txt' ' ' 'OC</pre>
		#PAW	GRAPH 101 X1 Y1

- dynamical linking!
- batch interface

CalcHEP 2.5: examples of 2d plots

Future plans

- Including finite width into production-decay connection (done!)
- Including polarization effects into production-decay chain
- kinematical cuts generalization (done!)
- QCD scale definition (leading diagram)
- polarization for massive particles
- database of the models

Final remarks

Advantages of CalcHEP –

easy model implementation, convenient interface, batch mode. Ready to be used by wide range of HEP community: from model builders to experimentalists!

- Read manuals they have many more details
- Automation tools are powerful but should not be blindly trusted!

