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Reduction problem for Feynman integrals

Reduction problem for Feynman integrals

A given Feynman graph Γ → tensor reduction → various
scalar Feynman integrals that have the same structure of
the integrand with various distributions of powers of
propagators

F (a1, . . . , an) =

∫

· · ·

∫

dd
k1 . . . dd

kh

Ea1

1 . . . Ean

n
.

d = 4 − 2ǫ; the denominators Er are either quadratic or
linear with respect to the loop momenta pi = ki, i = 1, . . . , h
or to the independent external momenta
ph+1 = q1, . . . , ph+N = qN of the graph.
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Reduction problem for Feynman integrals

An old analytical strategy:
to evaluate, by some methods, every scalar Feynman
integral generated by the given graph.
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Reduction problem for Feynman integrals

An old analytical strategy:
to evaluate, by some methods, every scalar Feynman
integral generated by the given graph.

And what is already a traditional strategy:

to derive, without calculation, and then apply integration by
parts (IBP) relations [K.G. Chetyrkin and F.V. Tkachov’81]

between the given family of Feynman integrals as
recurrence relations.
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Reduction problem for Feynman integrals

An old analytical strategy:
to evaluate, by some methods, every scalar Feynman
integral generated by the given graph.

And what is already a traditional strategy:

to derive, without calculation, and then apply integration by
parts (IBP) relations [K.G. Chetyrkin and F.V. Tkachov’81]

between the given family of Feynman integrals as
recurrence relations.

A general integral from the given family is expressed as a
linear combination of some basic (master) integrals.
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Reduction problem for Feynman integrals

The whole problem of evaluation falls apart into two parts
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Reduction problem for Feynman integrals

The whole problem of evaluation falls apart into two parts

constructing a reduction procedure

evaluating master integrals

The talk is devoted to the first part of the problem.
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Reduction problem for Feynman integrals

Types of relations
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Reduction problem for Feynman integrals

Types of relations

Most commonly used relations: IBP relations.
IBP: [K.G. Chetyrkin and F.V. Tkachov’81]

∫

. . .

∫

dd
k1 . . . dd

kn
∂

∂ki

(

pj
1

Ea1

1 . . . Ean

n

)

= 0 ,
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Reduction problem for Feynman integrals

Types of relations

Most commonly used relations: IBP relations.
IBP: [K.G. Chetyrkin and F.V. Tkachov’81]

∫

. . .

∫

dd
k1 . . . dd

kn
∂

∂ki

(

pj
1

Ea1

1 . . . Ean

n

)

= 0 ,

→
∑

αiF (a1 + bi,1, . . . , an + bi,n) = 0 ,
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Reduction problem for Feynman integrals

Types of relations

Most commonly used relations: IBP relations.
IBP: [K.G. Chetyrkin and F.V. Tkachov’81]

∫

. . .

∫

dd
k1 . . . dd

kn
∂

∂ki

(

pj
1

Ea1

1 . . . Ean

n

)

= 0 ,

→
∑

αiF (a1 + bi,1, . . . , an + bi,n) = 0 ,

Lorentz-invariance (LI) identities [T. Gehrmann and E. Remiddi’00]
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Reduction problem for Feynman integrals

Types of relations

Most commonly used relations: IBP relations.
IBP: [K.G. Chetyrkin and F.V. Tkachov’81]

∫

. . .

∫

dd
k1 . . . dd

kn
∂

∂ki

(

pj
1

Ea1

1 . . . Ean

n

)

= 0 ,

→
∑

αiF (a1 + bi,1, . . . , an + bi,n) = 0 ,

Lorentz-invariance (LI) identities [T. Gehrmann and E. Remiddi’00]

→ they are a consequence of IBPs [R. Lee’08]
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Reduction problem for Feynman integrals

Types of relations

symmetry relations, e.g.,

F (a1, . . . , an) = (−1)d1a1+...dnanF (aσ(1), . . . , aσ(n)),
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Reduction problem for Feynman integrals

Types of relations

symmetry relations, e.g.,

F (a1, . . . , an) = (−1)d1a1+...dnanF (aσ(1), . . . , aσ(n)),

Boundary conditions:

F (a1, a2, . . . , an) = 0 when ai1 ≤ 0, . . . aik ≤ 0

for some subsets of indices ij ;
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Reduction problem for Feynman integrals

