Two-loop corrections to the pole masses of heavy quarks in the MSSM

A. Bednyakov¹, D.I. Kazakov^{1,2}, A. Sheplyakov¹

¹Joint Institute for Nuclear Research, Dubna, Russia

²Institute for Theoretical and Experimental Physics, Moscow, Russia

伺 ト イ ヨ ト イ ヨ ト

$$rac{\Delta m_{t,b}}{m_{t,b}} \equiv rac{M^{pole}_{t,b} - m^{\overline{ ext{DR}}}_{t,b}(ar{\mu})}{m^{\overline{ ext{DR}}}_{t,b}(ar{\mu})}$$

- Motivation
- Calculation method
- Results
- Conclusion

イロン イロン イヨン イヨン

3

- Estimates of SUSY particles masses are necessary.
- One needs to know values of (running) parameters of MSSM Lagrangian at the "low-energy" (EW $\approx 100 \text{ GeV}$, or SUSY breaking $\approx 1000 \text{ GeV}$) scale.
- For large tan β and/or m₀ predicted values of masses are very sensitive to Yukawa couplings of heavy quarks. This dependence is particulary strong for Higgs boson masses.
- Thus, it is desirable to have determination of the heavy quarks Yukawa couplings as precise as possible.

Importance of two-loop corrections Known results Our purpose

In order to evaluate Yukawa couplings from

- M_Z^{pole}, M_W^{pole} M_t^{pole} $\alpha_s^{(5)}(M_Z), \alpha_{em}$
- $m_b(m_b)$, etc.

we need to calculate relation between the pole and running masses:

$$\frac{\Delta m_{t,b}}{m_{t,b}} \equiv \frac{M_{t,b}^{pole} - m_{t,b}^{\overline{\mathrm{DR}}}(\bar{\mu})}{m_{t,b}^{\overline{\mathrm{DR}}}(\bar{\mu})}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Importance of two-loop corrections Known results Our purpose

Pierce, Matchev, Zhang, hep-ph/9606211:

$$\frac{\Delta m_{t,b}}{m_{t,b}} = \mathcal{O}(\alpha_s) + \mathcal{O}(y_t^2) + \mathcal{O}(y_b^2) + \mathcal{O}(g^2) + \mathcal{O}(g^{\prime 2})$$

For the *b* quark $\mathcal{O}(\alpha_s)$ terms are reduced significantly by $\mathcal{O}(y_t^2 + y_b^2)$ ones.

Bednyakov, Onishchenko, Velizhanin, Veretin, hep-ph/0210258: $\mathcal{O}(\alpha_s^2)$, obtained by asymptotic expansion in $m_{t,b}/M_{SUSY}$, leading term only. For the *b* quark this correction is comparable with one-loop one.

- 4 同 6 4 日 6 4 日 6 - 日

Importance of two-loop corrections Known results **Our purpose**

- $\mathcal{O}(\alpha_s y_t^2 + \alpha_s y_b^2 + y_t^4 + y_b^4)$ corrections for *b*-quark, since these may be of the same order of magnitude as $\mathcal{O}(\alpha_s^2)$ ones.
- second-order terms of asymptotic expansion for *t*-quark, since $m_t/M_{SUSY} \approx 0.2$.

伺 ト イ ヨ ト イ ヨ ト

Definition of the pole mass Asymptotic expansion t quark self-energy b quark self-energy Tools of the trade

full connected propagator of a quark:

$$i(\hat{p}-m-\Sigma(\hat{p},m_i))^{-1}$$

self-energy of the quark:

$$\Sigma(\hat{p},m_i) = \hat{p}\Sigma_V(p^2,m_i^2) + \hat{p}\gamma_5\Sigma_A(p^2,m_i^2) + m\Sigma_S(p^2,m_i)$$

pole mass M_p :

$$\left(\left(1 + \Sigma_V(M_p^2, m_i^2) \right)^2 - \Sigma_A^2(M_p^2, m_i^2) \right) M_p^2 - m^2 \left(1 - \Sigma_S(M_p^2, m_i) \right)^2 = 0$$

