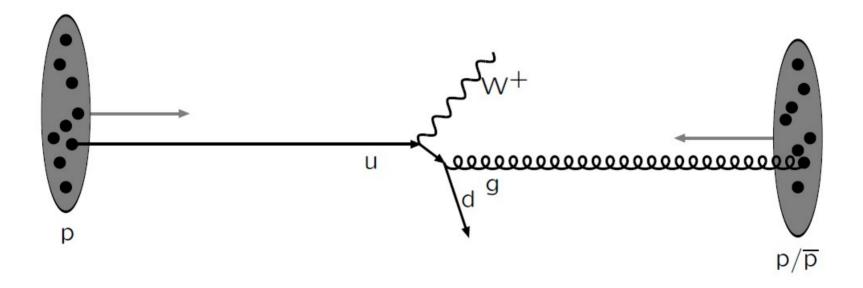

A tour to Monte Carlo

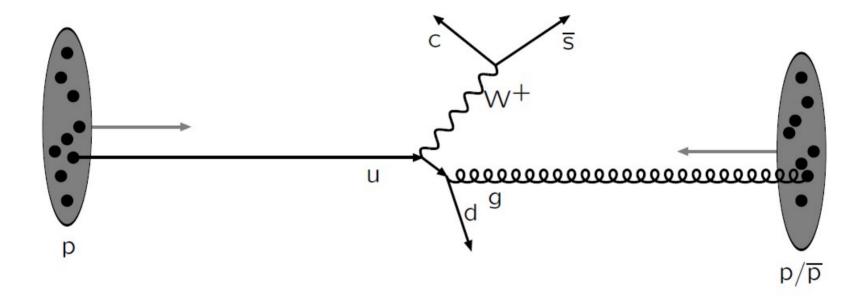
CalcHEP interface to MC generators, batch interface and event analysis

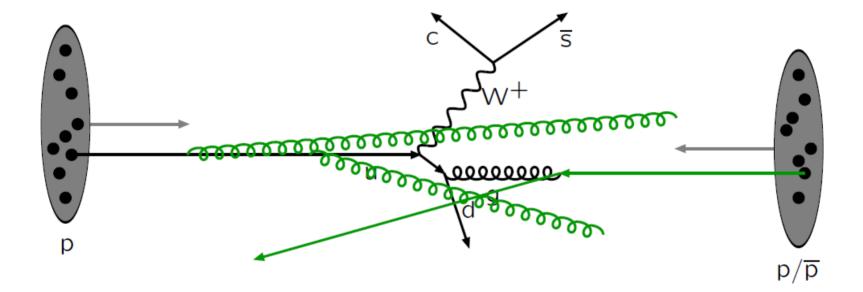
...because Einstein was wrong: God does throw dice! Quantum mechanics: amplitudes =⇒ probabilities Anything that possibly can happen, will! (but more or less often)

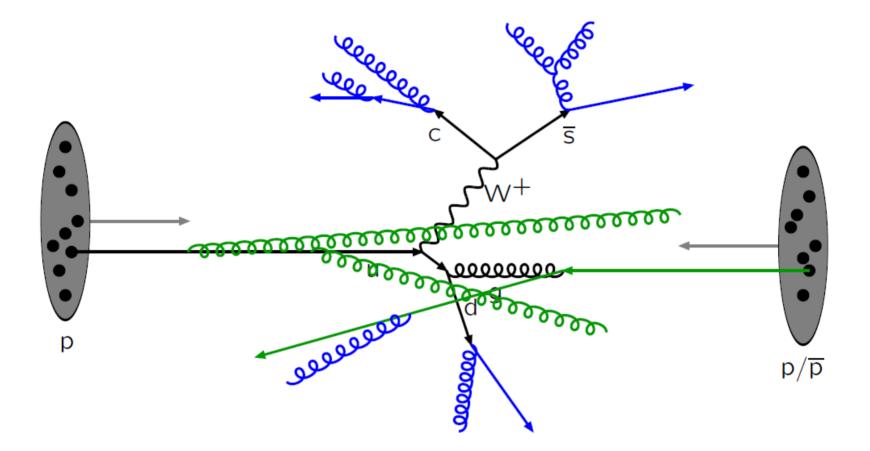
Why generators?

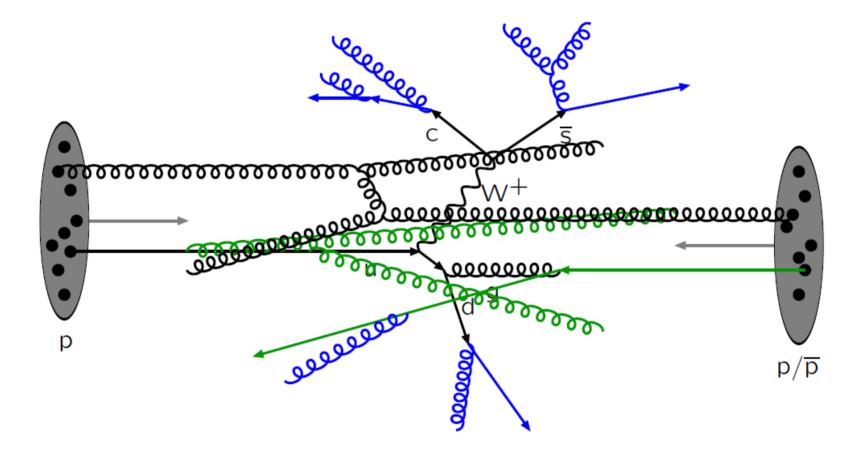
not feasible without generators


- Allow theoretical and experimental studies of complex multiparticle physics
- Analytical tools can not represent the complexity of the real picture!
- Many aspects of theory-phenomenology-experiment to be answered:
 - from complexity of theoretical picture
 - to phenomenological understanding of features and observability of signal versus the background
 - to understanding/optimization of detector features/requirements, acceptances to observe and study this theory

