# Multi-Loop Feynman Integrals and Conformal Quantum Mechanics 

(New algebraic approach to analytical calculations of Feynman diagrams)

## A. P. Isaev ${ }^{1}$

${ }^{1}$ Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Russia

> Nucl. Phys. B662 (2003) 461 (hep-th/0303056)

## Plan

## (1) Motivation

(2) The diagrams $\leftrightarrow$ Perturbative integrals

- Which kind of Feynman diagrams (F.D.) we consider
(3) Operator formalism
- Algebraic reformulation of integrals for F.D.: manipulations with integrals $\rightarrow$ manipulations with operators


## 4 Application

- Ladder diagrams for $\phi^{3}$-theory in $D=4$; relations to conformal quantum mechanics


## 1. Motivation

## Physics

- In perturbative QFT physical data are extracted from multiple integrals (perturbative integrals) associated to F.D.
- The number of diagrams grows enormously in a higher order of the perturbation theory $\Longrightarrow$
numerical calculations are not sufficient to obtain desirable precision.


## 1. Motivation

## Physics

- In perturbative QFT physical data are extracted from multiple integrals (perturbative integrals) associated to F.D.
- The number of diagrams grows enormously in a higher order of the perturbation theory
numerical calculations are not sufficient to obtain desirable precision.


## 1. Motivation

## Physics

- In perturbative QFT physical data are extracted from multiple integrals (perturbative integrals) associated to F.D.
- The number of diagrams grows enormously in a higher order of the perturbation theory $\Longrightarrow$
numerical calculations are not sufficient to obtain desirable precision.


## 1. Motivation

## Mathematics

- Analytical evaluations of F.D. use the methods developed for investigations of quantum integrable systems
(A.B. Zamolodchikov (1980); L.N. Lipatov; L.D. Faddeev and G.P. Korchemsky;
J. Minahan and K. Zarembo; N. Beisert and M. Staudacher; a.o.)
- Analytical results for F.D. are expressed in terms of multiple zeta values and polylogs $\Longrightarrow$ very interesting subject in modern mathematics
(D. Zagier; A.B. Goncharov; A. Connes and D. Kreimer).
- Analytical results for F.D. give explicit expressions for

Green's functions of some specific integrable quantum mechanical models and vise-versa (this is one of the advantages of the proposed algebraical method).

## 1. Motivation

## Mathematics

- Analytical evaluations of F.D. use the methods developed for investigations of quantum integrable systems
(A.B. Zamolodchikov (1980); L.N. Lipatov; L.D. Faddeev and G.P. Korchemsky; J. Minahan and K. Zarembo; N. Beisert and M. Staudacher; a.o.)

Analytical results for F.D. are expressed in terms of multiple zeta values and polylogs $\Longrightarrow$ very interesting subject in modern mathematics
(D. Zagier; A.B. Goncharov; A. Connes and D. Kreimer).

Analytical results for F.D. give explicit expressions for
Green's functions of some specific integrable quantum mechanical
models and vise-versa (this is one of the advantages of the
proposed algebraical method)

## 1. Motivation

## Mathematics

- Analytical evaluations of F.D. use the methods developed for investigations of quantum integrable systems
(A.B. Zamolodchikov (1980); L.N. Lipatov; L.D. Faddeev and G.P. Korchemsky;
J. Minahan and K. Zarembo; N. Beisert and M. Staudacher; a.o.)
- Analytical results for F.D. are expressed in terms of multiple zeta values and polylogs $\Longrightarrow$ very interesting subject in modern mathematics
(D. Zagier; A.B. Goncharov; A. Connes and D. Kreimer).

Analytical results for F.D. give explicit expressions for
Green's functions of some specific integrable quantum mechanical
models and vise-versa (this is one of the advantages of the
proposed algebraical method)

## 1. Motivation

## Mathematics

- Analytical evaluations of F.D. use the methods developed for investigations of quantum integrable systems
(A.B. Zamolodchikov (1980); L.N. Lipatov; L.D. Faddeev and G.P. Korchemsky;
J. Minahan and K. Zarembo; N. Beisert and M. Staudacher; a.o.)
- Analytical results for F.D. are expressed in terms of multiple zeta values and polylogs $\Longrightarrow$ very interesting subject in modern mathematics
(D. Zagier; A.B. Goncharov; A. Connes and D. Kreimer).
- Analytical results for F.D. give explicit expressions for

Green's functions of some specific integrable quantum mechanical models and vise-versa (this is one of the advantages of the proposed algebraical method).

