Third-order potential corrections to the $t \bar{t}$ production near threshold

Kurt Schuller

Collaboration with Martin Beneke and Yuichiro Kiyo Institut für Theoretische Physik E, RWTH Aachen

Dubna, 21.07.2006

Overview

(1) Introduction
(2) Calculation

- Effective Theories
(3) Results
- Cross section
- Energy Levels
- Wave Function

4) Outlook

Motivation

Measurement of the top-quark mass m_{t} :

Motivation

Measurement of the top-quark mass m_{t} :

- Error in m_{t} has large impact on precision observables.

Motivation

Measurement of the top-quark mass m_{t} :

- Error in m_{t} has large impact on precision observables.
- One can 'see' physics beyond the SM.

Motivation

Measurement of the top-quark mass m_{t} :

- Error in m_{t} has large impact on precision observables.
- One can 'see' physics beyond the SM.

[S.Heinemeyer,G.Weiglein '05]

Motivation

Measurement of the top-quark mass m_{t} :

- Error in m_{t} has large impact on precision observables.
- One can 'see' physics beyond the SM.

[S.Heinemeyer,G.Weiglein '05]

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Threshold Physics

Large top-quark width \Rightarrow Finite width effects:

- Taken into account by $E \rightarrow E+i \Gamma_{t}$.
- Only toponium ground state visible but smeared out.

Motivation for NNNLO

- The 2nd order corrections (NNLO) are large.

Motivation for NNNLO

- The 2nd order corrections (NNLO) are large.

[M.Beneke,A.Signer,V.A.Smirnov '99]

Cross section and Green Function

The "Optical Theorem" connects the cross section and the Green Function:

Cross section and Green Function

Function:

Cross section and Green Function

The "Optical Theorem" connects the cross section and the Green
Function:

Cross section and Green Function

The "Optical Theorem" connects the cross section and the Green Function:

Cross section and Green Function

The "Optical Theorem" connects the cross section and the Green Function:

$$
\begin{aligned}
R=\frac{\sigma_{t \bar{t} X}}{\sigma_{\mu^{+} \mu^{-}}} & =\frac{18 \pi e_{t}^{2}}{m_{t}^{2}}\left(1+a_{z}\right) \operatorname{Im} G\left(0,0 ; E+i \Gamma_{t}\right) \\
G\left(0,0, E+i \Gamma_{t}\right) & =\sum_{n=1}^{\infty} \frac{\left|\phi_{n}(0)\right|^{2}}{E_{n}-\left(E+i \Gamma_{t}\right)}+\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{\left|\phi_{\mathbf{k}}(0)\right|^{2}}{\mathbf{k}^{2} / m_{t}-\left(E+i \Gamma_{t}\right)}
\end{aligned}
$$

Problems at Threshold

- Top-quark velocity v is small.

Problems at Threshold

- Top-quark velocity v is small.
- Usual perturbation theory breaks down.

Problems at Threshold

- Top-quark velocity v is small.
- Usual perturbation theory breaks down.
- Use of non-relativistic approach \Rightarrow the expansion has to be done in α_{S} and v.

Problems at Threshold

- Top-quark velocity v is small.
- Usual perturbation theory breaks down.
- Use of non-relativistic approach \Rightarrow the expansion has to be done in α_{S} and v.
- So: terms of the order $\left(\frac{\alpha s}{v}\right)^{k}$ have to be summed up for all powers k.

Problems at Threshold

- Top-quark velocity v is small.
- Usual perturbation theory breaks down.
- Use of non-relativistic approach \Rightarrow the expansion has to be done in α_{S} and v.
- So: terms of the order $\left(\frac{\alpha s}{v}\right)^{k}$ have to be summed up for all powers k.

$$
R=v \sum_{k}\left(\frac{\alpha_{S}}{v}\right)^{k} \begin{cases}1 & (L O) ; \tag{LO}\\ \alpha_{S}, v & (N L O) ; \\ \alpha_{S}^{2}, \alpha_{S} v, v^{2} & (N N L O) ; \\ \alpha_{S}^{3}, \alpha_{S}^{2} v, \alpha_{S} v^{2}, v^{3} & (\text { NNNLO })\}\end{cases}
$$

LO Green Function

Summation in LO Green Function: $R=v \sum_{k}\left(\frac{\alpha s}{v}\right)^{k}$