- 4 同 6 4 日 6 4 日 6

Motivation Method of calculation Results Conclusion Method of calculation Results Conclusion Method of the pole mass Asymptotic expansion t quark self-energy Tools of the trade

perturbative expansion of the pole mass:

$$\begin{split} \frac{M_p - m}{m} &= \alpha M^{(1)} + \alpha^2 M^{(2)}, \\ M^{(1)} &= \Sigma_V^{(1)}(m^2, m_i^2) + \Sigma_S^{(1)}(m^2, m_i), \\ M^{(2)} &= \Sigma_V^{(2)}(m^2, m_i^2) + \Sigma_S^{(2)}(m^2, m_i) + \frac{1}{2} \Sigma_A^{(1)^2}(m^2, m_i^2) \\ &+ M^{(1)} \left(\Sigma_V^{(1)}(m^2, m_i^2) + 2m^2 \frac{\partial}{\partial p^2} \left(\Sigma_V^{(1)}(p^2, m_i^2) + \Sigma_S^{(1)}(p^2, m_i) \right) \right)_{p^2 = m^2} \end{split}$$

A. Bednyakov, D.I. Kazakov, A. Sheplyakov Two-loop corrections to the pole masses of heavy quarks in the N

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation Method of calculation Results Conclusion Motivation of the pole Asymptotic expansion t quark self-energy b quark self-energy Tools of the trade

Asymptotic expansion (F.V. Tkachov):

$$F_{\Gamma}(p,m,M) = \sum_{\gamma} F_{\Gamma/\gamma}(p,m) \mathcal{T}_{\gamma}(p_{\gamma},m) F_{\gamma}(p_{\gamma},m,M)$$

- γ : asymptotically irreducible subgraphs of Γ
- *T*_γ(*p*_γ, *m*): Taylor expansion in small masses and external (with respect to γ) momenta

- 4 同 6 4 日 6 4 日 6

Definition of the pole mas Asymptotic expansion *t* quark self-energy *b* quark self-energy Tools of the trade

about 160 two-loop propagator-type diagrams

 $m_t \ll m_{\tilde{q}}, m_{\tilde{g}}$

$$\frac{\Delta m_t}{m_t} \approx 1 + \alpha_s \sum_{n=-1}^2 m_t^n \sigma_1^{(n)} + \alpha_s^2 \sum_{n=-1}^2 m_t^n \sigma_2^{(n)}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition of the pole mas Asymptotic expansion *t* quark self-energy *b* quark self-energy Tools of the trade

<ロ> <同> <同> < 同> < 同>

æ

Definition of the pole mass Asymptotic expansion *t* quark self-energy *b* quark self-energy Tools of the trade

about 1200 two-loop propagator-type diagrams

$$m_b \ll m_t, m_{h_0}, m_{H_0}, m_{H^+}, m_{\tilde{q}}, m_{\tilde{\chi}^0}, m_{\tilde{\chi}^+}, m_{G_0}, m_{G^+}$$

$$\frac{\Delta m_b}{m_b} \approx 1 + \alpha \sum_{n=-1}^{0} m_b^n \sigma_1^{(n)} + \alpha^2 \sum_{n=-1}^{0} m_b^n \sigma_2^{(n)}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition of the pole mas Asymptotic expansion *t* quark self-energy *b* quark self-energy Tools of the trade

other subgraphs give $\mathcal{O}(m_b^2)$ contribution.

- 4 同 2 4 日 2 4 日 2

Definition of the pole mass Asymptotic expansion t quark self-energy b quark self-energy Tools of the trade

- Diagram generation: (slightly modified version of) FeynArts.
- Analytical and numeric calculations: *GiNaC* C++ library.
- Asymptotic expansion: prop2exp C++ library (based on GiNaC).
- Recursive reduction of two-loop vacuum integrals to a by integration by parts method, analytic and numeric evaluation of the master-integral: *bubblesii* C++ library (based on GiNaC too).
- Evaluation of running MSSM parameters and SUSY partner masses: *ffmssmsc* C++ library (*forked from SOFTSUSY* written from scratch).