## 2. The diagrams

The F.D. (considered here) are graphs with vertices connected by lines labeled by numbers (indeces).

To each vertex of the graph we associate the point in $D$-dimensional Euclidean space $\mathbf{R}^{D}$, while the lines (edges) of the graph (with index $\alpha$ ) are propagators of massless particles

$$
x-\frac{\alpha}{} y=1 /(x-y)^{2 \alpha}
$$

where $(x-y)^{2 \alpha}:=\left(\sum_{i=1}^{D}\left(x_{i}-y_{i}\right)\left(x_{i}-y_{i}\right)\right)^{\alpha}, \alpha \in \mathbf{C}, x, y \in \mathbf{R}^{D}$. We have 2 types of vertices: the boldface vertices $\bullet$ denote the integration over $\mathbf{R}^{D}$. These F.D. are called F.D. in the configuration space.

## 2. The diadrams

## Examples (F.D. in configuration space):

a. 3-point function (graph with 5 vertices and 5 edges):


$$
=\int \frac{d^{D} z d^{D} u}{(z-y)^{2 \alpha_{1}} z^{2 \alpha_{2}} y^{2 \alpha_{3}} u^{2 \alpha_{4}}(u-y)^{2 \alpha_{5}}}
$$

b. Star integral:

$$
=\int \frac{d^{D} x}{\left(x-x_{1}\right)^{2 \alpha_{1}}\left(x-x_{2}\right)^{2 \alpha_{2}}\left(x-x_{3}\right)^{2 \alpha_{3}}}
$$

c. Propagator-type diagram:


Analytical calc. of F.D. $\rightarrow$ reconstruction of graphs to reduce no. of $\bullet$.

## 3. Operator formalism

Consider $D$-dimensional Euclidean space $\mathbf{R}^{D}$ with coordinates $x_{i}$, $(i=1,2, \ldots, D)$. We use notation: $x^{2 \alpha}=\left(\sum_{i=1}^{D} x_{i}^{2}\right)^{\alpha}$. Let $\hat{q}_{i}=\hat{q}_{i}^{\dagger}$ and $\hat{p}_{i}=\hat{p}_{i}^{\dagger}$ be operators of coordinate and momentum

$$
\left[\hat{q}_{k}, \hat{p}_{j}\right]=\mathrm{i} \delta_{k j} .
$$

Introduce states $|x\rangle \equiv\left|\left\{x_{i}\right\}\right\rangle,|k\rangle \equiv\left|\left\{k_{i}\right\}\right\rangle: \hat{q}_{i}|x\rangle=x_{i}|x\rangle, \hat{p}_{i}|k\rangle=k_{i}|k\rangle$, and normalize these states as:

$$
\langle x \mid k\rangle=\frac{1}{(2 \pi)^{D / 2}} \exp \left(\mathrm{i} k_{j} x_{j}\right), \quad \int d^{D} k|k\rangle\langle k|=\hat{1}=\int d^{D} x|x\rangle\langle x|
$$

"Matrix representation" of $\hat{p}^{-2 \beta}$ (propagator of massless particle) is:

$$
\langle x| \frac{1}{\hat{p}^{2 \beta}}|y\rangle=a(\beta) \frac{1}{(x-y)^{2 \beta^{\prime}}}, \quad\left(a(\beta)=\frac{\Gamma\left(\beta^{\prime}\right)}{\pi^{D / 2} 2^{2 \beta} \Gamma(\beta)}\right) .
$$

where $\beta^{\prime}=D / 2-\beta$ and $\Gamma(\beta)$ is the Euler gamma-function. For $\hat{q}^{2 \alpha}$ the "matrix representation" is: $\quad\langle x| \hat{q}^{2 \alpha}|y\rangle=x^{2 \alpha} \delta^{D}(x-y)$.