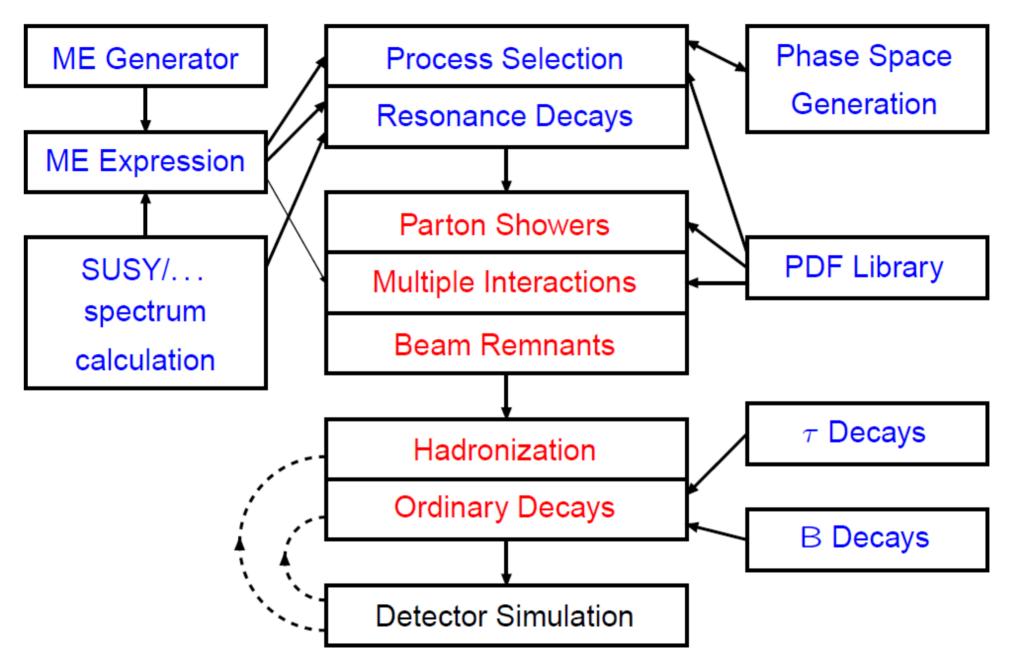

Incoming beams: parton densities


Hard subprocess: described by matrix elements


Resonance decays: correlated with hard subprocess


Initial-state radiation: spacelike parton showers

Final-state radiation: timelike parton showers



Multiple parton-parton interactions ...

Picture of the MC generation

PYTHIA subprocesses(1)

No.	Subprocess	
Hard	QCD processes:	
11	$f_if_j\tof_if_j$	
12	$f_i\overline{f}_i\tof_k\overline{f}_k$	
13	$f_i \overline{f}_i ightarrow gg$	
28	$f_ig\tof_ig$	
53	$gg ightarrow {\sf f}_k \overline{\sf f}_k$	
68	$\mathtt{g}\mathtt{g}\to\mathtt{g}\mathtt{g}$	
Soft (QCD processes:	
91	elastic scattering	
92	single diffraction (XB)	
93	single diffraction (AX)	
94	double diffraction	
95	low- p_{\perp} production	
Open heavy flavour:		
(also	fourth generation)	
81	$f_i\overline{f}_i\toQ_k\overline{Q}_k$	
82	$\mathtt{g}\mathtt{g}\to \mathtt{Q}_k\overline{\mathtt{Q}}_k$	
83	$q_if_j\toQ_kf_l$	

No.	Subprocess
84	$g\gamma ightarrow Q_k \overline{Q}_k$
85	$\gamma\gamma \to F_k\overline{F}_k$
Close	d heavy flavour:
86	${\tt gg} ightarrow {\tt J}/\psi {\tt g}$
87	$gg ightarrow \chi_{0c}g$
88	$gg ightarrow \chi_{1c}g$
89	$gg ightarrow \chi_{2c}g$
104	${\tt gg} ightarrow \chi_{\rm 0c}$
105	$gg ightarrow \chi_{2c}$
106	${\tt gg} ightarrow {\tt J}/\psi \gamma$
107	${ m g}\gamma ightarrow { m J}/\psi { m g}$
108	$\gamma\gamma \to J/\psi\gamma$
W/Z	production:
1	$f_i \overline{f}_i ightarrow \gamma^*/Z^0$
2	$f_i \overline{f}_j ightarrow W^{\pm}$
22	$f_i \overline{f}_i \rightarrow Z^0 Z^0$
23	$f_i \overline{f}_j \rightarrow Z^0 W^{\pm}$
25	$f_i \overline{f}_i \rightarrow W^+ W^-$
15	$f_i \overline{f}_i ightarrow gZ^0$