Types of relations

symmetry relations, e.g.,

F (a1, . . . , an) = (−1)d1a1+...dnanF (aσ(1), . . . , aσ(n)),

Boundary conditions:

F (a1, a2, . . . , an) = 0 when ai1 ≤ 0, . . . aik ≤ 0

for some subsets of indices ij ;

parity conditions,. . .
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Reduction problem for Feynman integrals

Manual reduction example
Massless one-loop propagator Feynman integrals

F (a1, a2) =

∫

dd
k

(k2)a1 [(q − k)2]a2

.

a1 ≥ 1, a2 ≥ 1
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Reduction problem for Feynman integrals

∫

dd
k

∂

∂k
·k

1

(k2)a1 [(q − k)2]a2

= 0
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Reduction problem for Feynman integrals

∫

dd
k

∂

∂k
·k

1

(k2)a1 [(q − k)2]a2

= 0

0 = dF (a1, a2)−
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Reduction problem for Feynman integrals

∫

dd
k

∂

∂k
·k

1

(k2)a1 [(q − k)2]a2

= 0

0 = dF (a1, a2)−

−2a1F (a1, a2)−
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Reduction problem for Feynman integrals

∫

dd
k

∂

∂k
·k

1

(k2)a1 [(q − k)2]a2

= 0

0 = dF (a1, a2)−

−2a1F (a1, a2)−

−a2(q
2F (a1, a2 + 1) − F (a1 − 1, a2 + 1) − F (a1, a2))
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Reduction problem for Feynman integrals

∫

dd
k

∂

∂k
·k

1

(k2)a1 [(q − k)2]a2

= 0

0 = dF (a1, a2)−

−2a1F (a1, a2)−

−a2(q
2F (a1, a2 + 1) − F (a1 − 1, a2 + 1) − F (a1, a2))

F (a1, a2) = −
1

(a2 − 1)q2
[(d − 2a1 − a2 + 1)F (a1, a2 − 1)

−(a2 − 1)F (a1 − 1, a2)]

when a2 6= 1
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To reduce the remaining integrals we use the symmetry
condition F (a1, a2) = F (a2, a1) (just to show an alternative
way, we used only one IBP out of two, so IBPs are enough
to do the reduction).

A.V. Smirnov Dubna, JINR, July, CALC 2009 – p.11



To reduce the remaining integrals we use the symmetry
condition F (a1, a2) = F (a2, a1) (just to show an alternative
way, we used only one IBP out of two, so IBPs are enough
to do the reduction).
Substituting the symmetry condition into the IBP used
above we obtain:

F (a1, 1) = −
d − a1 − 1

(a1 − 1)q2
F (a1 − 1, 1)

for a1 ≥ 1
Any integral can be recursively represented as a coefficient
times F (1, 1)
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Reduction problem for Feynman integrals

Relations between Feynman integrals lead to a possibility
to express given Feynman integrals in terms of other
Feynman integrals.
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Reduction problem for Feynman integrals

Relations between Feynman integrals lead to a possibility
to express given Feynman integrals in terms of other
Feynman integrals.

We have to name certain integrals irreducible (master) and
aim to reduce any other integral to those. An attempt to
formalize the definition of master integrals was made in
[A.V. Smirnov, JHEP 0604 (2006) 026].
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We have to name certain integrals irreducible (master) and
aim to reduce any other integral to those. An attempt to
formalize the definition of master integrals was made in
[A.V. Smirnov, JHEP 0604 (2006) 026].

The notion of the master (irreducible) integral →

a priority between the points (a1, . . . , an) →
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Reduction problem for Feynman integrals

Relations between Feynman integrals lead to a possibility
to express given Feynman integrals in terms of other
Feynman integrals.

We have to name certain integrals irreducible (master) and
aim to reduce any other integral to those. An attempt to
formalize the definition of master integrals was made in
[A.V. Smirnov, JHEP 0604 (2006) 026].

The notion of the master (irreducible) integral →

a priority between the points (a1, . . . , an) →

an ordering.
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Reduction problem for Feynman integrals

How to choose an ordering?
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How to choose an ordering?

Feynman integrals are simpler, from the analytic point of
view, if they have more non-positive indices.
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Reduction problem for Feynman integrals

How to choose an ordering?

Feynman integrals are simpler, from the analytic point of
view, if they have more non-positive indices.

Solving IBP relations by hand → reducing indices to zero
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Reduction problem for Feynman integrals

How to choose an ordering?