## 3. Operator formalism

Algebraic relations (a,b,c) which are helpful for analytical calculations of perturbative integrals for multi-loop F.D. $\Rightarrow$ reconstruction of graphs
a. Group relation. Consider a convolution product of two propagators:
$\int \frac{d^{D} z}{(x-z)^{2 \alpha}(z-y)^{2 \beta}}=\frac{G\left(\alpha^{\prime}, \beta^{\prime}\right)}{(x-y)^{2(\alpha+\beta-D / 2)}}, \quad\left(G(\alpha, \beta)=\frac{a(\alpha+\beta)}{a(\alpha) a(\beta)}\right)$, which leads to the reconstruction of graph:


This is the "matrix representation" of the operator relation

$$
\hat{p}^{-2 \alpha^{\prime}} \hat{p}^{-2 \beta^{\prime}}=\hat{p}^{-2\left(\alpha^{\prime}+\beta^{\prime}\right)}
$$

Proof.

$$
\int d^{D} z\langle x| \hat{p}^{-2 \alpha^{\prime}}|z\rangle\langle z| \hat{p}^{-2 \beta^{\prime}}|y\rangle=\langle x| \hat{p}^{-2\left(\alpha^{\prime}+\beta^{\prime}\right)}|y\rangle
$$

## 3. Operator formalism

Algebraic relations ( $a, b, c$ ) which are helpful for analytical calculations of perturbative integrals for multi-loop F.D. $\Rightarrow$ reconstruction of graphs
a. Group relation. Consider a convolution product of two propagators:
$\int \frac{d^{D} z}{(x-z)^{2 \alpha}(z-y)^{2 \beta}}=\frac{G\left(\alpha^{\prime}, \beta^{\prime}\right)}{(x-y)^{2(\alpha+\beta-D / 2)}}, \quad\left(G(\alpha, \beta)=\frac{a(\alpha+\beta)}{a(\alpha) a(\beta)}\right)$, which leads to the reconstruction of graph:


This is the "matrix representation" of the operator relation

$$
\hat{p}^{-2 \alpha^{\prime}} \hat{p}^{-2 \beta^{\prime}}=\hat{p}^{-2\left(\alpha^{\prime}+\beta^{\prime}\right)}
$$

Proof.

$$
\int d^{D} z\langle x| \hat{p}^{-2 \alpha^{\prime}}|z\rangle\langle z| \hat{p}^{-2 \beta^{\prime}}|y\rangle=\langle x| \hat{p}^{-2\left(\alpha^{\prime}+\beta^{\prime}\right)}|y\rangle
$$

## 3. Operator formalism

b. Star-triangle relation The "Method Of Uniqueness" (D.Kazakov, 1983) (Yang-Baxter equation)

$$
\int \frac{d^{D} z}{(x-z)^{2 \alpha^{\prime}} z^{2(\alpha+\beta)}(z-y)^{2 \beta^{\prime}}}=\frac{G(\alpha, \beta)}{(x)^{2 \beta}(x-y)^{2\left(\frac{D}{2}-\alpha-\beta\right)}(y)^{2 \alpha}} .
$$

Reconstruction of graph:


$$
\alpha^{\prime}=\frac{D}{2}-\alpha
$$

Operator version:

$$
\hat{p}^{-2 \alpha} \hat{q}^{-2(\alpha+\beta)} \hat{p}^{-2 \beta}=\hat{q}^{-2 \beta} \hat{p}^{-2(\alpha+\beta)} \hat{q}^{-2 \alpha}
$$



Compare with Yang-Baxter equation:

$$
\boldsymbol{S}(\alpha) \widetilde{S}(\alpha+\beta) \boldsymbol{S}(\beta)=\widetilde{S}(\beta) \boldsymbol{S}(\alpha+\beta) \widetilde{S}(\alpha)
$$

## 3. Operator formalism

## Remarks on star-triangle relation:

1. STR is a commutativity condition for the set of operators

$$
\begin{aligned}
& H_{\alpha}=\hat{p}^{2 \alpha} \hat{q}^{2 \alpha}: \\
& \hat{p}^{2 \gamma} \hat{q}^{2 \gamma} \hat{p}^{2 \alpha} \hat{q}^{2 \alpha}=\hat{p}^{2 \alpha} \hat{q}^{2 \alpha} \hat{p}^{2 \gamma} \hat{q}^{2 \gamma} \Rightarrow \\
& \hat{p}^{2(\gamma-\alpha)} \hat{q}^{2 \gamma} \hat{p}^{2 \alpha}=\hat{q}^{2 \alpha} \hat{p}^{2 \gamma} \hat{q}^{2(\gamma-\alpha)} \Rightarrow \text { STR for } \gamma=\alpha+\beta .
\end{aligned}
$$