No.	Subprocess
16	$f_i \overline{f}_j \rightarrow gW^{\pm}$
30	$f_i g \to f_i Z^0$
31	$f_i g \to f_k W^{\pm}$
19	$f_i \overline{f}_i \rightarrow \gamma Z^0$
20	$f_i \overline{f}_j \rightarrow \gamma W^{\pm}$
35	$f_i \gamma \rightarrow f_i Z^0$
36	$f_i \gamma \rightarrow f_k W^{\pm}$
69	$\gamma\gamma \rightarrow W^+W^-$
70	$\gamma {\rm W}^{\pm} \rightarrow {\rm Z}^{0} {\rm W}^{\pm}$
Prom	pt photons:
14	$f_i \overline{f}_i ightarrow g \gamma$
18	$f_i\overline{f}_i\to\gamma\gamma$
29	$f_i g \rightarrow f_i \gamma$
114	$\mathrm{gg} \to \gamma\gamma$
115	$gg ightarrow g\gamma$
Deep	ly Inel. Scatt.:
10	$f_if_j\tof_kf_l$
99	$\gamma^* q o q$

PYTHIA subprocesses(2)

No.	Subprocess	
Photon-induced:		
33	$f_i\gamma\tof_ig$	
34	$f_i\gamma\tof_i\gamma$	
54	${\sf g}\gamma o {\sf f}_k \overline{{\sf f}}_k$	
58	$\gamma\gamma \rightarrow f_k\overline{f}_k$	
131	$f_i\gamma^*_T\to f_ig$	
132	$f_i\gamma^*_L\tof_ig$	
133	$f_i \gamma^*_T \rightarrow f_i \gamma$	
134	$f_i\gamma^*_L\tof_i\gamma$	
135	$g\gamma^*_T \rightarrow f_i \overline{f}_i$	
136	$g\gamma^*_L \to f_i \overline{f}_i$	
137	$\gamma^*_{T}\gamma^*_{T} \to f_i\overline{f}_i$	
138	$\gamma^*_{T}\gamma^*_{L} \to f_i\overline{f}_i$	
139	$\gamma^*_L \gamma^*_T \to f_i \overline{f}_i$	
140	$\gamma^*_L \gamma^*_L \to f_i \overline{f}_i$	
80	$\mathbf{q}_i \gamma \to \mathbf{q}_k \pi^\pm$	
Light	SM Higgs:	
3	$f_i \overline{f}_i ightarrow h^0$	
24	$f_i \overline{f}_i ightarrow Z^0 h^0$	
26	$f_i \overline{f}_j ightarrow W^{\pm} h^0$	

No.	Subprocess
32	$f_i g \to f_i h^0$
102	$gg \to h^0$
103	$\gamma\gamma ightarrow { m h^0}$
110	$f_i \overline{f}_i ightarrow \gamma h^0$
111	$f_i\overline{f}_i ightarrow { t gh}^0$
112	$f_i g \to f_i h^0$
113	$gg \to gh^0$
121	${ m gg} ightarrow { m Q}_k \overline{ m Q}_k { m h}^0$
122	$q_i \overline{q}_i ightarrow Q_k \overline{Q}_k h^0$
123	$f_i f_j \to f_i f_j h^0$
124	$f_i f_j \to f_k f_l h^0$
Heavy	/ SM Higgs:
5	$Z^0 Z^0 \to h^0$
8	$W^+W^- \to h^0$
71	$Z^0_L Z^0_L \to Z^0_L Z^0_L$
72	$Z^0_L Z^0_L \to W^+_L W^L$
73	$Z^0_L W^\pm_L \to Z^0_L W^\pm_L$
76	$W^+_L W^L \to Z^0_L Z^0_L$
77	$W^\pm_L W^\pm_L \to W^\pm_L W^\pm_L$

No.	Subprocess
BSM	Neutral Higgs:
151	$f_i \overline{f}_i ightarrow H^0$
152	$gg \to H^0$
153	$\gamma\gamma ightarrow { m H}^{ m 0}$
171	$f_i \overline{f}_i \rightarrow Z^0 H^0$
172	$f_i \overline{f}_j ightarrow W^{\pm} H^0$
173	$f_i f_j \to f_i f_j H^0$
174	$f_i f_j \rightarrow f_k f_l H^0$
181	${\tt gg} ightarrow {\tt Q}_k \overline{{\tt Q}}_k {\sf H}^{\tt 0}$
182	$q_i \overline{q}_i ightarrow Q_k \overline{Q}_k H^0$
183	$f_i \overline{f}_i ightarrow g H^0$
184	$f_ig\tof_iH^0$
185	$gg \to g H^0$
156	$f_i \overline{f}_i ightarrow A^0$
157	$gg \to A^0$
158	$\gamma\gamma ightarrow {\sf A}^0$
176	$f_i \overline{f}_i ightarrow Z^0 A^0$
177	$f_i \overline{f}_j ightarrow W^{\pm} A^0$
178	$f_if_j\tof_if_jA^0$
179	$f_i f_j \rightarrow f_k f_l A^0$

PYTHIA subprocesses(3)

No.	Subprocess
186	${\tt gg} ightarrow {\tt Q}_k \overline{{\tt Q}}_k {\sf A}^0$
187	$q_i \overline{q}_i ightarrow Q_k \overline{Q}_k A^0$
188	$f_i \overline{f}_i ightarrow gA^0$
189	$f_ig \to f_iA^0$
190	$gg \to gA^0$
Charg	ged Higgs:
143	$f_i\overline{f}_j\toH^+$
161	$f_ig\tof_kH^+$
Higgs	pairs:
297	$f_i \overline{f}_j ightarrow H^{\pm} h^0$
298	$f_i \overline{f}_j ightarrow H^{\pm} H^0$
299	$f_i \overline{f}_i ightarrow A^0 h^0$
300	$f_i \overline{f}_i \rightarrow A^0 H^0$
301	$f_i \overline{f}_i \rightarrow H^+ H^-$
New g	gauge bosons:
141	$f_i \overline{f}_i \rightarrow \gamma/Z^0/Z'^0$
142	$f_i \overline{f}_j \to W'^+$
144	$f_i\overline{f}_j\toR$