Feynman integrals are simpler, from the analytic point of
view, if they have more non-positive indices.

Solving IBP relations by hand → reducing indices to zero

→ we come to the notion of sectors
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Reduction problem for Feynman integrals

Sectors (‘topologies’):
2n regions labelled by subsets ν ⊆ {1, . . . , n}:
σν = {(a1, . . . , an) : ai > 0 if i ∈ ν , ai ≤ 0 if i 6∈ ν}
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Reduction problem for Feynman integrals

Sectors (‘topologies’):
2n regions labelled by subsets ν ⊆ {1, . . . , n}:
σν = {(a1, . . . , an) : ai > 0 if i ∈ ν , ai ≤ 0 if i 6∈ ν}

A sector is σν said to be lower than a sector σµ if ν ⊂ µ

F (a1, . . . , an) ≻ F (a′1, . . . , a
′
n) if the sector of (a′1, . . . , a

′
n) is

lower than the sector of (a1, . . . , an).
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Reduction problem for Feynman integrals

Sectors (‘topologies’):
2n regions labelled by subsets ν ⊆ {1, . . . , n}:
σν = {(a1, . . . , an) : ai > 0 if i ∈ ν , ai ≤ 0 if i 6∈ ν}

A sector is σν said to be lower than a sector σµ if ν ⊂ µ

F (a1, . . . , an) ≻ F (a′1, . . . , a
′
n) if the sector of (a′1, . . . , a

′
n) is

lower than the sector of (a1, . . . , an).

To define an ordering completely introduce it in some way
inside the sectors (to be discussed later).
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Reduction problem for Feynman integrals
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Laporta algorithm

[S. Laporta and E. Remiddi’96; S. Laporta’00; T. Gehrmann and E. Remiddi’01]

‘When increasing the total power of the denominator and
numerator, the total number of IBP equations grows faster
than the number of independent Feynman integrals.
Therefore this system of equations sooner or later becomes
overdetermined, and one obtains the possibility to perform
a reduction to master integrals’
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Laporta algorithm

Various implementations:

first public version AIR [C. Anastasiou and A. Lazopoulos’04]
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Laporta algorithm

Various implementations:

first public version AIR [C. Anastasiou and A. Lazopoulos’04]

several private versions [T. Gehrmann and E. Remiddi, M. Czakon,

P. Marquard and D. Seidel, Y. Schröder, C. Sturm, A. Pak, V. Velizhanin . . . ]
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Laporta algorithm

Various implementations:

first public version AIR [C. Anastasiou and A. Lazopoulos’04]

several private versions [T. Gehrmann and E. Remiddi, M. Czakon,

P. Marquard and D. Seidel, Y. Schröder, C. Sturm, A. Pak, V. Velizhanin . . . ]

new public version FIRE [A.Smirnov’08]

not only a Laporta algorithm!
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Sector bases

But initially FIRE originated from the idea to construct
bases in all sectors.
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bases in all sectors.

A basis in a sector is an iterative instruction how to reduce
all integrals in this sector except masters to lower integrals.
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Sector bases

But initially FIRE originated from the idea to construct
bases in all sectors.

A basis in a sector is an iterative instruction how to reduce
all integrals in this sector except masters to lower integrals.
How does one obtain bases?

And where does this word come from?
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Sector bases

The initial idea to reduce integrals manually also
resulted in a set of reduction rules — now we can call
them a manual basis
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Sector bases

The initial idea to reduce integrals manually also
resulted in a set of reduction rules — now we can call
them a manual basis

Reduction using Gröbner bases: historically, suggested
by O.V. Tarasov [O.V. Tarasov’98], reduce the problem to
differential equations by introducing a mass for every
line; aii

+ → ∂
∂m2

i
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Sector bases

The initial idea to reduce integrals manually also
resulted in a set of reduction rules — now we can call
them a manual basis

Reduction using Gröbner bases: historically, suggested
by O.V. Tarasov [O.V. Tarasov’98], reduce the problem to
differential equations by introducing a mass for every
line; aii

+ → ∂
∂m2

i

Direct application of Groebner bases (without the use of
differential equations) [V.P. Gerdt’04, 05]
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Sector bases

The initial idea to reduce integrals manually also
resulted in a set of reduction rules — now we can call
them a manual basis