LO Green Function

Summation in LO Green Function: $R=v \sum_{k}\left(\frac{\alpha s}{v}\right)^{k}$

LO Green Function

Summation in LO Green Function: $R=v \sum_{k}\left(\frac{\alpha s}{v}\right)^{k}$

LO Green Function

Summation in LO Green Function: $R=v \sum_{k}\left(\frac{\alpha s}{v}\right)^{k}$

LO Green Function

Summation in LO Green Function: $R=v \sum_{k}\left(\frac{\alpha_{s}}{v}\right)^{k}$

LO Green Function

Summation in LO Green Function: $R=v \sum_{k}\left(\frac{\alpha s}{v}\right)^{k}$

Higher order calculations

- The expansion of v and α_{s} is done systematically in the framework of effective theories

Higher order calculations

- The expansion of v and α_{s} is done systematically in the framework of effective theories

- Hard and soft modes integrated out (QCD - NRQCD - PNRQCD) [in analogy to PNRQED \rightarrow Grozin's talk]

Higher order calculations

- The expansion of v and α_{s} is done systematically in the framework of effective theories

- Hard and soft modes integrated out (QCD - NRQCD - PNRQCD) [in analogy to PNRQED \rightarrow Grozin's talk]

Higher order calculations

- The expansion of v and α_{s} is done systematically in the framework of effective theories

- Hard and soft modes integrated out (QCD - NRQCD - PNRQCD) [in analogy to PNRQED \rightarrow Grozin's talk]

Higher order calculations

- The expansion of v and α_{s} is done systematically in the framework of effective theories

- Hard and soft modes integrated out (QCD - NRQCD - PNRQCD) [in analogy to PNRQED \rightarrow Grozin's talk]

Higher order calculations

- The expansion of v and α_{s} is done systematically in the framework of effective theories

- Hard and soft modes integrated out (QCD - NRQCD - PNRQCD) [in analogy to PNRQED \rightarrow Grozin's talk]

Higher order calculations

- The expansion of v and α_{s} is done systematically in the framework of effective theories

- Hard and soft modes integrated out (QCD - NRQCD - PNRQCD) [in analogy to PNRQED \rightarrow Grozin's talk]

Higher order calculations

- The expansion of v and α_{s} is done systematically in the framework of effective theories

- Hard and soft modes integrated out (QCD - NRQCD - PNRQCD) [in analogy to PNRQED \rightarrow Grozin's talk]

Higher order calculations

- The expansion of v and α_{s} is done systematically in the framework of effective theories

- Hard and soft modes integrated out (QCD - NRQCD - PNRQCD) [in analogy to PNRQED \rightarrow Grozin's talk]
- PNRQCD Lagrangian:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}= & \psi^{\dagger}(x)\left(i \partial^{0}+\frac{\partial^{2}}{2 m}\right) \psi(x)+\chi^{\dagger}(x)\left(i \partial^{0}-\frac{\partial^{2}}{2 m}\right) \chi(x) \\
& +\int d^{3} \mathbf{r}\left[\psi^{\dagger} \psi\right](x+\mathbf{r}) V(\mathbf{r})\left[\chi^{\dagger} \chi\right](x)+\mathcal{L}_{\mathrm{us}}
\end{aligned}
$$

The potentials in PNRQCD

In PNRQCD the $t \bar{t}$ interactions are described by potentials.

The potentials in PNRQCD

In PNRQCD the $t \bar{t}$ interactions are described by potentials.

$$
\widetilde{V}(\mathbf{q})=-C_{C}\left(\alpha_{S}\right) \frac{4 \pi C_{F} \alpha_{S}}{\mathbf{q}^{2}}
$$

- Coulomb potential

The potentials in PNRQCD

In PNRQCD the $t \bar{t}$ interactions are described by potentials.

$$
\widetilde{V}(\mathbf{q})=-C_{C}\left(\alpha_{S}\right) \frac{4 \pi C_{F} \alpha_{S}}{\mathbf{q}^{2}}-C_{1 / m}\left(\alpha_{S}\right) \frac{2 \pi^{2} C_{F} \alpha_{S}^{2}}{m_{t}|\mathbf{q}|}
$$

- Coulomb potential
- $1 / r^{2}$ potential

The potentials in PNRQCD

In PNRQCD the $t \bar{t}$ interactions are described by potentials.

