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Initially sector decomposition was used for proving
theorems on Feynman integrals.

Practical sector decomposition for numerical evaluation:
Binoth, Heinrich — 2000

Public code by Bogner, Weinzierl — 2007

Public code FIESTA by Smirnov, Tentyukov — 2008

Planning a new release of FIESTA by A. Smirnov, V.
Smirnov, Tentyukov — 2009

A.V. Smirnov Dubna, JINR, July, CALC 2009 – p.4



Sector decomposition introduction:
Feynman integrals:

G(a1, . . . , an) =

∫

· · ·

∫

ddk1 . . . ddkh

Ea1

1 . . . Ean
n

.

d = 4 − 2ǫ; the denominators Er are either quadratic or
linear with respect to the loop momenta pi = ki, i = 1, . . . , h
and/or to the independent external momenta
ph+1 = q1, . . . , ph+N = qN of the graph.
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Alpha representation:

GΓ(q1, . . . , qn; d ; a1 . . . , aL) =
ia+h(1−d/2)πhd/2

∏

l Γ(al)

×

∫

∞

0
. . .

∫

∞

0

∏

l

αal−1
l U−d/2eiF/U−i

∑

m2

l αldα1 . . . dαL ,

where L and h is, respectively, the number of lines (edges)
and loops (independent circuits) of the graph, a =

∑

al, and
U and F a some polynomials of alpha-parameters
constructively defined by the Feynman diagram.
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Evaluation problems:

Multi-dimensional integrals depending on ǫ
Evaluate them numerically?

Need to expand in ǫ, but there are singularities

Integration region decomposition, variable replacements
and singularities resolutions have to be made before the
expansion
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First step: primary sectors
l-th primary sector is a subregion where αi ≤ αl, i 6= l.
The integration domain falls apart into L primary sectors,
the integral is equal to the sum of integrals over primary
sectors.
Using the homogeneity properties of the functions in the
representation and explicitly integrating over αl we
represent the l-th integral as

G(l) =

(

iπd/2
)h

Γ(a − hd/2)
∏

l Γ(al)

∫ 1

0
. . .

∫ 1

0
tal−1
l . . . 6 tal−1

l . . . taL−1
L

×
Ûa−(h+1)d/2

F̂ a−hd/2
dt1 . . . dtl−1dtl+1 . . . dtL ,
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where
Û = U(t1, . . . , tl−1, 1, tl+1, . . . , tL),

F̂0 = F (t1, . . . , tl−1, 1, tl+1, . . . , tL),

F̂ =

[

−F̂0 + Û

(

L−1
∑

l=1

m2
l

L−1
∏

l=l′

tl′ + m2
L

)]
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Now the integration is over the unit hypercube. Each term is
of the form

c(ǫ)

∫ 1

0
. . .

∫ 1

0

L−1
∏

l

xpl

l

Ûa(ǫ)

F̂ b(ǫ)
dx1 . . . dxL−1,

where Û and F̂ are polynomials of integration variables, pl

are integers and a, b and c are functions of ǫ.
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Now the integration is over the unit hypercube. Each term is
of the form

c(ǫ)

∫ 1

0
. . .

∫ 1

0

L−1
∏

l

xpl

l

Ûa(ǫ)

F̂ b(ǫ)
dx1 . . . dxL−1,

where Û and F̂ are polynomials of integration variables, pl

are integers and a, b and c are functions of ǫ.

Easier to integrate numerically

But the problem of singularities persists
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The goal of the sector decomposition method is to
decompose each of the integration domains into subsectors
and perform variables replacements in each of those
sectors such that

The integration domain in new variables is again a unit
hypercube

The integrals obtained have only ǫ-singularities arising

from the x
(ǫ−n)
i -like factors in the integrands

The number of sectors is as small as possible
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Sector decomposition:

Sector decomposition usually defined iteratively;

A sector decomposition strategy is an instruction how to
perform one sector decomposition step + a stop
condition;

A sector decomposition strategy is said to be
guaranteed to terminate if one can prove that after a
finite number of steps all resulting sectors and
integrands satisfy the stop condition;
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Let us suppose that the functions U and F have no negative
terms. This is not a rare situation, for example it is true if all
the kinematic invariants are non-positive. Then one can
derive a sufficient condition to assure that there are no
singularities: it is simply the existence of a constant among
the summands, e.g.:

F = 1 + x1 + x2 + . . .