Reduction using Gröbner bases: historically, suggested
by O.V. Tarasov [O.V. Tarasov’98], reduce the problem to
differential equations by introducing a mass for every
line; aii

+ → ∂
∂m2

i

Direct application of Groebner bases (without the use of
differential equations) [V.P. Gerdt’04, 05]

s-bases — one more approach initially based on
Gröbner bases [A.V. Smirnov and V.A. Smirnov’05]
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Sector bases

The initial idea to reduce integrals manually also
resulted in a set of reduction rules — now we can call
them a manual basis

Reduction using Gröbner bases: historically, suggested
by O.V. Tarasov [O.V. Tarasov’98], reduce the problem to
differential equations by introducing a mass for every
line; aii

+ → ∂
∂m2

i

Direct application of Groebner bases (without the use of
differential equations) [V.P. Gerdt’04, 05]

s-bases — one more approach initially based on
Gröbner bases [A.V. Smirnov and V.A. Smirnov’05]

Ideas developed by R. Lee [R. Lee’08]
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Basic idea of FIRE

Suppose you have bases constructed everywhere.

A.V. Smirnov Dubna, JINR, July, CALC 2009 – p.20



Basic idea of FIRE

Suppose you have bases constructed everywhere.

O

A.V. Smirnov Dubna, JINR, July, CALC 2009 – p.20



Basic idea of FIRE

Suppose you have bases constructed everywhere.

O

O O O

A.V. Smirnov Dubna, JINR, July, CALC 2009 – p.20



Basic idea of FIRE

Suppose you have bases constructed everywhere.

O

O O O

A.V. Smirnov Dubna, JINR, July, CALC 2009 – p.20



Basic idea of FIRE

Suppose you have bases constructed everywhere.

O

O O O

The number of integrals keeps growing, so you cannot
substitute, but each expression is short
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Now one can do the backward substitution
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O O O
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Now one can do the backward substitution

A.V. Smirnov Dubna, JINR, July, CALC 2009 – p.20



Unfortunately, one can’t construct the bases
everywhere.
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Unfortunately, one can’t construct the bases
everywhere.

Still, an automatic construction in many sectors may be
done by FIRE

Other improvements — region bases, manual rules

If nothing helps, FIRE starts the Laporta algorithm
inside a sector

Tail-masking has to be performed
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Another improvements:
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Another improvements:

Ideas of R. Lee to use less IBPs
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Another improvements:

Ideas of R. Lee to use less IBPs

Usage of QLink to store large tables on disk
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Another improvements:

Ideas of R. Lee to use less IBPs

Usage of QLink to store large tables on disk

Usage of FLink to improve evaluation speed
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s-bases approach

But still... what are s-bases
and how to construct them?

Let’s try to give an idea...
Although I would need several talks like that to explain comprehensively what Gröbner bases
are

A.V. Smirnov Dubna, JINR, July, CALC 2009 – p.23



s-bases approach

Suppose first that we are interested in expressing any
integral in the positive sector σ{1,...,n} as a linear
combination of a finite number of integrals in it.

∫

. . .

∫

dd
k1 . . . dd

kN
∂

∂ki

(

pj
1

Ea1

1 . . . EaN

N

)

= 0

→
∑

ciF (a1 + bi,1, . . . , an + bi,n) = 0
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s-bases approach

The left-hand sides of IBP relations can be expressed in
terms of operators of multiplication by the indices ai and
shift operators Yi = i

+, Y −
i = i

−, where

(Y ±
i · F )(a1, . . . , an) = F (a1, . . . , ai ± 1, . . . , an)
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s-bases approach

The left-hand sides of IBP relations can be expressed in
terms of operators of multiplication by the indices ai and
shift operators Yi = i

+, Y −
i = i

−, where

(Y ±
i · F )(a1, . . . , an) = F (a1, . . . , ai ± 1, . . . , an)

Thus, one can choose certain elements fi corresponding to
IBP relations and write

(fi · F )(a1, . . . , an) = 0

The choice is not unique, we will get rid of Y −
i
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s-bases approach

For example, the relation we had before

0 = dF (a1, a2) − 2a1F (a1, a2)−

−a2(q
2F (a1, a2 + 1) − F (a1 − 1, a2 + 1) − F (a1, a2))
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s-bases approach