$$
\begin{aligned}
& \widetilde{V}(\mathbf{q})=-C_{C}\left(\alpha_{S}\right) \frac{4 \pi C_{F} \alpha_{S}}{\mathbf{q}^{2}}-C_{1 / m}\left(\alpha_{S}\right) \frac{2 \pi^{2} C_{F} \alpha_{S}^{2}}{m_{t}|\mathbf{q}|} \\
& \quad+\left[C_{\delta}\left(\alpha_{S}\right)+C_{S}\left(\alpha_{S}\right)\right] \frac{\pi C_{F} \alpha_{S}}{m_{t}^{2}}
\end{aligned}
$$

- Coulomb potential
- $1 / r^{2}$ potential
- Delta potential
- Spin dependent part

The potentials in PNRQCD

In PNRQCD the $t \bar{t}$ interactions are described by potentials.

$$
\begin{aligned}
& \widetilde{V}(\mathbf{q})=-C_{C}\left(\alpha_{S}\right) \frac{4 \pi C_{F} \alpha_{S}}{\mathbf{q}^{2}}-C_{1 / m}\left(\alpha_{S}\right) \frac{2 \pi^{2} C_{F} \alpha_{S}^{2}}{m_{t}|\mathbf{q}|} \\
&+\left[C_{\delta}\left(\alpha_{S}\right)+C_{S}\left(\alpha_{S}\right)\right] \frac{\pi C_{F} \alpha_{S}}{m_{t}^{2}}+C_{p}\left(\alpha_{S}\right) \frac{C_{F} \alpha_{S} \mathbf{p}^{2}}{m_{t}^{2} \mathbf{q}^{2}}
\end{aligned}
$$

- Coulomb potential
- $1 / r^{2}$ potential
- Delta potential
- Spin dependent part
- p^{2} / q^{2} potential

The potentials in PNRQCD

In PNRQCD the $t \bar{t}$ interactions are described by potentials.

$$
\begin{aligned}
& \widetilde{V}(\mathbf{q})=-C_{C}\left(\alpha_{S}\right) \frac{4 \pi C_{F} \alpha_{S}}{\mathbf{q}^{2}}-C_{1 / m}\left(\alpha_{S}\right) \frac{2 \pi^{2} C_{F} \alpha_{S}^{2}}{m_{t}|\mathbf{q}|} \\
&+\left[C_{\delta}\left(\alpha_{S}\right)+C_{S}\left(\alpha_{S}\right)\right] \frac{\pi C_{F} \alpha_{S}}{m_{t}^{2}}+C_{p}\left(\alpha_{S}\right) \frac{C_{F} \alpha_{S} \mathbf{p}^{2}}{m_{t}^{2} \mathbf{q}^{2}}
\end{aligned}
$$

- Coulomb potential
- $1 / r^{2}$ potential
- Delta potential
- Spin dependent part
- p^{2} / q^{2} potential
- Kinetic correction

Perturbation Theory

Calculation of the Green function in perturbation theory:

Perturbation Theory

Calculation of the Green function in perturbation theory:

- Perturbative treatment of the potentials:

Perturbation Theory

Calculation of the Green function in perturbation theory:

- Perturbative treatment of the potentials:

$$
\begin{aligned}
\delta V= & \delta V_{1}+\delta V_{2}+\delta V_{3}+\ldots \\
\hat{G}= & \hat{G}_{0}-\hat{G}_{0} \delta V_{1} \hat{G}_{0}-\hat{G}_{0} \delta V_{2} \hat{G}_{0}+\hat{G}_{0} \delta V_{1} \hat{G}_{0} \delta V_{1} \hat{G}_{0} \\
& -\hat{G}_{0} \delta V_{3} \hat{G}_{0}+2 \hat{G}_{0} \delta V_{1} \hat{G}_{0} \delta V_{2} \hat{G}_{0}-\hat{G}_{0} \delta V_{1} \hat{G}_{0} \delta V_{1} \hat{G}_{0} \delta V_{1} \hat{G}_{0}+\ldots
\end{aligned}
$$

Perturbation Theory

Calculation of the Green function in perturbation theory:

- Perturbative treatment of the potentials:

$$
\begin{aligned}
\delta V= & \delta V_{1}+\delta V_{2}+\delta V_{3}+\ldots \\
\hat{G}= & \hat{G}_{0}-\hat{G}_{0} \delta V_{1} \hat{G}_{0}-\hat{G}_{0} \delta V_{2} \hat{G}_{0}+\hat{G}_{0} \delta V_{1} \hat{G}_{0} \delta V_{1} \hat{G}_{0} \\
& -\hat{G}_{0} \delta V_{3} \hat{G}_{0}+2 \hat{G}_{0} \delta V_{1} \hat{G}_{0} \delta V_{2} \hat{G}_{0}-\hat{G}_{0} \delta V_{1} \hat{G}_{0} \delta V_{1} \hat{G}_{0} \delta V_{1} \hat{G}_{0}+\ldots
\end{aligned}
$$

- Coulomb corrections completed [M.Beneke,Y.Kiyo,K.S. '05].

