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1. Introduction

QCD running coupling at the 2-loop order in MS-like (massless) renor-

malization schemes can be solved explicitly as a function of the scale

in terms of the Lambert W function.
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The Lambert W function is the multivalued solution of

Wk(z) exp{Wk(z)} = z, (1)



the branches of W are denoted Wk(z), k = 0,±1, . . . For a real positive

Q2 (Q2 = −q2 = −(q0)2 + ~q2, Q2 > 0 and Q2 > Q2
L. the 2-loop

coupling takes the form

α
(2)
s (Q2, nf) =

{
−(β0/β1)(1 + W−1(zQ))−1, if 0 ≤ nf ≤ 8
−(β0/β1)(1 + W0(zQ))−1, if 9 ≤ nf ≤ 16

(2)

where

zQ = −(eb1)
−1(Q2/Λ2)−1/b1,

β0 and β1 are the first two β-function coefficients, b1 = β1/β2
0 and

Λ ≡ ΛMS is the conventional MS scheme QCD parameter.

The solution to RGE, at the three-loop order, with Padé transformed

beta-function

βPadé = −β0α2
s

1 +
β1αs

β0 − β0β2
β1

αs

 ,



has the form

α
(3)
Padé(Q

2, f) = −
β0

β1

1

1− β0β2/β1
2 + W−1(ξ)

:

ξ = −
1

eb1
exp

(
β0β2

β1
2

)(
Q2

Λ2

)− 1
b1

.

The running coupling in higher order (k ≥ 3) in arbitrary MS-like

renormalization scheme was expanded as

α
(k)
s (Q2) =

∞∑
n=1

c
(k)
n α

(2)n
s (Q2). (3)
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■ Main ingradients of the APT of Shirkov and Solovtsov:

Adler D-function related to some timelike process in PT:

Dpt(Q
2) = D0(1 +

∞∑
n=1

dnαn
s (Q

2)),

the corresponding APT image is given by non-power expansion:

Dan(Q
2) = D0(1 +

∞∑
n=1

dnAn(Q
2))

The physical quantity R(s) determined through D(Q2) in the timelike

domain in APT has the representation

R(s) = R0(1 + r(s)) r(s) =
∞∑

n=1

dnAn(s, f).

The functions An are defined through the transformation

An(s) = −
1

2πı

∫ s+ıε

s−ıε

dz

z
An(−z),



An(Q
2) =

1

π

∫ ∞
0

ρn(σ, f)

σ + Q2
, An(s) =

1

π

∫ ∞
s

dσ

σ
ρn(σ)dσ

where the spectral function:

ρn(σ) = ={αs(−σ − ı0)}n

■ The spectral functions are to be calculated in perturbation theory.

The analytical structure of the coupling must be determined in the

complex momentum plane.



The talk is organized as follows:

1. I shall discuss the singularity structure of the MS coupling in

higher orders in the complex Q2 plane,

2. I shall give the proof of the convergence of the series

α
(k)
s (Q2) =

∞∑
n=1

c
(k)
n α

(2)n
s (Q2).

in the MS scheme to all orders in perturbation theory.

3. The radii of convergence of series at 3- and 4-loops as a function

of nf .

4. Applications of the series in the Shirkov-Solovtsov Analytic Per-

turbation Theory approach.



2. The Analytic Structure of the Coupling to
Higher Orders

The RG equation, to the kth order:

dαs(Q2)

d lnQ2
= β(k)(αs(Q

2)) = −
k−1∑
n=0

βn{αs(Q
2)}n+2. (4)

αs(µ
2) = g2/(4π),

The results for the coefficients βk in the MS scheme are known up

to 4-loops. With a new variable:

u = Q2/Λ2

and a modified running coupling,

as(u) = β0αs(Q
2)



the RGE equation:

u
das(u)

du
= β̄(k)(as(u)) = −

k−1∑
n=0

bnan+2
s (u) (5)

where β̄(k)(as) = β0β(k)(as/β0) and bn = βn/βn+1
0 . at the singularity

a
(k)
s (u) ≈ (u(k)

L /(u− u
(k)
L ))1/k as u → u

(k)
L .

Let us integrate the RGE

t = T (k)(a) (6)

where t = ln(u).

t = 1/a− b1 ln(b1 + 1/a) +
∫ a

0
g(k)(a′)da′ : (7)

g(k)(a) = 1/β̄(k)(a)− 1/β̄(2)(a),

where β̄(2)(a) is the 2-loop β̄-function.