No.	Subprocess
Techr	nicolor:
149	$ t gg o \eta_{tc}$
191	${\sf f}_i\overline{\sf f}_i o ho_{\sf tc}^0$
192	$f_i \overline{f}_j \rightarrow \rho_{tc}^+$
193	$f_i \overline{f}_i ightarrow \omega_{tc}^0$
194	$f_i \overline{f}_i \rightarrow f_k \overline{f}_k$
195	$f_i\overline{f}_j o f_k\overline{f}_l$
361	$f_i \overline{f}_i \rightarrow W^+_L W^L$
362	$f_i \overline{f}_i \rightarrow W_L^{\pm} \pi_{tc}^{\mp}$
363	$f_i \overline{f}_i \rightarrow \pi_{tc}^+ \pi_{tc}^-$
364	$f_i \overline{f}_i \rightarrow \gamma \pi_{tc}^0$
365	$f_i \overline{f}_i \rightarrow \gamma \pi'^0_{tc}$
366	$f_i \overline{f}_i ightarrow Z^0 \pi^0_{tc}$
367	$f_i \overline{f}_i ightarrow Z^0 {\pi'}^0_{tc}$
368	$f_i \overline{f}_i \rightarrow W^{\pm} \pi^{\mp}_{tc}$
370	$f_i \overline{f}_j ightarrow W^{\pm}_L Z^0_L$
371	$f_i \overline{f}_j \rightarrow W^{\pm}_L \pi^0_{tc}$
372	$f_i \overline{f}_j ightarrow \pi_{tc}^{\pm} Z^0_L$
373	$f_i \overline{f}_j \rightarrow \pi_{tc}^{\pm} \pi_{tc}^0$
374	$f_i \overline{f}_j \rightarrow \gamma \pi_{tc}^{\pm}$

No.	Subprocess
375	$f_i \overline{f}_j \rightarrow Z^0 \pi_{tc}^{\pm}$
376	$f_i \overline{f}_j \rightarrow W^{\pm} \pi^0_{tc}$
377	$f_i \overline{f}_j \rightarrow W^{\pm} \pi'^0_{tc}$
381	$q_iq_j o q_iq_j$
382	$q_i \overline{q}_i \rightarrow q_k \overline{q}_k$
383	$q_i \overline{q}_i \rightarrow gg$
384	$f_ig \to f_ig$
385	$gg \rightarrow q_k \overline{q}_k$
386	$gg \to gg$
387	$f_i\overline{f}_i\toQ_k\overline{Q}_k$
388	$gg \to Q_k \overline{Q}_k$
Comp	oositeness:
146	${ m e}\gamma ightarrow { m e}^*$
147	$dg \to d^{\ast}$
148	$ug \to u^*$
167	$q_iq_j o d^*q_k$
168	$q_i q_j \rightarrow u^* q_k$
169	$q_i \overline{q}_i \rightarrow e^{\pm} e^{*\mp}$
165	$f_i \overline{f}_i (\rightarrow \gamma^* / Z^0) \rightarrow f_k \overline{f}_k$
166	$f_i \overline{f}_j (\rightarrow W^{\pm}) \rightarrow f_k \overline{f}_l$

PYTHIA subprocesses(4)

No.	Subprocess	
Leptoquarks:		
145	$q_i\ell_j\toL_Q$	
162	$qg \to \ell L_Q$	
163	$gg \to L_Q \overline{L}_Q$	
164	$q_i\overline{q}_i\toL_{Q}\overline{L}_{Q}$	
Left-I	right symmetry:	
341	$\ell_i \ell_j \to H_L^{\pm\pm}$	
342	$\ell_i \ell_j \to H_R^{\pm\pm}$	
343	$\ell_i^\pm\gamma\toH_L^{\pm\pm}\mathrm{e}^\mp$	
344	$\ell_i^\pm\gamma\to H_R^{\pm\pm}\mathrm{e}^\mp$	
345	$\ell_i^\pm\gamma\to H_L^{\pm\pm}\mu^\mp$	
346	$\ell_i^\pm\gamma\to H_R^{\pm\pm}\mu^\mp$	
347	$\ell_i^\pm\gamma\to H_L^{\pm\pm}\tau^\mp$	
348	$\ell_i^\pm\gamma\to H_R^{\pm\pm}\tau^\mp$	
349	$f_i \overline{f}_i \rightarrow H_L^{++} H_L^{}$	
350	$f_i\overline{f}_i\toH_R^{++}H_R^{}$	
351	$f_if_j\tof_kf_lH_L^{\pm\pm}$	
352	$f_if_j\tof_kf_lH_R^{\pm\pm}$	
353	$f_i \overline{f}_i \rightarrow Z_R^0$	
354	$f_i\overline{f}_j\toW_R^\pm$	