Perturbation Theory

Calculation of the Green function in perturbation theory:

- Perturbative treatment of the potentials:

$$
\begin{aligned}
\delta V= & \delta V_{1}+\delta V_{2}+\delta V_{3}+\ldots \\
\hat{G}= & \hat{G}_{0}-\hat{G}_{0} \delta V_{1} \hat{G}_{0}-\hat{G}_{0} \delta V_{2} \hat{G}_{0}+\hat{G}_{0} \delta V_{1} \hat{G}_{0} \delta V_{1} \hat{G}_{0} \\
& -\hat{G}_{0} \delta V_{3} \hat{G}_{0}+2 \hat{G}_{0} \delta V_{1} \hat{G}_{0} \delta V_{2} \hat{G}_{0}-\hat{G}_{0} \delta V_{1} \hat{G}_{0} \delta V_{1} \hat{G}_{0} \delta V_{1} \hat{G}_{0}+\ldots
\end{aligned}
$$

- Coulomb corrections completed [M.Beneke,Y.Kiyo,K.S. '05].
- Single insertions of 3rd order Non-Coulomb-Potentials.

Perturbation Theory

Calculation of the Green function in perturbation theory:

- Perturbative treatment of the potentials:

$$
\begin{aligned}
\delta V= & \delta V_{1}+\delta V_{2}+\delta V_{3}+\ldots \\
\hat{G}= & \hat{G}_{0}-\hat{G}_{0} \delta V_{1} \hat{G}_{0}-\hat{G}_{0} \delta V_{2} \hat{G}_{0}+\hat{G}_{0} \delta V_{1} \hat{G}_{0} \delta V_{1} \hat{G}_{0} \\
& -\hat{G}_{0} \delta V_{3} \hat{G}_{0}+2 \hat{G}_{0} \delta V_{1} \hat{G}_{0} \delta V_{2} \hat{G}_{0}-\hat{G}_{0} \delta V_{1} \hat{G}_{0} \delta V_{1} \hat{G}_{0} \delta V_{1} \hat{G}_{0}+\ldots
\end{aligned}
$$

- Coulomb corrections completed [M.Beneke,Y.Kiyo,K.S. '05].
- Single insertions of 3rd order Non-Coulomb-Potentials.
- Double insertions of 2nd order Non-Coulomb-Potentials and 1st order Coulomb-Potential.

Singularities

Problems with the treatment of the Delta and $1 / r^{2}$-Potentials:

Singularities

Problems with the treatment of the Delta and $1 / r^{2}$-Potentials:

- Insertion of the potentials creates divergencies.

$\star\left(\frac{1}{\epsilon} \operatorname{Im}\left(G_{C}\right)+\ldots\right)$

Singularities

Problems with the treatment of the Delta and $1 / r^{2}$-Potentials:

- Insertion of the potentials creates divergencies.
- Other divergencies coming from hard vertex corrections.

$$
\star\left(\frac{1}{\epsilon} \operatorname{lm}\left(G_{C}\right)+\ldots\right) \quad+\star\left(-\frac{1}{\epsilon}+\ldots\right) \operatorname{Im}\left(G_{C}\right)
$$

Singularities

Problems with the treatment of the Delta and $1 / r^{2}$-Potentials:

- Insertion of the potentials creates divergencies.
- Other divergencies coming from hard vertex corrections.
- Final result is finite.

$$
\star\left(\frac{1}{\epsilon} \operatorname{Im}\left(G_{C}\right)+\ldots\right)+\star\left(-\frac{1}{\epsilon}+\ldots\right) \operatorname{Im}\left(G_{C}\right) \quad=\text { finite }
$$

Singularities

Problems with the treatment of the Delta and $1 / r^{2}$-Potentials:

- Insertion of the potentials creates divergencies.
- Other divergencies coming from hard vertex corrections.
- Final result is finite.
- We need order ϵ-correction to the potentials.

$$
\star\left(\frac{1}{\epsilon} \operatorname{Im}\left(G_{C}\right)+\ldots\right)+\star\left(-\frac{1}{\epsilon}+\ldots\right) \operatorname{Im}\left(G_{C}\right) \quad=\text { finite }
$$

Example: Insertion of $1 / r^{2}$-potential

 Strategy:
Example: Insertion of $1 / r^{2}$-potential

Strategy:

- Identify the divergent structure.