The function T (k)(a) can be expressed in terms of the elementary



functions. In the 3-loop case, we find

T (3)(a) = 1/a + b1 ln(a)− 0.5b1 ln(b2a2 + b1a +1)+ T̃
(3)
1 (a)− T̃

(3)
1 (0),

(8)

where

T̃
(3)
1 (a) =



2b2 − b21√
∆(3)

arctan

b1 + 2b2a√
∆(3)

 if 0 ≤ nf ≤ 5

2b2 − b21

2
√
−∆(3)

ln

(
a− a1

a2 − a

)
if 6 ≤ nf ≤ 16,

(9)

here ∆(3) = 4b2 − b21, and a1,2 = (−b1 ±
√
−∆(3))/(2b2). In the MS

scheme ∆(3) > 0 (< 0) if 0 ≤ nf ≤ 5 (6 ≤ nf ≤ 16) (see tables 1 and

2).



In the 4-loop case, we find

T (4)(a) = 1/a + b1 ln(a)− b−1
3

3∑
i=1

Ei ln(a− ai) + t̃0 (10)

where ai (i=1..3) denote roots of the algebraic equation, for k = 4,

β̄(k)(a)/a2 = −
k−1∑
n=0

bnan = 0, (11)

and

Ei = {a2
i (ai − aj)(ai − ak)}−1, i 6= j 6= k

where (i, j, k) is a cyclic permutation of (1,2,3). we may rewrite

equation (10), for 0 ≤ nf ≤ 7, as

t = 1/a + b1 ln(a) + T
(4)
1 (a)− T

(4)
1 (0), (12)



where T
(4)
1 (a) is a regular at zero function

T
(4)
1 (a) = b−1

3 {E1 ln(a− a1)−Re(E2) ln[(a− a2)(a− a3)]

−2Im(E2) arctan [(a−Rea2)|Ima2|−1]
}

. (13)

In the 4-loop case for 8 ≤ nf ≤ 16, may now be rewritten, for 8 ≤
nf ≤ 16,

t = 1/a + b1 ln(a)− b−1
3

3∑
i=1

Ei ln(a−1
i (ai − a)), (14)

We have first to discuss the analytical properties of the inverse func-

tion t = T (k)(a) in the complex coupling plane.

For 0 < nf ≤ 5 at 3-loops and 0 < nf ≤ 7 at 4-loops the cuts are



chosen as

{a : Im(a3) < Im(a) < ∞,Re(a) = Re(a3)}

{a : −∞ < Im(a) < Im(a2),Re(a) = Re(a2)}

Consider now the cases with real roots (6 < nf ≤ 16 at 3-loops

7 < nf ≤ 16 at 4-loops). Let a1 be the negative root, and a2 be the

positive one (in the 4-loop case a2 is the smallest positive root). The

branch cuts then can be chosen along the real intervals

{a : −∞ < a < 0} and {a : a2 < a < ∞}



6

-

a3

a2

a1 xx
x

x

Im(a)

Re(a)

0 < nf ≤ 7(a)

6

x x xx

Im(a)

Re(a)

8 ≤ nf ≤ 16

a1 a2 a3

(b)



Evidently, the singular points are determined by the limiting values

of the function T (k)(a) as a tends to infinity. The 3-loops case for

6 ≤ nf ≤ 16

t
(3)
± (nf) = −0.5b1 ln |b2|+

b2−0.5b21√
−∆(3)

ln |a2/a1| ± ı

(
0.5b1 +

b2−0.5b21√
−∆(3)

)
π.

6 ≤ nf ≤ 16

In the 4-loop case for 8 ≤ nf ≤ 16:

t
(4)
± (nf) = b−1

3

3∑
k=1

Ek ln |ak| ± ı(E2 + E3)π. (15)

It is important to determine whether or not the singular points t
(k)
± (nf)

are located inside the strip −π < Im(t) ≤ π.



1) If the points lie inside the strip, then the unphysical Landau sin-

gularities appear in the first sheet. Then perturbation theory is in-

complete: This case corresponds to real-world QCD, where nf ≤ 6.

2) In the second case, the singular points may arise beyond the strip.

So that there are not real or complex singularities on the first sheet

of the momentum squared variable, and thus perturbation theory is

consistent with causality.

The value of nf above which the causal analytical structure of the

coupling is restored can be found from the equation

Im{t(k)(n?
f )} = ±π. (16)

We find

n
∗(2)
f ≈ 9.68, n

∗(3)
f ≈ 8.460 n

∗(4)
f ≈ 8.455



Note that for nf > n∗f the β-function has a positive infrared stable

fixed point.
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■ Conformal window in QCD:

[11] Miransky V A 1999 Phys. Rev.59 105003

[12] Appelquist T, Ratnaweera A, Terning J and Wijewardhana L C

R 1998 Phys. Rev. D58 105017

Non-perturbative studies show that there is a phase transition in QCD

with respect to nf inside the range 0 ≤ nf ≤ 16:

For small values of nf below the critical point (nf < Ncr
f < 16) the

theory is defined via the confining phase. Above this point, there

is a conformal window Ncr
f < nf ≤ 16, where the theory is defined

via the non-Abelian Coulomb phase with no color confinement and



dynamical chiral symmetry breaking.