For example, the relation we had before

0 = dF (a1, a2) − 2a1F (a1, a2)−

−a2(q
2F (a1, a2 + 1) − F (a1 − 1, a2 + 1) − F (a1, a2))

can be rewritten as

((d − 2A1 − A2(q
2Y +

2 − Y −
1 Y +

2 )) · F )(a1, a2) = 0
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s-bases approach

For example, the relation we had before

0 = dF (a1, a2) − 2a1F (a1, a2)−

−a2(q
2F (a1, a2 + 1) − F (a1 − 1, a2 + 1) − F (a1, a2))

can be rewritten as

((d − 2A1 − A2(q
2Y +

2 − Y −
1 Y +

2 )) · F )(a1, a2) = 0

or after multiplying by Y +
1 as

((dY +
1 − 2(A1 − 1)Y +

1 − A2(q
2Y +

2 Y +
1 − Y +

2 )) · F )(a1, a2) = 0
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s-bases approach

The algebra A0 generated by shift operators Y +
i and

multiplication operators Ai. It acts on the field of functions F
of n integer variables.
The ideal I of IBP relations generated by the elements fi.
For any element X ∈ I we have

(XF )(1, 1, . . . , 1) = 0 .
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multiplication operators Ai. It acts on the field of functions F
of n integer variables.
The ideal I of IBP relations generated by the elements fi.
For any element X ∈ I we have

(XF )(1, 1, . . . , 1) = 0 .

Also we have

F (a1, a2, . . . , an) = (Y a1−1
1 . . . Y an−1

n F )(1, 1, . . . , 1)
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s-bases approach

The algebra A0 generated by shift operators Y +
i and

multiplication operators Ai. It acts on the field of functions F
of n integer variables.
The ideal I of IBP relations generated by the elements fi.
For any element X ∈ I we have

(XF )(1, 1, . . . , 1) = 0 .

Also we have

F (a1, a2, . . . , an) = (Y a1−1
1 . . . Y an−1

n F )(1, 1, . . . , 1)

The idea of the algorithm is to reduce the element in the
right-hand side of the equation using the elements of the
ideal I.
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s-bases approach

Suppose we are interested in an integral

F (a1, a2, . . . , an) = (Y a1−1
1 . . . Y an−1

n F )(1, 1, . . . , 1)
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s-bases approach

Suppose we are interested in an integral

F (a1, a2, . . . , an) = (Y a1−1
1 . . . Y an−1

n F )(1, 1, . . . , 1)

The reduction problem →

reduce the monomial Y a1−1
1 . . . Y an−1

n modulo the ideal of
the IBP relations

Y a1−1
1 . . . Y an−1

n =
∑

rifi +
∑

ci1,...,inY i1−1
1 . . . Y in−1

n
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s-bases approach

Suppose we are interested in an integral

F (a1, a2, . . . , an) = (Y a1−1
1 . . . Y an−1

n F )(1, 1, . . . , 1)

The reduction problem →

reduce the monomial Y a1−1
1 . . . Y an−1

n modulo the ideal of
the IBP relations

Y a1−1
1 . . . Y an−1

n =
∑

rifi +
∑

ci1,...,inY i1−1
1 . . . Y in−1

n

Apply to F at a1 = 1, . . . , an = 1 to obtain

F (a1, a2, . . . , an) =
∑

ci1,...,inF (i1, i2, . . . , in) ,

where integrals on the right-hand side are “master
integrals”.
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s-bases approach

To do the reduction we need an ordering of monomials of
operators Yi or, similarly, an ordering of points (a1, . . . , an) in
the sector:

For two monomials M1 = Y i1−1
1 . . . Y in−1

n and
M2 = Y

j1−1
1 . . . Y

jn−1
n

(M1 · F )(1, . . . , 1) ≻ (M2 · F )(1, . . . , 1) if and only if M1 ≻ M2

Then the reduction procedure becomes similar to the
division of polynomials. But one needs to introduce a
proper ordering.
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s-bases approach

Orderings on the algebra of operators
Monomials → degrees (sets of n non-negative integers).
We require the following properties:

i) for any a ∈ N
n not equal to (0, . . . 0) one has (0, . . . 0) ≺ a

ii) for any a, b, c ∈ N
n one has a ≺ b if and only if a + c ≺ b + c.
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s-bases approach

Orderings on the algebra of operators
Monomials → degrees (sets of n non-negative integers).
We require the following properties:

i) for any a ∈ N
n not equal to (0, . . . 0) one has (0, . . . 0) ≺ a

ii) for any a, b, c ∈ N
n one has a ≺ b if and only if a + c ≺ b + c.