Example: Insertion of $1 / r^{2}$-potential

Strategy:

- Identify the divergent structure.
- Divide the potential insertion into diagrams with the different divergent structures.

Example: Insertion of $1 / r^{2}$-potential

Strategy:

- Identify the divergent structure.
- Divide the potential insertion into diagrams with the different divergent structures.

Calculated by Feynman parameters and IBP relations.

Example: Insertion of $1 / r^{2}$-potential

Strategy:

- Identify the divergent structure.
- Divide the potential insertion into diagrams with the different divergent structures.

Calculated by Feynman parameters and IBP relations.

Origami diagram has to be expanded in ϵ, the second one is finite and can be done in 4 dimensions.

Example: Insertion of $1 / r^{2}$-potential (Origami diagram)

Example: Insertion of $1 / r^{2}$-potential (Origami diagram)

$$
=\int \prod_{i=1}^{4} \frac{d^{d-1} \mathbf{p}_{i}}{(2 \pi)^{d-1}} \tilde{G}_{C}^{(\overline{1})}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right) \frac{1}{\left[\left(\mathbf{p}_{2}-\mathbf{p}_{3}\right)^{2}\right]^{\frac{1}{2}+\epsilon}} \frac{(2 \pi)^{d-1} \delta^{(d-1)}\left(\mathbf{p}_{3}-\mathbf{p}_{4}\right)}{\mathbf{p}_{4}^{2} / m-E}
$$

Example: Insertion of $1 / r^{2}$-potential (Origami diagram)

$$
=\int \prod_{i=1}^{4} \frac{d^{d-1} \mathbf{p}_{i}}{(2 \pi)^{d-1}} \tilde{G}_{C}^{(\overline{1})}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right) \frac{1}{\left[\left(\mathbf{p}_{2}-\mathbf{p}_{3}\right)^{2}\right]^{\frac{1}{2}+\epsilon}} \frac{(2 \pi)^{d-1} \delta^{(d-1)}\left(\mathbf{p}_{3}-\mathbf{p}_{4}\right)}{\mathbf{p}_{4}^{2} / m-E}
$$

- Identify source of singularity.

Example: Insertion of $1 / r^{2}$-potential (Origami diagram)

$$
=\int \prod_{i=1}^{4} \frac{d^{d-1} \mathbf{p}_{i}}{(2 \pi)^{d-1}} \tilde{G}_{C}^{(\overline{1})}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right) \frac{1}{\left[\left(\mathbf{p}_{2}-\mathbf{p}_{3}\right)^{2}\right]^{\frac{1}{2}+\epsilon}} \frac{(2 \pi)^{d-1} \delta^{(d-1)}\left(\mathbf{p}_{3}-\mathbf{p}_{4}\right)}{\mathbf{p}_{4}^{2} / m-E}
$$

- Identify source of singularity.
- Calculate divergent subdiagram in DR and expand in ϵ.

Example: Insertion of $1 / r^{2}$-potential (Origami diagram)

$$
\begin{aligned}
& =\int \prod_{i=1}^{4} \frac{d^{d-1} \mathbf{p}_{i}}{(2 \pi)^{d-1}} \tilde{G}_{C}^{(\overline{1})}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right) \frac{1}{\left[\left(\mathbf{p}_{2}-\mathbf{p}_{3}\right)^{2}\right]^{\frac{1}{2}+\epsilon}} \frac{(2 \pi)^{d-1} \delta^{(d-1)}\left(\mathbf{p}_{3}-\mathbf{p}_{4}\right)}{\mathbf{p}_{4}^{2} / m-E} \\
& =\int \prod_{i=1}^{2} \frac{d^{d-1} \mathbf{p}_{i}}{(2 \pi)^{d-1}} \tilde{G}_{C}^{(\overline{1})}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)\left[\frac{1}{\epsilon}+F^{0}\left(\mathbf{p}_{2}\right)+F^{1}\left(\mathbf{p}_{2}\right) \epsilon+\ldots\right]
\end{aligned}
$$

- Identify source of singularity.
- Calculate divergent subdiagram in DR and expand in ϵ.