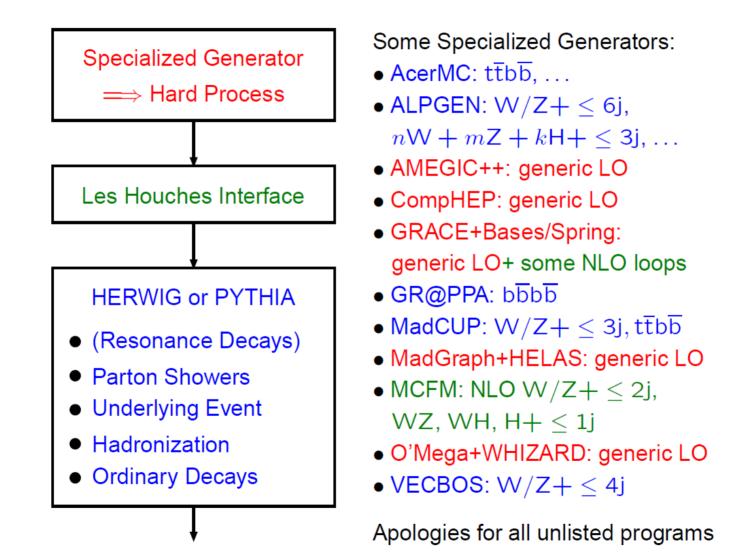
No.	Subprocess
Extra	Dimensions:
391	$f\overline{f} \to G^*$
392	$gg \to G^*$
393	$q\overline{q} \to gG^*$
394	$qg \to qG^*$
395	$gg \to gG^*$
SUSY	:
201	$f_i \overline{f}_i \rightarrow \tilde{e}_L \tilde{e}_L^*$
202	$f_i\overline{f}_i\to \tilde{e}_R\tilde{e}_R^*$
203	$f_i \overline{f}_i \rightarrow \tilde{e}_L \tilde{e}_R^* +$
204	$f_i \overline{f}_i \rightarrow \widetilde{\mu}_L \widetilde{\mu}_L^*$
205	$f_i \overline{f}_i o \widetilde{\mu}_R \widetilde{\mu}_R^*$
206	$f_i \overline{f}_i \rightarrow \tilde{\mu}_L \tilde{\mu}_R^* +$
207	$f_i \overline{f}_i \rightarrow \widetilde{\tau}_1 \widetilde{\tau}_1^*$
208	$f_i \overline{f}_i \rightarrow \widetilde{ au}_2 \widetilde{ au}_2^*$
209	$f_i \overline{f}_i \rightarrow \widetilde{\tau}_1 \widetilde{\tau}_2^* +$
210	$f_i \overline{f}_j \rightarrow \widetilde{\ell}_L \widetilde{\nu}_\ell^* +$
211	$f_i \overline{f}_j \rightarrow \widetilde{\tau}_1 \widetilde{\nu}_{\tau}^* +$
212	$f_i \overline{f}_j \rightarrow \widetilde{\tau}_2 \widetilde{\nu}_{\tau}^* +$
213	$f_i\overline{f}_i\to \widetilde{\nu_\ell}\widetilde{\nu_\ell}^*$

No.	Subprocess
214	$f_i \overline{f}_i ightarrow \widetilde{ u}_ au \widetilde{ u}_ au^*$
216	$f_i \overline{f}_i \rightarrow \tilde{\chi}_1 \tilde{\chi}_1$
217	$f_i \overline{f}_i \rightarrow \tilde{\chi}_2 \tilde{\chi}_2$
218	$f_i \overline{f}_i ightarrow \widetilde{\chi}_3 \widetilde{\chi}_3$
219	$f_i \overline{f}_i ightarrow \widetilde{\chi}_4 \widetilde{\chi}_4$
220	$f_i \overline{f}_i \rightarrow \tilde{\chi}_1 \tilde{\chi}_2$
221	$f_i \overline{f}_i ightarrow \widetilde{\chi}_1 \widetilde{\chi}_3$
222	$f_i \overline{f}_i ightarrow \widetilde{\chi}_1 \widetilde{\chi}_4$
223	$f_i \overline{f}_i ightarrow \widetilde{\chi}_2 \widetilde{\chi}_3$
224	$f_i \overline{f}_i \rightarrow \tilde{\chi}_2 \tilde{\chi}_4$
225	$f_i \overline{f}_i ightarrow \widetilde{\chi}_3 \widetilde{\chi}_4$
226	$f_i \overline{f}_i \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$
227	$f_i \overline{f}_i \rightarrow \tilde{\chi}_2^{\pm} \tilde{\chi}_2^{\mp}$
228	$f_i \overline{f}_i \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\mp}$
229	$f_i \overline{f}_j \rightarrow \tilde{\chi}_1 \tilde{\chi}_1^{\pm}$
230	$f_i \overline{f}_j \rightarrow \tilde{\chi}_2 \tilde{\chi}_1^{\pm}$
231	$f_i \overline{f}_j \rightarrow \tilde{\chi}_3 \tilde{\chi}_1^{\pm}$
232	$f_i \overline{f}_j \rightarrow \tilde{\chi}_4 \tilde{\chi}_1^{\pm}$
233	$f_i \overline{f}_j \rightarrow \tilde{\chi}_1 \tilde{\chi}_2^{\pm}$
234	$f_i \overline{f}_j \rightarrow \tilde{\chi}_2 \tilde{\chi}_2^{\pm}$

Alexander Belyaev

"Collider phenomenology with CalcHEP"

PYTHIA subprocesses(5)