In this case there are multiple sector decomposition
strategies guaranteed to terminate.
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Example
∫ 1

0

∫ 1

0

1

(x + y)2−ǫ
dydx =
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Example
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0

1
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2

∫ 1

0
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0

1
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Example
∫ 1
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∫ 1

0

1

(x + y)2−ǫ
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2

∫ 1

0

∫ x

0

1

(x + y)2−ǫ
dydx =

2

∫ 1

0

∫ x

0

x
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dzdx =
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Example
∫ 1

0

∫ 1

0

1

(x + y)2−ǫ
dydx =

2

∫ 1

0

∫ x

0

1

(x + y)2−ǫ
dydx =

2

∫ 1

0

∫ x

0

x

(x + xz)2−ǫ
dzdx =

where y = xz

2

∫ 1

0

∫ 1

0
x−1+ǫ 1

(1 + z)2−ǫ
dzdx
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Different strategies:

Strategy A (Spyvakovsky, 1983)

Strategy B and C by Bogner and Weinzierl (2008)

Strategies by Binoth and Heinrich (X, ...), 2000-...

Strategy S in FIESTA (2008)

Hepp sectors and Speer sectors also can be
represented as iterative strategies (A.Smirnov, V.
Smirnov, 2009)

A.V. Smirnov Dubna, JINR, July, CALC 2009 – p.15



Strategies comparison:
Diagram A B C S X

Box 12 12 12 12 12
Double box 755 586 586 362 293
Triple box M 114256 114256 22657 10155

D420 8898 564 564 180 F
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D420 is a diagram contributing to the 2-loop static quark
potential with the following set of propagators:
{−k2,−(k − q)2,−l2,−(l − q)2,−(k − l)2,−vk,−vl}, where k

and l are loop momenta, q2 = −1, qv = 0 and v2 = 1.
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ǫ-expansion and numerical integration problems
After the sector decomposition the integrands have the
following form:

∫ 1

xj=0
dxi . . . dxn(

n
∏

j=1

x
aj−1+bjǫ
j )Z,

where Z has no singularities.
Let us assume that ai ≤ 0 for some i and treat the integrand
as a function

xai−1+biǫ
i Y (xi)
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We replace xa−1+bǫY (x) by
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We replace xa−1+bǫY (x) by

Y (0)xa−1+bǫ + Y ′(0)xa+bǫ + . . . +
1

(−a)!
Y (−a)(0)x−1+bǫ+
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We replace xa−1+bǫY (x) by

Y (0)xa−1+bǫ + Y ′(0)xa+bǫ + . . . +
1

(−a)!
Y (−a)(0)x−1+bǫ+

xa−1+bǫ(Y (a) − Y (0) − Y ′(0)x − . . . −
1

(−a)!
Y (−a)(0)x−a)
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1

(−a)!
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Y (0)xa−1+bǫ + Y ′(0)xa+bǫ + . . . +
1

(−a)!
Y (−a)(0)x−1+bǫ

One integration can be taken analytically!

xa−1+bǫ(Y (a) − Y (0) − Y ′(0)x − . . . −
1

(−a)!
Y (−a)(0)x−a)

Can be numerically integrated but still might result in

problems!
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Original FIESTA solved this problem with IfCuts.

For small values of variables one could integrate not the
original expression, but its expansion by this variable in a
Taylor series.

Non-efficient
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Announcement: in FIESTA 2 we are introducing
multi-precision evaluations to handle numerical
instability.
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Announcement: in FIESTA 2 we are introducing
multi-precision evaluations to handle numerical
instability.

Reasoning: a sum of potentially huge terms is of normal
size. Therefore all those terms have to be evaluated
with high precision, otherwise after summing we don’t
obtain a proper result.

Warning: high precision calculations during the
integration don’t mean you are going to get many digits
as an answer. It is just a method to handle numerical
instability.
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What can we do if F has negative terms.
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Dealing with negative terms
What can we do if F has negative terms.
Three situations:

before the threshold - the function F is still always
positive - in this case normal strategies do succeed

above the threshold - the function F is sometimes
negative - the result is a complex number - one might try
to run FIESTA with UsingC=False and get say 2 highest
poles. Nothing more can be done at the moment

at the threshold - the function F is non-negative, but
might turn to zero, for example, if a pair of variables is
equal to each other - recursive resolution with full
squares (improved in FIESTA 2)
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FIESTA internal structure

Mathematica

QLink

CIntegrate on C

Communication via Mathlink
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As a result, we have:

Completely automatic — only the list of propagators
has to be on input

Parallelization

Ability to handle large amounts of data

Methods to handle the numerical instability

Cross-platform
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Log with an example (box):
In[1]:= << FIESTA_1.0.0.m

FIESTA, version 1.0.0

In[2]:= UsingQLink=False;

In[3]:= SDEvaluate[UF[{k},{-kˆ2,-(k+p1)ˆ2,-(k+p1+p2) ˆ2,

-(k+p1+p2+p4)ˆ2},{p1ˆ2->0,p2ˆ2->0,p4ˆ2->0,

p1 p2->-S/2,p2 p4->-T/2,p1 p4->(S+T)/2,S->3,

T->1}],{1,1,1,1},0]
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Log with an example (box):
In[1]:= << FIESTA_1.0.0.m

FIESTA, version 1.0.0

In[2]:= UsingQLink=False;

In[3]:= SDEvaluate[UF[{k},{-kˆ2,-(k+p1)ˆ2,-(k+p1+p2) ˆ2,

-(k+p1+p2+p4)ˆ2},{p1ˆ2->0,p2ˆ2->0,p4ˆ2->0,

p1 p2->-S/2,p2 p4->-T/2,p1 p4->(S+T)/2,S->3,

T->1}],{1,1,1,1},0]

External integration ready! Use CIntegrate to perform call s

FIESTA, version 1.0.0

UsingC: True

NumberOfLinks:1

UsingQLink: False

IntegrationCut: 0

IfCut: 0.

Strategy: STRATEGY_S

Integration has to be performed up to order 0

Sector decomposition..........0.0138 seconds; 12 sector s.

Variable substitution..........0.0055 seconds.
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Decomposing ep-independent term..........0.0025 second s

Pole resolution..........0.0081 seconds; 40 terms.

Expression construction..........0.0021 seconds.

Replacing variables..........0.0063 seconds.

Epsilon expansion..........0.0123 seconds.

Expanding..........0.0002 seconds.

Counting variables: 0.0002 seconds.

Preparing integration string..........0.0004 seconds.

Terms of order -2: 8 (1-fold integrals).

Numerical integration: 8 parts; 1 links;

Integrating..........0.106322 seconds; returned answer :

1.333333

Integration of order -2: 1.333333

(1.333333)/epˆ2

Expanding..........0.0005 seconds.

Counting variables: 0.0005 seconds.

Preparing integration string..........0.001 seconds.

Terms of order -1: 28 (2-fold integrals).
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Numerical integration: 12 parts; 1 links;

Integrating..........0.409080 seconds; returned answer :

-2.065743 +- 5. * ˆ-6

Integration of order -1: -2.065743 +- 5. * ˆ-6

(1.333333)/epˆ2 + (-0.73241 +- 5. * ˆ-6)/ep

Expanding..........0.0008 seconds.

Counting variables: 0.0009 seconds.

Preparing integration string..........0.0022 seconds.

Terms of order 0: 40 (2-fold integrals).

Numerical integration: 12 parts; 1 links;

Integrating..........0.862786 seconds; returned answer :

-3.417375 +- 0.000012

Integration of order 0: -3.417375 +- 0.000012

(1.333333)/epˆ2 + (-0.73241 +- 5. * ˆ-6)/ep +

(-4.386496 +- 0.000013)

Total time used: 1.52991 seconds.

-6

1.33333 -0.73241 + 5. 10 pm46

Out[3]= -4.3865 + ------- + -----------------------

2 ep

ep

+ 0.000013 pm47
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Summary of new features in FIESTA 2
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Summary of new features in FIESTA 2

Multiprecision evaluations to handle numerical
instability

Improved parallelization (Usage of Mathematica 7
subkernels and integrating by multiple computers)

New integrators (Thomas Hahn Cuba library)

Not only integral evaluation but also asymptotic
behavior calculations

Speer sectors as a strategy

Integrals at the threshold
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Applications

FIESTA 1 - used in many works for cross-checks

Systematic crosschecks in the calculation of the
three-loop static quark potential (Smirnov, Smirnov,
Steinhauser)

Three-loop non-planar vertex integrals at the threshold
(Marquard, Steinhauser)

Evaluation of terms of an asymptotic expansion in a
limit of momenta and masses

Analytical results for the 28 master integrals for
four-loop massless propagator integrals (Baikov,
Chetyrkin) have been checked by FIESTA 2
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