E.g., lexicographical ordering:
A set (i1, . . . , in) is higher than a set (j1, . . . , jn),
(i1, . . . , in) ≻ (j1, . . . , jn)
if there is l ≤ n such that i1 = j1, i2 = j2, . . . , il−1 = jl−1 and
il > jl.
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s-bases approach

Orderings on the algebra of operators
Monomials → degrees (sets of n non-negative integers).
We require the following properties:

i) for any a ∈ N
n not equal to (0, . . . 0) one has (0, . . . 0) ≺ a

ii) for any a, b, c ∈ N
n one has a ≺ b if and only if a + c ≺ b + c.

E.g., lexicographical ordering:
A set (i1, . . . , in) is higher than a set (j1, . . . , jn),
(i1, . . . , in) ≻ (j1, . . . , jn)
if there is l ≤ n such that i1 = j1, i2 = j2, . . . , il−1 = jl−1 and
il > jl.

Degree-lexicographical ordering: (i1, . . . , in) ≻ (j1, . . . , jn) if
∑

ik >
∑

jk, or
∑

ik =
∑

jk and (i1, . . . , in) ≻ (j1, . . . , jn) in
the sense of the lexicographical ordering.
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The description of our approach

An ordering can be defined by a matrix.

Lexicographical, degree-lexicographical and reverse
degree-lexicographical ordering for n = 5:



















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



















,



















1 1 1 1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0



















,



















1 1 1 1 1

1 1 1 1 0

1 1 1 0 0

1 1 0 0 0

1 0 0 0 0


















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s-bases approach

But the reduction does not always lead to a reasonable
number of irreducible integrals → one has to build a
special basis first.
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number of irreducible integrals → one has to build a
special basis first.

Having elements with lowest possible degrees ↔
obtaining master integrals with minimal possible
degrees.
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But the reduction does not always lead to a reasonable
number of irreducible integrals → one has to build a
special basis first.

Having elements with lowest possible degrees ↔
obtaining master integrals with minimal possible
degrees.

One needs to build special bases → an algorithm based
on the Buchberger algorithm - S-polynomials,
reductions.
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s-bases approach

But the reduction does not always lead to a reasonable
number of irreducible integrals → one has to build a
special basis first.

Having elements with lowest possible degrees ↔
obtaining master integrals with minimal possible
degrees.

One needs to build special bases → an algorithm based
on the Buchberger algorithm - S-polynomials,
reductions.

Moreover, we must keep in mind that we are interested
in integrals not only in the positive sector.
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s-bases approach

Our algorithm [A.S.& V.S’05] : to build a set of special bases of
the ideal of IBP relations (s-bases).

sectors
σν = {(a1, . . . , an) : ai > 0 if i ∈ ν , ai ≤ 0 if i 6∈ ν}

In the sector σ{1,...,n}, consider Yi as basic operators.
In the sector σν , consider Yi for i ∈ ν and Y −

i for other i

as basic operators.

Construct sector bases (s-bases), rather than Gröbner
bases for all the sectors.
An s-basis for a sector σν is a set of elements of a basis
which provides the possibility of a reduction to master
integrals and integrals whose indices lie in lower
sectors, i.e. σν′ for ν ′ ⊂ ν. (It is most complicated to
construct s-bases for minimal sectors.)
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s-bases approach

The construction — close to the Buchberger algorithm
but it can be terminated when the ‘current’ basis
already provides us the needed reduction.

The basic operations are the same, i.e. calculating
S-polynomials and reducing them modulo current basis,
with a chosen ordering.

After constructing s-bases for all non-trivial sectors one
obtains a recursive (with respect to the sectors) procedure
to evaluate F (a1, . . . , an) at any point and thereby reduce a
given integral to master integrals.

Description of the algorithm (implemented in
Mathematica): [ A.V. Smirnov, JHEP 0604 (2006) 026]
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Main things you need to know about s-bases:
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Main things you need to know about s-bases:

They are a method to work with IBPs before substituting
indices
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You can’t construct them everywhere, but in many
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Main things you need to know about s-bases:

They are a method to work with IBPs before substituting
indices

Having as more bases as possible in nice

You can’t construct them everywhere, but in many
sectors they can be constructed automatically

The code SBases is public
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Everything available at http://science.sander.su
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