■ Oehme-Zimmermann criterion for the gluon confinement, the su-

perconvergence rule for the transverse gluon propagator, determines

Ncr
f

[11] R. Oehme and W. Zimmerman, Phys. Rev. D21 (1980) 471;

Ncr
f = 13Nc/4(= 9.75 Nc = 3 colours)

Other possibility is to apply arguments of dynamical chiral symmetry

breaking

[12] Miransky V A 1999 Phys. Rev.59 105003

[13] Appelquist T, Ratnaweera A, Terning J and Wijewardhana L C
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This gives slightly higher value

Ncr
f ≈ 4Nc.



It has been confirmed that the perturbative running coupling beyond

the 1-loop approximation always is causal inside the conformal win-

dow, i.e.

n∗f < Ncr
f .

This condition is scheme independent.

[14] E. Gardi and M. Karliner, Nucl. Phys.B529 (1,2) (1998) 383-

423.

Consider now the cases where the β-function has complex roots. In

the MS scheme this takes place at 3-loops if

0 ≤ nf ≤ 5 at 3− loops

0 ≤ nf ≤ 7 at 4− loops.



Using the methods of complex analysis we find real singularities

t
(3)
rhp.(nf) = −0.5b1 ln(b2) +

2b2 − b21√
∆(3)

π

2
− arctan

 b1√
∆(3)


 , (17)

t
(4)
rhp.(nf) = b−1

3

(
−2Im(E2)

(
0.5π + arctan

(
Rea2

|Ima2|

))
+E1 ln |a1|+ 2Re(E2) ln |a2|) , (18)

as well as complex singularities

t
(3)
lhp.±(nf) = t

(3)
rhp.(nf)− π(2b2 − b21)/

√
∆(3) ± ıπb1, (19)

t
(4)
lhp.±(nf) = t

(4)
rhp.(nf) + 2πIm(E2)/b3 ± ıπ(b1 − E1/b3). (20)

singularities always present in the first sheet of the Q2-plane.



nf a1 = ā2 t
(3)
rhp. t

(3)
lhp.±

0 −0.39 + 0.88ı 0.84 −1.54± 2.65ı
1 −0.40 + 0.89ı 0.84 −1.51± 2.63ı
2 −0.42 + 0.92ı 0.83 −1.43± 2.58ı
3 −0.45 + 0.97ı 0.81 −1.29± 2.48ı
4 −0.53 + 1.07ı 0.77 −1.03± 2.32ı
5 −0.82 + 1.35ı 0.65 −0.42± 2.07ı

nf a1 a2 t
(3)
±

6 -1.49 7.09 0.17∓ 0.08ı
7 -0.88 1.24 −0.16∓ 1.05ı
8 -0.65 0.66 −0.02∓ 2.36ı
9 -0.51 0.41 0.62∓ 4.26ı
10 -0.40 0.26 2.17∓ 7.21ı
12 -0.25 0.1 13.6∓ 21.3ı
14 -0.12 0.03 98∓ 90ı
16 -0.02 0.001 6216∓ 2852ı



nf a1 a2 = ā3 t
(4)
rhp. t

(4)
lhp.±

0 -0.80 0.13− 0.78ı 1.16 −1.29± 0.96ı
1 -0.79 0.13− 0.78ı 1.16 −1.28± 0.93ı
2 -0.79 0.14− 0.79ı 1.16 −1.26± 0.87ı
3 -0.80 0.16− 0.81ı 1.15 −1.20± 0.77ı
4 -0.80 0.19− 0.84ı 1.11 −1.10± 0.59ı
5 -0.81 0.26− 0.91ı 1.04 −0.94± 0.29ı
6 -0.79 0.44− 1.01ı 0.82 −0.71∓ 0.22ı
7 -0.74 1.12− 0.97ı -0.05 −0.42.∓ 1.07ı

nf a1 a2 a3 t
(4)
±

8 -0.62 0.70 6.48 −0.09∓ 2.37ı
9 -0.48 0.43 4.81 0.52∓ 4.29ı
10 -0.36 0.28 1.94 1.95∓ 7.32ı
12 -0.19 0.11 0.55 13∓ 22ı
14 -0.09 0.03 0.20 98∓ 92ı
16 -0.01 0.001 0.03 6219∓ 2858ı



3. The Proof of the Convergence of the series

Inserting the series

α
(k)
s (Q2) =

∞∑
n=1

c
(k)
n α

(2)n
s (Q2). (21)

into the RG equation (4), we recursively determine the coefficients

{c(k)n }∞n=3 in terms of c2 (c1 = 1) and the β-function coefficients. We

have that: c
(k)
2 = 0. Let us change the variable according to

Q2 → θ = β0α
(2)
s (Q2)

and consider the new function

w(θ) ≡ w(k)(θ) = α
(k)
s (Q2)/α

(2)
s (Q2)− 1.