No.	Subprocess
235	$f_i \overline{f}_j \rightarrow \tilde{\chi}_3 \tilde{\chi}_2^{\pm}$
236	$f_i \overline{f}_j \rightarrow \tilde{\chi}_4 \tilde{\chi}_2^{\pm}$
237	$f_i \overline{f}_i ightarrow \tilde{g} \tilde{\chi}_1$
238	$f_i \overline{f}_i ightarrow \widetilde{g} \widetilde{\chi}_2$
239	$f_i \overline{f}_i ightarrow \widetilde{g} \widetilde{\chi}_3$
240	$f_i \overline{f}_i ightarrow \widetilde{g} \widetilde{\chi}_4$
241	$f_i \overline{f}_j \rightarrow \tilde{g} \tilde{\chi}_1^{\pm}$
242	$f_i \overline{f}_j \rightarrow \tilde{g} \tilde{\chi}_2^{\pm}$
243	$f_i\overline{f}_i o \widetilde{g}\widetilde{g}$
244	$gg \to \tilde{g}\tilde{g}$
246	$f_i g \rightarrow \tilde{q}_{iL} \tilde{\chi}_1$
247	$f_i g \rightarrow \tilde{q}_{iR} \tilde{\chi}_1$
248	$f_i g ightarrow { ilde q}_{iL} { ilde \chi}_2$
249	$f_i g \rightarrow \tilde{q}_{iR} \tilde{\chi}_2$
250	$f_ig o \tilde{q}_{iL}\tilde{\chi}_{3}$
251	$f_i g ightarrow \widetilde{q}_{iR} \widetilde{\chi}_{3}$
252	$f_i g ightarrow { ilde q}_{iL} { ilde \chi}_4$
253	${\sf f}_i {\sf g} ightarrow { ilde {\sf q}}_{iR} { ilde {\chi}}_{\sf 4}$

No.	Subprocess
254	$f_i g ightarrow { ilde q}_{jL} { ilde \chi}_1^\pm$
256	$f_i g ightarrow { ilde q}_{jL} { ilde \chi}_2^\pm$
258	$f_i g \to \widetilde{q}_{iL} \widetilde{g}$
259	$f_ig\to \widetilde{q}_{iR}\widetilde{g}$
261	$f_i \overline{f}_i ightarrow \widetilde{t}_1 \widetilde{t}_1^*$
262	$f_i\overline{f}_i\to \widetilde{t}_2\widetilde{t}_2^*$
263	$f_i \overline{f}_i \rightarrow \tilde{t}_1 \tilde{t}_2^* +$
264	$gg \to \tilde{t}_1 \tilde{t}_1^*$
265	$gg \to \tilde{t}_2 \tilde{t}_2^*$
271	$f_i f_j \rightarrow \tilde{q}_{iL} \tilde{q}_{jL}$
272	$f_i f_j \rightarrow \tilde{q}_{iR} \tilde{q}_{jR}$
273	$f_i f_j \rightarrow \tilde{q}_{iL} \tilde{q}_{jR} +$
274	$f_i\overline{f}_j o \tilde{q}_{iL}\tilde{q}_{jL}^*$
275	$f_i\overline{f}_j o ilde{q}_{iR} ilde{q}_{jR}^*$
276	$f_i \overline{f}_j ightarrow \tilde{q}_{iL} \tilde{q}_{jR}^* +$
277	$f_i \overline{f}_i \rightarrow \tilde{q}_{jL} \tilde{q}_{jL}^*$
278	$f_i \overline{f}_i ightarrow \widetilde{q}_{jR} \widetilde{q}_{jR}^*$
279	${\tt gg} ightarrow { ilde {{\sf q}}_{iL}} { ilde {{\sf q}}_{iL}^*}$

No.	Subprocess
280	$gg \rightarrow \tilde{q}_{iR}\tilde{q}_{iR}^{*}$
281	$bq_i \rightarrow \tilde{b}_1 \tilde{q}_{iL}$
282	$bq_i o \tilde{b}_2 \tilde{q}_{iR}$
283	$bq_i \rightarrow \tilde{b}_1 \tilde{q}_{iR} + \tilde{b}_2 \tilde{q}_{iL}$
284	$b\overline{q}_i o \widetilde{b}_1 \widetilde{q}_{iL}^*$
285	$b\overline{q}_i o \widetilde{b}_2 \widetilde{q}_{iR}^*$
286	$b\overline{\mathbf{q}}_i \rightarrow \tilde{\mathbf{b}}_1 \tilde{\mathbf{q}}_{iR}^* + \tilde{\mathbf{b}}_2 \tilde{\mathbf{q}}_{iL}^*$
287	$f_i \overline{f}_i \rightarrow \widetilde{b}_1 \widetilde{b}_1^*$
288	$f_i \overline{f}_i \rightarrow \tilde{b}_2 \tilde{b}_2^*$
289	$gg \to \widetilde{b}_1 \widetilde{b}_1^*$
290	$gg \to \tilde{b}_2 \tilde{b}_2^*$
291	$bb \to \tilde{b}_1 \tilde{b}_1$
292	$bb \to \tilde{b}_2 \tilde{b}_2$
293	$bb \to \tilde{b}_1 \tilde{b}_2$
294	$bg \to \tilde{b}_1 \tilde{g}$
295	$bg \to \tilde{b}_2 \tilde{g}$
296	$b\overline{b} \to \tilde{b}_1 \tilde{b}_2^* +$

External user process and interface with CalcHEP: Les Houches accord

External user process and interface with CalcHEP: Les Houches accord Initialization