Example: Insertion of $1 / r^{2}$-potential (Origami diagram)

$$
\begin{aligned}
& =\int \prod_{i=1}^{4} \frac{d^{d-1} \mathbf{p}_{i}}{(2 \pi)^{d-1}} \tilde{G}_{C}^{(\overline{1})}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right) \frac{1}{\left[\left(\mathbf{p}_{2}-\mathbf{p}_{3}\right)^{2}\right]^{\frac{1}{2}+\epsilon}} \frac{(2 \pi)^{d-1} \delta^{(d-1)}\left(\mathbf{p}_{3}-\mathbf{p}_{4}\right)}{\mathbf{p}_{4}^{2} / m-E} \\
& =\int \prod_{i=1}^{2} \frac{d^{4-1} \mathbf{p}_{i}}{(2 \pi)^{4-1}} \tilde{G}_{C}^{(\overline{1})}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)\left[\frac{1}{\epsilon}+F^{0}\left(\mathbf{p}_{2}\right)+F^{1}\left(\mathbf{p}_{2}\right) \epsilon+\ldots\right]
\end{aligned}
$$

- Identify source of singularity.
- Calculate divergent subdiagram in DR and expand in ϵ.
- Calculate the remaining parts in 4 dimensions.

Extracting Energy Levels and Wave Functions

- One can get energy levels and wave functions from the $E \rightarrow E_{0}$ poles of the Green function.

Extracting Energy Levels and Wave Functions

- One can get energy levels and wave functions from the $E \rightarrow E_{0}$ poles of the Green function.
- Comparison of expanded perturbatively calculated Green function with

$$
\frac{\left|\phi_{n}(0)\right|^{2}\left(1+\alpha_{S} f_{1}+\alpha_{S}^{2} f_{2}+\alpha_{S}^{3} f_{3}\right)}{E_{0}\left(1+\alpha_{S} e_{1}+\alpha_{S}^{2} e_{2}+\alpha_{S}^{3} e_{3}\right)-\left(E+i \Gamma_{t}\right)}
$$

expanded around the same pole gives the corrections.

Corrections to the cross section

$$
R=\frac{\sigma_{t \bar{t} X}}{\sigma_{\mu^{+} \mu^{-}}}=\frac{18 \pi e_{t}^{2}}{m_{t}^{2}}(1+a z) \operatorname{Im} G\left(0,0 ; E+i \Gamma_{t}\right)
$$

Coulomb part:

Corrections to the cross section

$$
R=\frac{\sigma_{t \bar{t} X}}{\sigma_{\mu^{+} \mu^{-}}}=\frac{18 \pi e_{t}^{2}}{m_{t}^{2}}\left(1+a_{Z}\right) \operatorname{Im} G\left(0,0 ; E+i \Gamma_{t}\right) .
$$

Coulomb part:

Corrections to the cross section

$$
R=\frac{\sigma_{t \bar{t} X}}{\sigma_{\mu^{+} \mu^{-}}}=\frac{18 \pi e_{t}^{2}}{m_{t}^{2}}\left(1+a_{Z}\right) \operatorname{Im} G\left(0,0 ; E+i \Gamma_{t}\right) .
$$

Coulomb part:

Corrections to the cross section

$$
R=\frac{\sigma_{t \bar{t} X}}{\sigma_{\mu^{+} \mu^{-}}}=\frac{18 \pi e_{t}^{2}}{m_{t}^{2}}(1+a z) \operatorname{Im} G\left(0,0 ; E+i \Gamma_{t}\right)
$$

Coulomb part:

Corrections to the cross section

$$
R=\frac{\sigma_{t \bar{t} X}}{\sigma_{\mu^{+} \mu^{-}}}=\frac{18 \pi e_{t}^{2}}{m_{t}^{2}}\left(1+a_{z}\right) \operatorname{Im} G\left(0,0 ; E+i \Gamma_{t}\right)
$$

Coulomb part:

Corrections to the Toponium Energy Levels

- Coulomb corrections for arbitrary quantum number n have been calculated [M.Beneke,Y.Kiyo,K.S. '05].