2. Algebraic proof of the STR. Introduce inversion operator $R$ :

$$
R^{2}=1, \quad\left\langle x_{i}\right| R=\left\langle\frac{x_{i}}{x^{2}}\right|
$$

$$
R \hat{q}_{i} R=\hat{q}_{i} / \hat{q}^{2}, \quad R \hat{p}_{i} R=\hat{q}^{2} \hat{p}_{i}-2 \hat{q}_{i}(\hat{q} \hat{p})=: K_{i}
$$

$$
R \hat{p}^{2 \beta} R=\hat{q}^{2\left(\beta+\frac{D}{2}\right)} \hat{p}^{2 \beta} \hat{q}^{2\left(\beta-\frac{D}{2}\right)}
$$

## Proof.

$$
\begin{aligned}
& R \hat{p}_{\Uparrow}^{2 \alpha} \hat{p}^{2 \beta} R=R \hat{p}^{2(\alpha+\beta)} R \Rightarrow \hat{p}^{2 \alpha} \hat{q}^{2(\alpha+\beta)} \hat{p}^{2 \beta}=\hat{q}^{2 \beta} \hat{p}^{2(\alpha+\beta)} \hat{q}^{2 \alpha} \\
& \quad R^{2}
\end{aligned}
$$

## 3. Operator formalism

3. One can deduce "local" STR which is related to the $\alpha$-representation for FD (R.Kashaev, 1996)

$$
W\left(x^{2} \mid \alpha\right)=\exp \left(-\frac{x^{2}}{2 \alpha}\right)
$$

$$
W\left(\hat{q}^{2} \mid \alpha_{1}\right) W\left(\hat{p}^{2} \left\lvert\, \frac{1}{\alpha_{2}}\right.\right) W\left(\hat{q}^{2} \mid \alpha_{3}\right)=W\left(\hat{p}^{2} \left\lvert\, \frac{1}{\beta_{3}}\right.\right) W\left(\hat{q}^{2} \mid \beta_{2}\right) W\left(\hat{p}^{2} \left\lvert\, \frac{1}{\beta_{1}}\right.\right)
$$

where $\alpha_{i}=\frac{\beta_{1} \beta_{2}+\beta_{1} \beta_{3}+\beta_{2} \beta_{3}}{\beta_{i}}$ is a star-triangle transformation for resistances in electric networks

## 3. Operator formalism

c. Integration by parts rule. (F. Tkachov, K. Chetyrkin, 1981)
(reconstruction of graphs)


It can be represented in the operator form:
$(2 \gamma-\alpha-\beta) \hat{p}^{2 \alpha} \hat{q}^{2 \gamma} \hat{p}^{2 \beta}=\frac{\left[\hat{q}^{2}, \hat{p}^{2(\alpha+1)}\right]}{4(\alpha+1)} \hat{q}^{2 \gamma} \hat{p}^{2 \beta}-\hat{p}^{2 \alpha} \hat{q}^{2 \gamma} \frac{\left[\hat{q}^{2}, \hat{p}^{2(\beta+1)}\right]}{4(\beta+1)} \|$
where $\alpha=-\alpha_{1}^{\prime}, \gamma=-\alpha_{2}$ and $\beta=-\alpha_{3}^{\prime}$.

## 3. Operator formalism

The integration by parts identity

$$
(2 \gamma-\alpha-\beta) \hat{p}^{2 \alpha} \hat{q}^{2 \gamma} \hat{p}^{2 \beta}=\frac{\left[\hat{q}^{2}, \hat{p}^{2(\alpha+1)}\right]}{4(\alpha+1)} \hat{q}^{2 \gamma} \hat{p}^{2 \beta}-\hat{p}^{2 \alpha} \hat{q}^{2 \gamma} \frac{\left[\hat{q}^{2}, \hat{p}^{2(\beta+1)}\right]}{4(\beta+1)},
$$

can be proved by using relations for Heisenberg algebra

$$
\begin{gathered}
{\left[\hat{q}^{2}, \hat{p}^{2(\alpha+1)}\right]=4(\alpha+1)(H+\alpha) \hat{p}^{2 \alpha},} \\
H \hat{q}^{2 \alpha}=\hat{q}^{2 \alpha}(H+2 \alpha), \quad H \hat{p}^{2 \alpha}=\hat{p}^{2 \alpha}(H-2 \alpha),
\end{gathered}
$$

where $H:=\frac{i}{2}\left(\hat{p}_{i} \hat{q}_{i}+\hat{q}_{i} \hat{p}_{i}\right)$ is the dilatation operator.
The set of operators $\left\{\hat{q}^{2}, \hat{p}^{2}, H\right\}$ generates the algebra $s l(2)$.