INTEGER MAXPUP PARAMETER (MAXPUP=100) INTEGER IDBMUP, PDFGUP, PDFSUP, IDWTUP, NPRUP, LPRUP DOUBLE PRECISION EBMUP, XSECUP, XERRUP, XMAXUP COMMON/HEPRUP/IDBMUP(2), EBMUP(2), PDFGUP(2), PDFSUP(2), IDWTUP, &NPRUP, XSECUP(MAXPUP), XERRUP(MAXPUP), XMAXUP(MAXPUP), LPRUP(MAXPUP)

IDBMUP: incoming beam particles (PDG codes, p = 2212, $\overline{p} = -2212$) EBMUP: incoming beam energies (GeV) PDFGUP, PDFSUP: PDFLIB parton distributions (not used by PYTHIA) IDWTUP: weighting strategy

- - = 1: PYTHIA mixes and unweights events, according to known $d\sigma_{max}$
 - = 2: PYTHIA mixes and unweights events, according to known σ_{tot}
 - = 3: unit-weight events, given by user, always to be kept
 - = 4: weighted events, given by user, always to be kept
 - = -1, -2, -3, -4: also allow negative $d\sigma$

NPRUP: number of separate user processes

XSECUP(i): σ_{tot} for each user process

XERRUP(i): error on σ_{tot} for each user process

XMAXUP(i): $d\sigma_{max}$ for each user process

LPRUP(i): integer identifier for each user process

The event

INTEGER MAXNUP
PARAMETER (MAXNUP=500)
INTEGER NUP,IDPRUP,IDUP,ISTUP,MOTHUP,ICOLUP
DOUBLE PRECISION XWGTUP,SCALUP,AQEDUP,AQCDUP,PUP,VTIMUP,SPINUP
COMMON/HEPEUP/NUP,IDPRUP,XWGTUP,SCALUP,AQEDUP,AQCDUP,
&IDUP(MAXNUP),ISTUP(MAXNUP),MOTHUP(2,MAXNUP),ICOLUP(2,MAXNUP),
&PUP(5,MAXNUP),VTIMUP(MAXNUP),SPINUP(MAXNUP)

IDPRUP: identity of current process

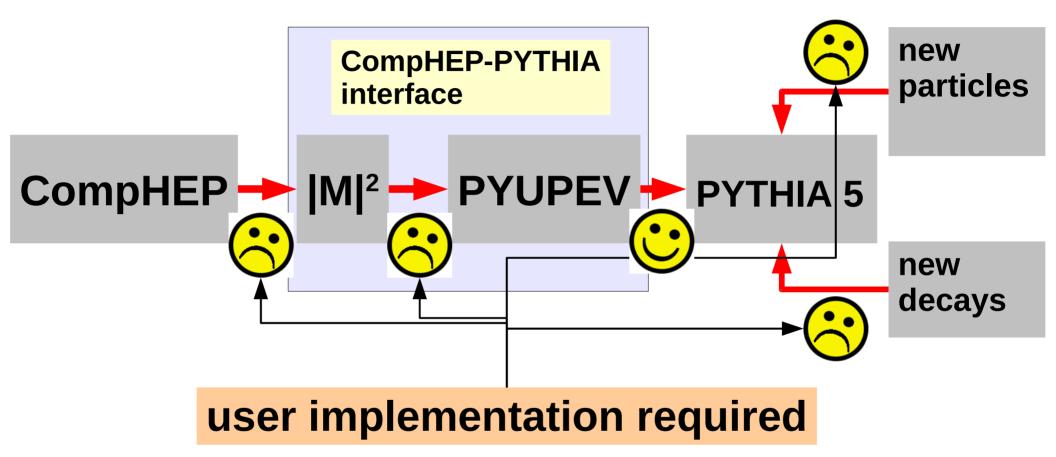
XWGTUP: event weight (meaning depends on IDWTUP weighting strategy)

SCALUP: scale Q of parton distributions etc.