The RG equation (4) may be rewritten as

θ
dw

dθ
= f(k)(θ, w), (22)



where

f(k)(θ, w) =
(w + 1)2

1 + b1θ

k−1∑
n=0

bnθn(1 + w)n − (w + 1), (23)

and bn = βn/βn+1
0 . The function of two variables f(k)(w, θ) has the

Taylor expansion

f(k)(w, θ) =
∞∑

m,n=0

η
(k)
m,nwmθn, (24)

with η
(k)
0,0 = 0, η

(k)
1,0 = 1 and η

(k)
0,1 = 0. In the 4-loop case, the expansion

is

f(4)(w, θ) = w + b1θw + b2θ2 + w2 + (b3 − b1b2)θ
3 + . . . (25)

With the initial condition

w(0) = 0,

this equation has a singularity: for θ = 0 and w = 0 the ratio



f(k)(θ, w)/θ is undefined. Nevertheless, in the special case where

η
(k)
0,0 = 0, η

(k)
1,0 = 1 η

(k)
0,1 = 0

an analytic solution satisfying the initial condition w(0) = 0 may be

found. The expansion (24) converges in the domain D = {0 < |w| <

r1,0 < |θ| < r2}, where r1 and r2 are some positive numbers chosen

in the range {r1, r2 : r1 < ∞, r2 < 1/|b1|}. It follows then from the

classical theory that there exists a positive number M(k) such that

|f(k)(w, θ)| ≤ M(k) for (w, θ) ⊂ D, and the coefficients η
(k)
m,n satisfy the

inequalities

|η(k)
m,n| ≤ ξ

(k)
m,n, where ξ

(k)
m,n = M(k)r−m

1 r−n
2 . (26)



Under these conditions, we may show that there exists a regular

solution to equation (22)

w(θ) ≡ w(k)(θ) =
∞∑

n=2

c̄
(k)
n θn, (27)

where c̄
(k)
n = β−n

0 c
(k)
n+1, with c

(k)
n being the coefficients in the original

series (21).

Consider now the auxilary function w̃ = w̃(θ) satisfying the equation

w̃ = f
(k)
1 (w̃, θ) ≡

M(k)

(1− w̃/r1)(1− θ/r2)
−M(k)

(
1 +

w̃

r1
+

θ

r2

)
, (28)

it has the Taylor expansion

f
(k)
1 (w̃, θ) =

∑
m=0,n=0

ξ
(k)
m,nw̃mθn, (29)



with the coefficients ξ
(k)
m,n defined in (26). Equation (28) has a series

solution

w̃(θ) ≡ w̃(k)(θ) =
∞∑

n=2

γ
(k)
n θn. (30)

Considering the recurrence formulas for the coefficients for c̄
(k)
n and

γ
(k)
n one may derive

|c̄(k)n | < γ
(k)
n for n = 2,3 . . .

So that the original series converges.



4 Determination of the Radius of Convergence
of the Series

By a change of variable Q2 → θ = a
(2)
s (u) (u = (Q/Λ)2) equation (5)

can be rewritten

da

dθ
=

∑k−1
n=0 bnan+2

θ2 + b1θ3
, (31)

where a=A(k)(θ) = a
(k)
s (u) = β0α

(k)
s (Q2). In the preceding section,

we have shown that the series (27) or equivalently the series

a = A(θ) =
∞∑

n=1

c̃nθn, (c̃n = β−n+1
0 cn) (32)

has a positive convergence radius. It is possible then to define the

inverse function θ = Θ(a), which can be expanded in powers of a

Θ(a) =
∞∑

n=1

dnan. (33)



The series (33) is also convergent. Under this condition, we may

apply the classical method for estimating the convergence radius of

series

There are two possible cases to be considered. First, suppose that

θ0 be a finite singularity of A(θ),

θ0 = Θ(a0),
dΘ(a)

da

∣∣∣∣∣
a=a0

= 0. (34)

Using (31) at θ = θ0, we may rewrite (34) in the form

dθ

da

∣∣∣∣
a=a0

=
θ2
0(1 + b1θ0)∑k−1
0 bnan+2

0

= 0, (35)

for a finite a0 (which is not a root of
∑k−1

0 bnan
0 = 0) this equation

has only two solutions θ0 = 0, which should be rejected, and

θ0 = −1/b1 (= −81/64 for nf = 3). (36)



Secondly, suppose that there exists a curve C going to infinity in the

domain of analyticity of Θ(a) along which

Θ(a) → θ0 < ∞ as a →∞ while a ∈ C, (37)

then θ0 is a singular point.