・ 同 ト ・ ヨ ト ・ ヨ ト

SQCD contributions to $\Delta m_t/m_t$ relative value of second-order term change of predicted values of particle masses Yukawa and SQCD corrections to $\Delta m_b/m_b$

・ 同 ト ・ ヨ ト ・ ヨ ト

SQCD contributions to $\Delta m_t/m_t$ relative value of second-order term change of predicted values of particle masses Yukawa and SQCD corrections to $\Delta m_b/m_b$

(

 $A_0 = 0, \, \tan \beta = 50$

$$\sigma_2^{
m rel} \equiv \left| rac{\Delta^{(2)} m_t / m_t}{\Delta^{(0)} m_t / m_t}
ight|$$

second-order terms of asymptotic expansion in m_t/M_{SUSY} give negligible contribution

★ ∃ → < ∃</p>

< 同 ▶

SQCD contributions to $\Delta m_t/m_t$ relative value of second-order term change of predicted values of particle masses Yukawa and SQCD corrections to $\Delta m_b/m_b$

- Two-loop corrections to $\Delta m_t/m_t$ yields sizable change ($\approx 15\%$) of predicted masses of heavy Higgs bosons and chargino
- This change exceeds discrepancies (indicated by gray region on the plot) between different software for MSSM spectrum calculation

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

SQCD contributions to $\Delta m_t/m_t$ relative value of second-order term change of predicted values of particle masses Yukawa and SQCD corrections to $\Delta m_b/m_b$

 $m_0 = 1000 \text{ GeV}, A_0 = 0, \tan \beta = 50$ 1000 800 $M_{\chi^+_2},~{
m GeV}$ with 2-loop $\Delta m_t/m_t$ 600 400 200400 600 800 1000 $m_{1/2}, \, {\rm GeV}$

- Two-loop corrections to $\Delta m_t/m_t$ yields sizable change ($\approx 15\%$) of predicted masses of heavy Higgs bosons and chargino
- This change exceeds discrepancies (indicated by gray region on the plot) between different software for MSSM spectrum calculation

< A ▶

→ 3 → 4 3

SQCD contributions to $\Delta m_t/m_t$ relative value of second-order term change of predicted values of particle masses Yukawa and SQCD corrections to $\Delta m_b/m_b$

Masses of squarks, gluino, and relatively light particles (lightest neutralino, lightest Higgs boson) do not obtain any significant changes.

SQCD contributions to $\Delta m_t/m_t$ relative value of second-order term change of predicted values of particle masses Yukawa and SQCD corrections to $\Delta m_b/m_b$

Masses of squarks, gluino, and relatively light particles (lightest neutralino, lightest Higgs boson) do not obtain any significant changes.

SQCD contributions to $\Delta m_t / m_t$ relative value of second-order term change of predicted values of particle masses Yukawa and SQCD corrections to $\Delta m_b / m_b$

 $m_0 = 1000 \text{ GeV}, A_0 = 0, \tan \beta = 50$ 1-loop 20 α_s^2 $\Delta m_b(M_Z)/m_b(M_Z), \%$ 10 $\alpha_s^2 + \alpha_s y^2 + y^4$ 0 -10 $\alpha_{e} u^{2} + u$ 500600 700 900 1000 800 $m_{1/2}, \, {\rm GeV}$

- \$\mathcal{O}(\alpha_s^2)\$ correction is positive and comparable to the one-loop MSSM correction
- *O*(α_sy² + y⁴) contribution
 has the opposite sign and
 partially compensate
 O(α_s²) corrections
- $\mathcal{O}(\alpha_s y^2 + y^4 + \alpha_s^2)$ corrections $\propto 30 - 40\%$ of the one-loop MSSM ones

→ □ → → □ →

< 1 →

- $\mathcal{O}(\alpha_s^2)$ MSSM corrections to the relation between pole and running masses of the *t* quark were evaluated.
- \blacksquare these corrections are $\approx 30\%$ of one-loop ones
- second-order terms of asymptotic expansion in m_t/M_{SUSY} give negligible contribution
- \blacksquare this correction yields $\gtrapprox 15\%$ change of predicted masses of heavy Higgs bosons and chargino

・ 同 ト ・ ヨ ト ・ ヨ ト …

- $\mathcal{O}(\alpha_s y^2 + y^4)$ MSSM corrections to the relation between pole and running masses of the *b* quark were evaluated.
- \$\mathcal{O}(\alpha_s^2)\$ correction is positive and of the same order of magnitude as the one-loop MSSM correction
- O(α_sy² + y⁴) contribution has the opposite sign in most "interesting" regions of MSSM parameter space and partially compensate O(α_s²) corrections
- $\mathcal{O}(\alpha_s y^2 + y^4 + \alpha_s^2)$ corrections $\propto 30 40\%$ of the one-loop MSSM ones.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Our results can be used for

- calculation of the MSSM mass spectrum
- renormalization group analysis of the Yukawa coupling unification
- \blacksquare dark matter searches, relic density is sensitive to the masses of heavy quarks for large $\tan\beta$