## 3. Operator formalism

An example of the operator representation for F.D.
Consider an operator:

$$
\Psi\left(\alpha_{i}\right)=\hat{p}^{-2 \alpha_{1}^{\prime}} \hat{q}^{-2 \alpha_{2}} \hat{p}^{-2 \alpha_{3}^{\prime}} \hat{q}^{-2 \alpha_{4}} \hat{p}^{-2 \alpha_{5}^{\prime}} \ldots \hat{q}^{-2 \alpha_{2 k}} \hat{p}^{-2 \alpha_{2 k+1}^{\prime}}
$$

This operator is the algebraic version of 3-point function:


Indeed,

$$
\begin{gathered}
\langle x| \Psi\left(\alpha_{i}\right)|y\rangle=\langle x| \hat{p}^{-2 \alpha_{1}^{\prime}} \hat{介}^{\hat{q}^{-2 \alpha_{2}}} \quad \hat{p}^{-2 \alpha_{3}^{\prime}} \hat{彳}^{-2 \alpha_{4}} \quad \hat{p}^{-2 \alpha_{5}^{\prime}} \ldots \hat{\Uparrow}^{-2 \alpha_{2 k}} \hat{p}^{-2 \alpha_{2 k+1}^{\prime}|y\rangle} \\
\int d^{D} z_{1}\left|z_{1}\right\rangle\left\langle z_{1}\right| \quad \int d^{D} z_{2}\left|z_{2}\right\rangle\left\langle z_{2}\right| \quad \int d^{D} z_{k}\left|z_{k}\right\rangle\left\langle z_{k}\right|
\end{gathered}
$$

Remark. $\langle x| \Psi\left(\alpha_{i}\right)|x\rangle$ represents the propagator-type diagrams.

## 3. Operator formalism

The advantage: we change the manipulations with integrals by the manipulations with elements of the algebra generated by $\hat{p}^{2 \alpha}, \hat{q}^{2 \beta}$.

Is it possible to define the trace for this algebra?
$\operatorname{Tr}\left(\Psi\left(\alpha_{i}\right)\right)=\int d^{D} x\langle x| \hat{p}^{-2 \alpha_{1}^{\prime}} \hat{q}^{-2 \alpha_{2}} \hat{p}^{-2 \alpha_{3}^{\prime}} \cdots \hat{q}^{-2 \alpha_{2 k}} \hat{p}^{-2 \alpha_{2 k+1}^{\prime}}|x\rangle=c\left(\alpha_{i}\right) \int \frac{d^{D} x}{x^{2 \beta}}$.
( $\beta=\sum_{i} \alpha_{i} ; \boldsymbol{C}\left(\alpha_{i}\right)$ - coeff. function). The dim. reg. procedure requires:

$$
\int \frac{d^{D} x}{x^{2(D / 2+\alpha)}}=0 \quad \forall \alpha \neq 0
$$

The extension of the definition of this integral is (S.Gorishnii, A.lsaev, 1985)

$$
\int \frac{d^{D} x}{x^{2(D / 2+\alpha)}}=\pi \Omega_{D} \delta(|\alpha|)
$$

where $\Omega_{D}=2 \pi^{D / 2} / \Gamma(D / 2), \alpha=|\alpha| e^{i \arg (\alpha)}$. Then, the cyclic property of "Tr" can be checked. "Tr": propagators $\Rightarrow$ vacuum diagrams.