Consider the 3- and 4-loop cases with

0 ≤ nf ≤ 5 and 0 ≤ nf ≤ 7

Let us integrate equation (31) in the real range

1/θ − b1 ln(b1 + 1/θ) = 1/a− b1 ln(b1 + 1/a) +
∫ a

0
g(k)(a′)da′, (38)

where

g(k)(a) = (β̄(k)(a))−1 − (β̄(2)(a))−1 (39)



Equation (38) may be continued for complex values of a and θ. Fortu-

nately, we may solve the transcendental equation (38) for θ explicitly

as a function of a in terms of the Lambert-W function

θ = Θ(a) = −b−1
1 (1 + Wn(z))

−1, (40)

where z = ζ(a) with ζ(a) = −(eb1)
−1 exp(−T (a)/b1)

T (a) = 1/a− b1 ln(b1 + 1/a) +
∫ a

0
g(a′) da′. (41)

In the region a > 0 inside the convergence disc of the series (33)

θ = Θ(k)(a) = −b−1
1 (1 + W−1(ζ

(k)(a)))−1. (42)

Formula (42) can be continued beyond the convergence circle on the

positive a-axis. On using (42), we calculate the limit of Θ(a) as

a → ∞ along positive a-axis, determining thereby the singularity of



the function a = A(θ)

θ
(k)
s.1 = −b−1

1 (1 + W−1(ζ
(k)(∞))−1 = a

(2)
s (u(k)

rhp.), (43)

since

ζ(k)(∞) = lim
a→+∞

ζ(k)(a) = −(b1e)−1(u(k)
rhp.)

−1/b1, (44)

and u
(k)
rhp. = exp (t(k)rhp.) being the Landau singularity located on the

positive u-axis (see the 3-and 4-loop formulas (17) and (18)).

We find exactly one real negative solution for θ inside the negative

interval a ∈ (ã,0), where ã → −∞ in the 3-loop order and it is the

finite negative root of (11) in the 4-loop order. This solution is

determined in terms of the branch W0(z)

Θ(k)(a) = −b−1
1 (1 + W0(ζ̃

(k)(a)))−1, (45)



where ζ̃(k)(a) = (eb1)
−1 exp(−T̃ (k)(a)/b1) and

T̃ (k)(a) = 1/a− b1 ln(−1/a− b1) +
∫ a

0
g(a′) da′. (46)

In general, the singularities of T (a) are, at the same time, singular-

ities of Θ(a). Nevertheless, Θ(a) is regular at a = 0, where T (a) is

singular. On the other side, Θ(a) may have additional singularities

ab± arising due to the common branch point of W0(z) and W±1(z) at

z = −1/e. To determine locations of these singularities we numeri-

cally solve the equation

z = ζ(k)(a) = −1/e (47)

at the 3- and 4 loop orders.

To define the analytical continuation we demand that the function

θ = Θ(a) ≡ Θ̃(ζ(a)) will be continuous as a function of the phase



of a. This will be achieved if we use the rules of counter-clockwise

continuity to select the branches of W when the curve crosses the

branch cut.

W−1(x + ı0) = W1(x− ı0) if − 1/e < x < 0 (48)

W1(x− ı0) = W0(x + ı0) if −∞ < x < −1/e

Wn(x + ı0) = Wn+1(x− ı0) if −∞ < x < 0 and n ≥ 1.

Having the analytical structure of Θ(a) established, we can construct

explicit expressions for Θ(a) in the entire cut complex a-plane.

We may now define the analytical continuation along negative a-

axis determining the relevant branch on the negative a-axis. Making



a → −∞ in (45), we determine the singular point in the 3-loops

Θ(3)
s.2 = lim

a→−∞
Θ(3)(a) = −(b1(1 + W0(ζ̃

(3)(−∞)))−1 , (49)

ζ̃(3)(−∞) = (eb1)
−1 exp(−T̃ (3)(−∞)/b1),

with

T̃ (3)(−∞) = lim
a→−∞

T̃ (3)(a) = −b1 ln b1−p.v.
∫ 0

−∞
g(3)(a)da = Re(t(3)

lhp.±),

(50)

In the 4-loop case, the limiting values of this analytic function from

above and below the left-hand cut, i.e. the limits of T̃ (4)(a) as

Im(a) → 0± for Re(a) < a1, may be determined as

T̃
(4)
± (a) = 1/a− b1 ln(|b1 − 1/|a||) + p.v.

∫ a

0
g(4)(s)ds± iκπ, (51)



where κ stands for the residue

κ = lim
a→a1

(a−a1)g
(4)(a) = (b2+b3a1){b3(1+b1a1)(a1−a2)(a1−a3)}−1,

and ai, i=1..3, denote the roots of (11).