AQEDUP: α_{em} used in event

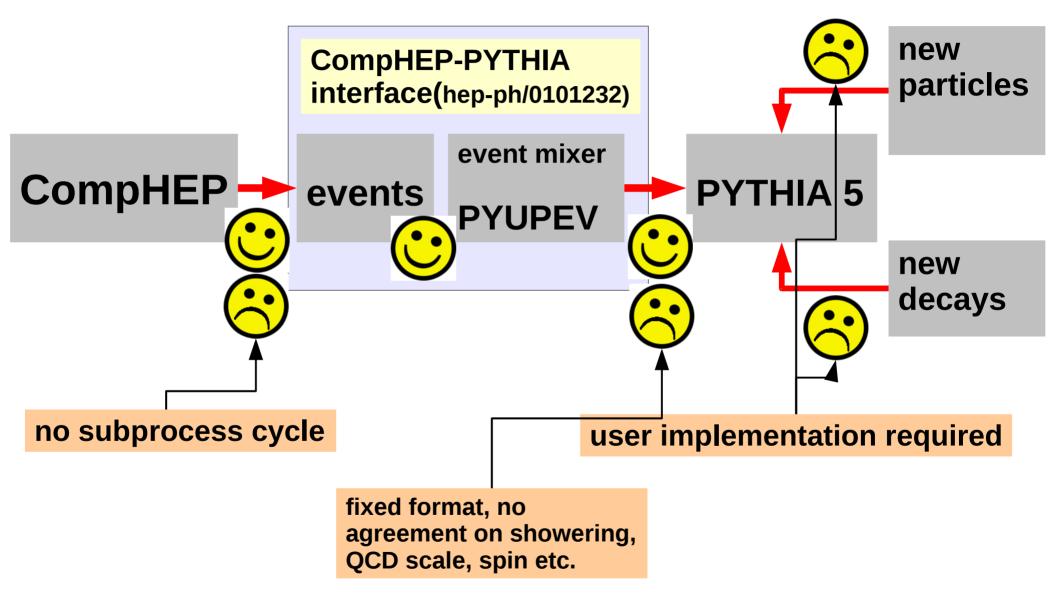
AQCDUP: $\alpha_{\rm S}$ used in event

NUP: number of particles in event

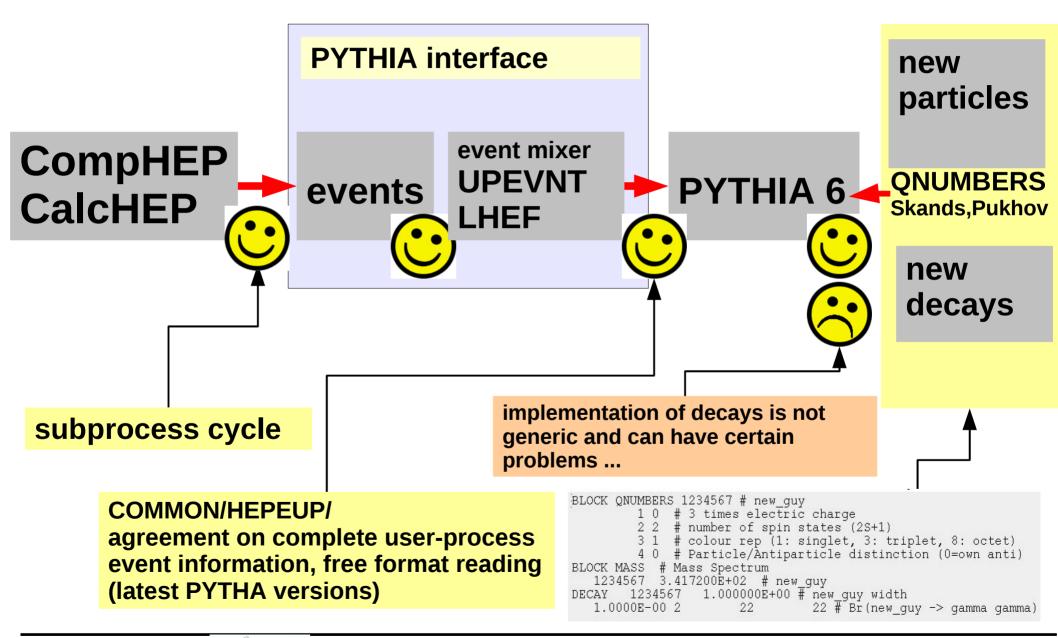

IDUP(i): PDG identity code for particle i

ISTUP(i): status code (-1 = incoming parton, 1 = final-state parton,

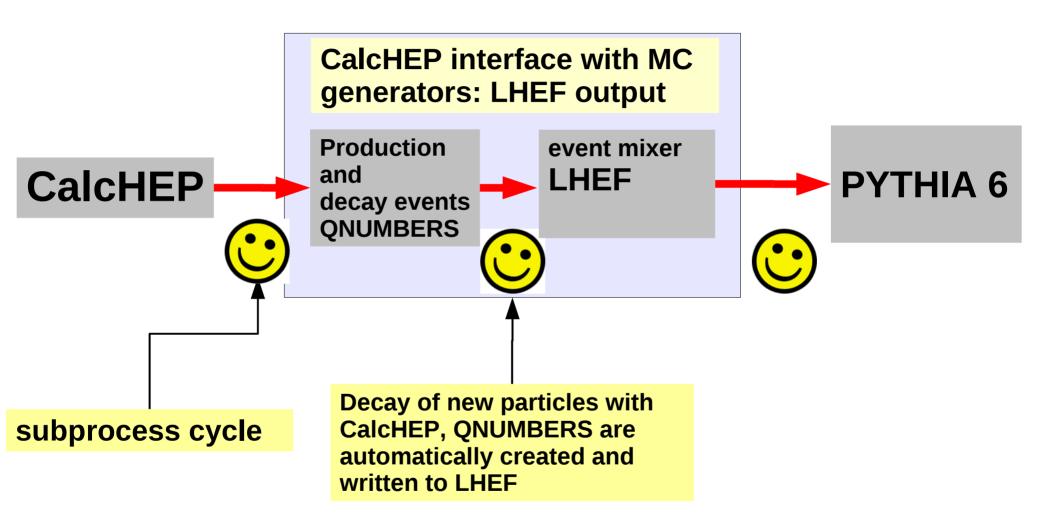
2 = intermediate resonance with preserved m) MOTHUP(j,i): position of one or two mothers PUP(j,i): (p_x, p_y, p_z, E, m) VTIMUP(i): invariant lifetime $c\tau$ SPINUP(i): spin (helicity) information



History of CalcHEP(ComPHEP) interface with MC generators TIMELINE: 90's



History of CalcHEP(ComPHEP) interface with MC generators TIMELINE: end of 90's



History of CalcHEP(ComPHEP) interface with MC generators TIMELINE: 00's, LHEF accord [hep-ph/0609017]

Present Status of CalcHEP-MCG interface