## 4. Application

## L-loop ladder diagrams for $\phi^{3} \mathrm{FT} \Leftrightarrow D$-dimensional conformal QM

Consider dimensionally and analytically regularized massless integrals

$$
D_{L}\left(p_{0}, p_{L+1}, p ; \vec{\alpha}, \vec{\beta}, \vec{\gamma}\right)=\left[\prod_{k=1}^{L} \int \frac{d^{D} p_{k}}{p_{k}^{2 \alpha_{k}}\left(p_{k}-p\right)^{2 \beta_{k}}}\right] \prod_{m=0}^{L} \frac{1}{\left(p_{m+1}-p_{m}\right)^{2 \gamma_{m}}}
$$

which correspond to the diagrams ( $x_{1}=p_{0}, x_{2}=p_{L+1}, x_{3}=p$ ):


The diagrams (in config. and moment. spaces) are dual to each other (the boldface vertices correspond to the loops). The operator version is

$$
D_{L}\left(x_{a} ; \vec{\alpha}, \vec{\beta}, \vec{\gamma}\right) \sim\left\langle x_{1}\right| \hat{p}^{-2 \gamma_{0}^{\prime}}\left(\prod_{k=1}^{L} \hat{q}^{-2 \alpha_{k}}\left(\hat{q}-x_{3}\right)^{-2 \beta_{k}} \hat{p}^{-2 \gamma_{k}^{\prime}}\right)\left|x_{2}\right\rangle .
$$

## 4. Application

For simplicity we put $\alpha_{i}=\alpha, \beta_{i}=\beta, \gamma_{i}=\gamma$ and consider the generating function for $D_{L}$ :
$D_{g}\left(x_{a} ; \alpha, \beta, \gamma\right)=\sum_{L=0}^{\infty} g^{L} D_{L}\left(x_{a} ; \alpha, \beta, \gamma\right) \sim\left\langle x_{1}\right|\left(\hat{p}^{2 \gamma^{\prime}}-\frac{\bar{g}}{\hat{q}^{2 \alpha}\left(\hat{q}-x_{3}\right)^{2 \beta}}\right)^{-1}\left|x_{2}\right\rangle$
where $\bar{g}=g / a\left(\gamma^{\prime}\right)$ is the renormalized coupling constant. For the case $\alpha+\beta=2 \gamma^{\prime}$, using inversions, etc. we obtain

$$
D_{g} \sim\langle u|\left(\hat{p}^{2 \gamma^{\prime}}-\frac{g_{x}}{\hat{q}^{2 \beta}}\right)^{-1}|v\rangle
$$

where $g_{x}=\bar{g}\left(x_{3}\right)^{-2 \beta}, u_{i}=\frac{\left(x_{1}\right)_{i}}{\left(x_{1}\right)^{2}}-\frac{\left(x_{3}\right)_{i}}{\left(x_{3}\right)^{2}}, v_{i}=\frac{\left(x_{2}\right)_{i}}{\left(x_{2}\right)^{2}}-\frac{\left(x_{3}\right)_{i}}{\left(x_{3}\right)^{2}}$.
The $\phi^{3}$-theory for $D=4$ is related to $\gamma^{\prime}=1=\beta$ and we obtain the Green's function for conformal QM:

$$
D_{g} \sim\langle u|\left(\hat{p}^{2}-\frac{g_{x}}{\hat{q}^{2}}\right)^{-1}|v\rangle
$$

For $D \neq 4$ this GF $\Rightarrow$ ladder diagrams for $\alpha=\beta=1, \gamma=\frac{D}{2}-1$.

## 4. Application

Our method is based on the identity:

$$
\frac{1}{\hat{p}^{2}-g / \hat{q}^{2}}=\sum_{L=0}^{\infty}\left(-\frac{g}{4}\right)^{L}\left[\hat{q}^{2 \alpha} \frac{(H-1)}{(H-1+\alpha)^{L+1}} \frac{1}{\hat{p}^{2}} \hat{q}^{-2 \alpha}\right]_{\alpha^{L}}
$$

where we denote $[\ldots]_{\alpha^{L}}=\frac{1}{L!}\left(\partial_{\alpha}^{L}[\ldots]\right)_{\alpha=0}$. Taking into account

$$
\frac{(H-1)}{(H-1+\alpha)^{L+1}}=\frac{(-1)^{L+1}}{L!} \int_{0}^{\infty} d t t^{L} e^{t \alpha} \partial_{t}\left(e^{t(H-1)}\right)
$$

and $e^{t\left(H+\frac{D}{2}\right)}|x\rangle=\left|e^{-t} x\right\rangle$ the Green's function $D_{g}$ is written in the form

$$
\begin{gathered}
\langle u| \frac{1}{\left(\hat{p}^{2}-g_{x} / \hat{q}^{2}\right)}|v\rangle=\sum_{L=0}^{\infty} \frac{1}{L!}\left(\frac{g_{x}}{4}\right)^{L} \Phi_{L}(u, v), \\
\Phi_{L}(u, v)=-a(1) \int_{0}^{\infty} d t t^{L}\left[\left(\frac{u^{2}}{v^{2}}\right)^{\alpha} e^{t \alpha}\right]_{\alpha^{L}} \partial_{t}\left(\frac{e^{-t}}{\left(u-e^{-t} v\right)^{2}}\right)^{\left(\frac{D}{2}-1\right)}
\end{gathered}
$$