Then we find

θ
(4)
s.2± = −b−1

1 (1 + W0(ζ̃
(4)
± (−∞)))−1 for 0 ≤ nf ≤ 5 (52)

θ
(4)
s.2± = −b−1

1 (1 + W±1(ζ̃
(4)
± (−∞)))−1 for 6 ≤ nf ≤ 7

where ζ̃
(4)
± (−∞) = (eb1)

−1 exp(−T̃
(4)
± (−∞)/b1), and

T̃
(4)
± (−∞) = lim

a→−∞
T̃ (4)(a± ı0) = Re(tlhp±)± ıπκ, (53)

here the subscript “±” shows that the limits were evaluated keeping

the upper (lower) side of the cut. Evidently, θ
(4)
s.2− = θ

(4)
s.2+.



nf 0 1 2 3 4 5

θ
(3)
s.1 0.627 0.635 0.653 0.691 0.776 1.029

θ
(3)
s.2 -0.594 -0.601 -0.618 -0.653 -0.731 -0.956

nf θs.1 n1 θs.2± |θs.2±| n2 ρ̃

0 0.485 -1 −0.545∓ 0.334ı 0.639 0 0.485
1 0.488 -1 −0.544∓ 0.341ı 0.642 0 0.488
2 0.497 -1 −0.546∓ 0.354ı 0.650 0 0.497
3 0.516 -1 −0.550∓ 0.380ı 0.668 0 0.516
4 0.554 -1 −0.552∓ 0.429ı 0.699 0 0.554
5 0.641 -1 −0.533∓ 0.526ı 0.748 0 0.641
6 0.934 -1 −0.394± 0.672ı 0.779 ±1 0.779
7 −0.887∓ 1.531ı ∓1 −0.105± 0.614ı 0.623 ±1 0.623

In the 3-loops:

ρ̃(3) = |θ(3)
s.2 (nf)| for 0 ≤ nf ≤ 5.



In the 4-loops:

ρ̃(4) = |θ(4)
s.1 (nf)| if 0 ≤ nf ≤ 5,

ρ̃(4) = |θ(4)
s.2 (nf)| if 6 ≤ nf ≤ 7.

The radius of convergence of the original series (21) is

ρ(k) = ρ̃(k)/β0

(ρ(3) = 0.965 and ρ(4) = 0.720 for nf = 3).

Next consider the cases with large nf values where the β-function

has non-trivial real zeros. This takes place in the 3-loop case for

nf = {6− 16}. From now on we shall confine ourselves to the 3-loop

case. Then we determine the singular points on the θ-plane:



nf W±n θ0 = −1/b1 |θs.1±| ρ̃
6 W±1 -1.885 2.114 1.885
7 W±1 3.008 0.664 0.664
8 W±19 48.17 0.417 0.417
9 W∓1 2.08 0.291 0.291
10 W∓1 0.761 0.208 0.208
11 W∓1 0.360 0.148 0.148
12 W∓1 0.180 0.102 0.102
13 W∓1 0.087 0.067 0.067
14 W∓1 0.037 0.039 0.037
15 W∓1 0.011 0.018 0.011
16 W∓1 0.001 0.003 0.001



6 The Momentum Scale Associated With the
Convergence radius of the Series

The convergence region of the series (32) in the momentum squared

space may be easily determined, since the function θ = a(2)(Q2) for

real positive Q2 > Q2
L ≥ 0 is monotonic (Q2

L being the real Landau

singularity of the 2-loop coupling which appear if 0 ≤ nf ≤ 8.05).

First, we consider the series for large nf values. Note that the quantity

θ0 = −b−1
1 in the Banks-Zaks domain (nf > 8.05) is the infrared fixed

point of the 2-loop coupling θ = a(2)(u). So that the restriction,

0 < θ < |b1|−1, holds for all Q2 ∈ (0,∞). From the Table 10, we see

that ρ̃ = θ0 for nf = {14−16}. This means that the series (32) at 3-

loops for nf = {14− 16} converges in the whole interval Q2 ∈ (0,∞).

Let n∗∗f be the lowest value for which this condition holds (n∗∗f = 14

in the MS scheme). For nf < n∗∗f , the series (32) converges in the



more restricted domain Q2
min < Q2 < ∞ (Q2

min > 0). The value of

Q2
min may be determined from the equation

θ = a(2)(u) = −b−1
1 (1 + Wn(zQ))−1 = ρ̃ (54)

where zQ = −(eb1)
−1u−1/b1 and u = Q2/Λ2 (see Eq. (2)). Solving

(54), we obtain

umin = Q2
min/Λ2 = (b1 + ρ̃−1)−b1 exp(ρ̃−1).

The results for the dimensionless quantity
√

umin = Qmin/Λ (Qmin =√
Q2

min) to the 3- and 4-loop orders for nf = {0 − 6} are tabulated

in Table 11. We compare
√

umin with the ratio
√

urhp = Qrhp/Λ

(the value Qrhp =
√

Q2
rhp corresponds to the real space-like Landau

singularity of the coupling).