Corrections to the Toponium Energy Levels

- Coulomb corrections for arbitrary quantum number n have been calculated [M.Beneke,Y.Kiyo,K.S. '05].
- Non-Coulomb corrections have been calculated [A.Penin, V.A.Smirnov,M.Steinhauser '05].

Corrections to the Toponium Energy Levels

- Coulomb corrections for arbitrary quantum number n have been calculated [M.Beneke,Y.Kiyo,K.S. '05].
- Non-Coulomb corrections have been calculated [A.Penin,V.A.Smirnov,M.Steinhauser '05].
- Corrections to the toponium 1S mass (ground state):

Corrections to the Toponium Energy Levels

- Coulomb corrections for arbitrary quantum number n have been calculated [M.Beneke,Y.Kiyo,K.S. '05].
- Non-Coulomb corrections have been calculated [A.Penin, V.A.Smirnov,M.Steinhauser '05].
- Corrections to the toponium 1S mass (ground state):

$$
M_{t \bar{t}(1 S)}=\left(350+0.85_{L O}+0.05_{N L O}-0.13_{N^{2} L O} 0.01 \mathrm{NLLCV}\right.
$$

Corrections to the Toponium Energy Levels

- Coulomb corrections for arbitrary quantum number n have been calculated [M.Beneke,Y.Kiyo,K.S. '05].
- Non-Coulomb corrections have been calculated [A.Penin,V.A.Smirnov,M.Steinhauser '05].
- Corrections to the toponium 1S mass (ground state):

$$
M_{t \bar{t}(1 S)}=\left(350+0.85_{L O}+0.05_{N L O}-0.13_{N^{2} L O}+0.01_{N^{3} L O}\right) G e V
$$

Corrections to the Toponium Energy Levels

- Coulomb corrections for arbitrary quantum number n have been calculated [M.Beneke,Y.Kiyo,K.S. '05].
- Non-Coulomb corrections have been calculated [A.Penin,V.A.Smirnov,M.Steinhauser '05].
- Corrections to the toponium 1S mass (ground state):

$$
\begin{aligned}
M_{t \bar{t}(1 S)} & =\left(350+0.85_{L O}+0.05_{N L O}-0.13_{N^{2} L O}+0.01_{N^{3} L O}\right) \mathrm{GeV} \\
& =350.78 \mathrm{GeV}
\end{aligned}
$$

Corrections to the Toponium Wave Function

- Coulomb corrections for arbitrary quantum number n are known. [M.Beneke,Y.Kiyo,K.S. '05]

Corrections to the Toponium Wave Function

- Coulomb corrections for arbitrary quantum number n are known. [M.Beneke,Y.Kiyo,K.S. '05]
- Non-Coulomb corrections almost finished.

Corrections to the Toponium Wave Function

- Coulomb corrections for arbitrary quantum number n are known. [M.Beneke,Y.Kiyo,K.S. '05]
- Non-Coulomb corrections almost finished.

Corrections to the Toponium Wave Function

- Coulomb corrections for arbitrary quantum number n are known. [M.Beneke,Y.Kiyo,K.S. '05]
- Non-Coulomb corrections almost finished.

Corrections to the Toponium Wave Function

- Coulomb corrections for arbitrary quantum number n are known. [M.Beneke,Y.Kiyo,K.S. '05]
- Non-Coulomb corrections almost finished.

Corrections to the Toponium Wave Function

- Coulomb corrections for arbitrary quantum number n are known. [M.Beneke,Y.Kiyo,K.S. '05]
- Non-Coulomb corrections almost finished.

Status and Outlook

- Some order ϵ corrections to the potential are not yet known.

Status and Outlook

- Some order ϵ corrections to the potential are not yet known.
- Potential insertions almost completed.

Status and Outlook

- Some order ϵ corrections to the potential are not yet known.
- Potential insertions almost completed.
- Calculation of the ultrasoft corrections is in progress.

Status and Outlook

- Some order ϵ corrections to the potential are not yet known.
- Potential insertions almost completed.
- Calculation of the ultrasoft corrections is in progress.
- EW corrections related to top decay [A.Hoang, C.Reisser '04,'06]

Status and Outlook

- Some order ϵ corrections to the potential are not yet known.
- Potential insertions almost completed.
- Calculation of the ultrasoft corrections is in progress.
- EW corrections related to top decay [A.Hoang, C.Reisser '04,'06]
- Non-inclusive quantities (cuts, distributions, asymmetries)