## 4. Application

For $D=4-2 \epsilon$ one can expand $\Phi_{L}(u, v)$ over small $\epsilon$ :

$$
\Phi_{L}(u, v)=\frac{\Gamma(1-\epsilon)}{4 \pi^{2-\epsilon} U^{2(1-\epsilon)}} \sum_{k=0}^{\infty} \frac{\epsilon^{k}}{k!} \Phi_{L}^{(k)}\left(z_{1}, z_{2}\right)
$$

where $z_{1}+z_{2}=2(u v) / u^{2}$ and $z_{1} z_{2}=v^{2} / u^{2}$. The coeff. functions $\Phi_{L}^{(k)}$ are expressed in terms of multiple polylogarithms. The first one is
(N.I. Ussyukina and A.I. Davydychev; D.J. Broadhurst; 1993)
$\Phi_{L}^{(0)}\left(z_{1}, z_{2}\right)=\frac{1}{z_{1}-z_{2}} \sum_{f=0}^{L} \frac{(-)^{f}(2 L-f)!}{f!(L-f)!} \ln ^{f}\left(z_{1} z_{2}\right)\left[\operatorname{Li}_{2 L-f}\left(z_{1}\right)-\operatorname{Li}_{2 L-f}\left(z_{2}\right)\right]$.
where polylogs are

$$
\operatorname{Li}_{m}(w)=\sum_{n=1}^{\infty} \frac{w^{n}}{n^{m}}
$$

## 4. Application

The next coefficient is: $\quad \Phi_{L}^{(1)}\left(z_{1}, z_{2}\right)=$
$=\sum_{n=L}^{2 L} \frac{n!\ln ^{2 L-n}\left(z_{1} z_{2}\right)\left[\left(n \operatorname{Li}_{n+1}\left(z_{1}\right)-\operatorname{Li}_{n, 1}\left(z_{1}, 1\right)-\operatorname{Li}_{n, 1}\left(z_{1}, \frac{z_{2}}{z_{1}}\right)\right)-\left(z_{1} \leftrightarrow z_{2}\right)\right]}{(-1)^{n}(2 L-n)!(n-L)!\left(z_{1}-z_{2}\right)}$
where multiple polylogarithms are

$$
\operatorname{Li}_{m_{0}, m_{1}, \ldots, m_{r}}\left(w_{0}, w_{1}, \ldots, w_{r}\right)=\sum_{n_{0}>n_{1}>\cdots>n_{r}>0} \frac{w_{0}^{n_{0}} w_{1}^{n_{1}} \cdots w_{r}^{n_{r}}}{n_{0}^{m_{0}} n_{1}^{m_{1}} \ldots n_{r}^{m_{r}}}
$$

The function $\Phi_{L}^{(1)}\left(z_{1}, z_{2}\right)$ gives the first term in the expansion over $\epsilon$ of the L-loop ladder diagram (with special indices on the lines)


## Summary

- Applications of the coefficients $\Phi_{L}(u, v)$ for the avaluations of 4-point functions in $N=4$ SYM theory.
- Lipatov's integrable model - describes high energy scattering of hadrons in QCD.
- Generalizations to massive case and to supersymmetric case. In massive case it is tempting to calculate the Green's function

$$
\langle u| \frac{1}{\left(\hat{p}^{2}-g / \hat{q}^{2}+m^{2}\right)}|v\rangle=\sum_{L=0}^{\infty} g^{L} \Phi_{L}\left(u, v ; m^{2}\right)
$$

- It seems that the approach is not universal even for massless FDs. We should add something new.


## For Further Reading I

EA.P. Isaev,
Nucl. Phys. B662 (2003) 461 (hep-th/0303056)
Multi-Loop Feynman Integrals and Conformal Quantum Mechanics