The ratios

√
u
(k)
min = Q

(k)
min/Λ and

√
u
(k)
rhp = Q

(k)
rhp/Λ in the MS scheme

to the 3-and 4-loop orders for nf = {0− 6}.



nf

√
u
(3)
min

√
u
(3)
rhp

√
u
(4)
min

√
u
(4)
rhp

0 1.571 1.525 1.790 1.790
1 1.566 1.521 1.788 1.788
2 1.558 1.514 1.784 1.784
3 1.541 1.500 1.773 1.773
4 1.505 1.467 1.745 1.745
5 1.416 1.384 1.678 1.678
6 1.283 – 1.623 1.507

It is seen from the Table that in general the quantity Q2
min can not

be identified with the real Landau singularity Q2
rhp. The equality

Q2
min = Q2

rhp holds only in the cases where the convergence radius

ρ̃ is determined via the real (space-like) Landau singularity. This

happens, for example, in the MS scheme in the 4-loop case for nf =

{0−5}. However, in the cases where ρ̃ is determined via the complex

Landau singularities, Q2
lhp±, the relation between Q2

min and Q2
lhp± is

not so simple, and then the inequality holds Q2
min > Q2

rhp. Such a



situation occurs, for instance, in the MS scheme in the 3-loop case

for nf = {0− 5}.

It is reasonable to compare Qmin with the infrared boundary of QCD,

the momentum scale µc that separates the perturbative and non-

perturbative regimes of the theory in the confining phase. Several

estimates for this quantity was suggested using different nonpertur-

bative methods. In recent work

Alekseev, A. I., Arbuzov, B. A.: Mod. Phys. Lett. A20, 103 (2005)

an useful nonperturbative approximation for the QCD β-function was

constructed. This model, with the perturbative MS scheme compo-

nent of the β-function to the 3- and 4-loop orders at nf = 3, predicts



that

(µc/ΛQCD)3−loop ≈ 3.204,

(µc/ΛQCD)4−loop ≈ 3.526.

Another way to estimate the infrared boundary is to use arguments

based on dynamical chiral symmetry breaking in QCD. There are the

results obtained within the nonperturbative framework of Schwinger-

Dyson equations

Fomin, P. I., et al.: Riv. Nuovo Cimento 6, 1 (1983)

According to this the critical value of the coupling needed to generate

the chiral condensate is αc = π/4 (for Nc = 3 QCD). It is reason-

able to identify the corresponding scale with the infrared boundary.



One way to obtain approximations to µc is to use the perturbative

expressions for the coupling in the MS scheme. Then the equation

α
(k)
s (µ2

c ) = π/4 to the 3- and 4-loop orders yields the estimates, at

nf = 3,

(µc/ΛMS)3−loop = 1.972 and (µc/ΛMS)4−loop = 2.115.

At least the above considered estimates are consistent with the in-

equality Q2
min < µ2

c.

This enable us to suppose that the series expansion (32) in the MS

scheme may be safely used in the whole perturbative region µ2
c <

Q2 < ∞.



6 Application to Analytic Perturbation Theory

In the Analytic Perturbation Theory (APT) approach of Shirkov

and Solovtsov, Euclidean and Minkowskian QCD observables (which

depend on the single scale) are represented by asymptotic expan-

sions over non-power sets of specific functions {A(k)
n (u)}∞n=1 and

{A(k)
n (s̄)}∞n=1 respectively, here u = Q2/Λ2 and s̄ = s/Λ2. These

sets are constructed via the integral representations in the following

way

A(k)
n (u) =

1

π

∫ ∞
0

%
(k)
n (ς)dς

ς + u
, A

(k)
n (s̄) =

1

π

∫ ∞
s̄

%
(k)
n (ς)

ς
dς, (55)

where the spectral densities to the kth order are determined from

powers of the running coupling: %
(k)
n (ς) = −=(a(k)n(−ς+ı0)). In APT



the power series (32) give rise to the following series of functions

A(k)
m (u) =

∞∑
n=m

C(k)m,nA(2)
n (u) m = 1,2 . . . (56)

A
(k)
m (s̄) =

∞∑
n=m

C(k)m,nA
(2)
n (s̄) m = 1,2 . . . (57)

%
(k)
m (ς) =

∞∑
n=m

C(k)m,n%
(2)
n (ς) m = 1,2 . . . , (58)

where C(k)m,m = 1. The sets of coefficients {C(k)m,n}∞n=m, m = 1,2 . . .,

are constructed from the set of coefficients of the original series,

{c̃(k)n }∞n=1, according to the rules for products of power series: C(k)1,n =

c̃
(k)
n , C(k)2,n =

∑n−1
j=1 c̃

(k)
n−j c̃

(k)
j etc. The spectral densities at the 2-loop

order can be expressed analytically in closed form

%
(2)
n (ς) = b−n

1 =(1 + W−1(zς))
−n with

zς = (eb1)
−1ς−1/b1 exp (−ıπ(1/b1 − 1)).



Now we are going to prove that the series of functions (56), (57) and

(58) are uniformly convergent over whole ranges of the corresponding

variables: 0 < u < ∞, 0 < s̄ < ∞ and 0 < ς < ∞. Evidently, it is

sufficient to prove that the series (58) is uniformly convergent. Let

us now write W−1(zς) = W = X + ıY, (1+W)−1 = R exp (ıΨ), where

R = ((X +1)2+Y2)−1/2 and Ψ = arcsin(−YR) (for the branch W−1,

we have −3π < Y < 0). According to this, we may rewrite the 2-loop

spectral densities (59) as

%
(2)
n (ς) = (R/b1)

n sin(nΨ), n = 1,2 . . . . (59)

It is seen from Eq. (59) that the modulus of the spectral densities

are bounded above

|%(2)
n (ς)| < (θmax)

n, (60)

where θmax = Rmax/b1 and Rmax is the maximal value of R in the



range 0 < ς < ∞. We find useful to use the “Maple 7” for determining

Rmax numerically. In Table 12, we listed numerical values of θmax in

the phenomenologically interesting cases nf = {0− 6}.

nf 0 1 2 3 4 5 6
θmax 0.237 0.237 0.238 0.240 0.243 0.249 0.259

ρ̃(3) 0.594 0.601 0.618 0.653 0.731 0.956 1.885

ρ̃(4) 0.485 0.488 0.497 0.516 0.554 0.641 0.779



Note that all the power series
∑∞

n=m C
(k)
m,nθn, m = 1,2 . . ., have the

same radius of convergence, ρ̃(k), as the original series (32). This

follows from the definition

∞∑
n=m

C(k)m,nθn =

 ∞∑
l=1

c̃
(k)
l θl

m

. (61)

Consider now the set of numerical series of positive terms
∞∑

n=m
|C(k)m,n|θn

max m = 1,2 . . . , (62)

looking at the numbers in Table 12, we see that θmax is inside the

convergence disk of the series (61): 0 < θmax < ρ̃(k), both in the 3-

and 4-loop cases. Hence all the numerical series (62) are convergent.

Combining this fact with the bounding conditions (60), we find that

the series of functions
∑∞

n=m |C
(k)
m,n%

(2)
n (ς)|, m = 1,2 . . ., are uniformly

convergent by the comparison test due to Weierstrass. Then all

the series (58) are uniformly convergent. Hence by the arguments



given above, the series of functions (56) and (57) are also uniformly

convergent.

The expansions (56) and (57) enable us to calculate the infrared limits

of the APT expansion functions. Thus we may reproduce remarkable

results of Shirkov and Solovtsov in a mathematically rigorous way.

Since

lim
u→0+

A(2)
n (u) = lim

s̄→0+
A

(2)
n (s̄) = δn,1.

These relations may be extended to higher orders by means of the

expansions (56) and (57). Thus we can write

lim
u→0+

A(k)
m (u) =

∞∑
n=m

C(k)m,n lim
u→0+

A(2)
n (u) = C(k)m,1 ≡ δm,1, (63)



The universality of A(k)
1 (0) and A

(k)
1 (0) (the scheme independence

and invariance with respect to higher-loop corrections) is evident.



Conclusion

• We systematically investigate the analyticity structure of the mod-

ified coupling as(Q2/Λ2) at 3- and 4-loops in the complex u =

Q2/Λ2 plane for all nf values in the range of AF 0 ≤ nf ≤ 16. In

the confining phase of the theory, for relatively small nf values,

we have found a pair of complex conjugate singularities (besides

of the real Landau singularity) in the first Riemann sheet. Just

these complex singularities determine the radius of convergence

of the series solution for most values of nf .

• we have proved that in the MS-like schemes the power series solu-

tion has a finite radius of convergence to all orders in perturbation

theory for nf = 1− 16.

• We have determined the analytical structure of the higher order



coupling in the complex plane of the 2-loop running coupling θ

(θ = a
(2)
s (Q2/Λ2)). We have considered the 3- and 4-loop cases

for 0 ≤ nf ≤ 16 and 0 ≤ nf ≤ 7 respectively. The correspondence

between the singularities of the coupling in the Q2 and θ planes

have been established. Comparing the singularities of the coupling

in the θ-plane, we have determined the radii of convergence of

the series solution. The radii have been found to be sufficiently

large from practical point of view,

• We have studied the convergence properties of the non-power

series constructed from the series (32) according to the rules of

the QCD Analytic Perturbation Theory of Shirkov and Solovstov

in both the space- and time-like regions. We have shown that the

Euclidean and Minkowskian variants of these non-power series are

uniformly convergent over whole domains of the corresponding



momentum squared variables. A mathematically rigorous proof

of the finiteness and universality of the analytic coupling at zero

momentum has also been presented.


