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Estimates of statistical
uncertainty of new experiments

Stages of discussion of future and modern experiments

1. Analytical calculation of amplitudes or cross sections,

2. MC simulation of final states,

3. Extraction of physical quantities

♦ Averaged momenta of final particles or their combinations,

Example: W mass.

♦ Other quantities obtained by comparison with a model e.g. by

least-squares method.

Example – value of anomalous magnetic moment via process

eγ → µνν
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Different uncertainties

Statistical uncertainty δstat

Systematical uncertainty

We discuss only first.

Standard estimate

Let us have N events ⇒ δstat ≈ 1/
√

N

In some cases this estimate is too optimistic.
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How to find?

MC calculation IMITATE statistical distribu-
tion of real experiment. Therefore, one can deter-
mine statistical uncertainty of experiment by REPETITION of
MC experiment (what cannot be done in real experiment) –

numerical experiment .

Conclusion

One should repeat MC calculation several
times with anticipated number of events, vary-
ing seed numbers for random number gener-
ator. It will give us the statistical parameter
spread. This spread must be prepared with
standard procedure like physical data spread.
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EXAMPLE

γγ → µ+µ−νν̄ with polarized photons in SM

(Kanishev report)

We consider normalized mean values of longitudinal p∓‖ and trans-

verse p∓⊥ momenta of negative and positive muons in the forward
hemisphere (p‖ > 0, subscript +), and charge asymmetry values
∆L and ∆T at different photon polarizations (left – γ−, right –
γ+):

P±L,T+ =

∫
p±‖,⊥dσ

Eγmax

∫
dσ

, ∆L,T =
P−L,T+ − P+

L,T+

P−L,T+ + P+
L,T+
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We evaluate these quantities and their statistical uncertainties at√
s = 0.5 TeV at a given expected number of generated events

(about 106) by repeating the calculation 5 times with different

seed number inputs for MC. We also consider, as an indepen-

dent set of observations, events obtained by simultaneous change

λ1, λ2 → −λ1, −λ2, µ− ↔ µ+ (this change should not change dis-

tributions due to CP conservation in SM) (equivalently 10 rep-

etition). The table presents averaged values of these quantities

together with their relative statistical uncertainties.

Note: High energy photons in Photon Collider will be circularly

polarized.
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γλ1
γλ2

N
P−N
δP−N

P+
N

δP+
N

∆N
δ∆N

γ−γ−
L

T

0.599
0.35%

0.338
0.96%

0.170
0.37%

0.150
0.42%

0.557
0.37%

0.386
0.99%

γ+γ−
L

T

0.209
0.82%

0.159
0.72%

0.556
0.34%

0.249
0.82%

−0.454
0.52%

−0.220
2.52%
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Statistical uncertainty is 3-10 times larger
than 1/

√
N = 10−3. It is naturally to expect that these

uncertainties will be increased when we take into account non-

monocromaticity of photons (consider energy spectra of pho-

tons).

This result mean, in particular, that radiative corrections to this

process are beyond the accuracy of measurement (except FSR).



We try to use in our work CompHEP. However we could not

do it for two reasons.

•Modern version of CompHEP don’t allow to change seed num-

ber for input of MC without authors.

•Modern version of CompHEP don’t allow to consider polarized

photon beams.

We used CalcHEP which modern version allows both to

change seed number for input of MC and to take into account

photon polarization.
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Different vacua in 2HDM
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Motivation

In first moments after Big Bang the temperature of Universe

T was very high, in this stage vacuum expectation values of

Higgs fields are given by minimum of Gibbs potential Φ. The

latter is a sum of Higgs potential V (φ) and term aT2φ2 (in the

SM). – We obtain Higgs model with varying in time parameters.

At large T potential has EW symmetric minimum at 〈φ〉 = 0.

This stage describes widely discussed phenomenon of inflation.

During inflatory expansion the Universe become colder, and at

some temperature the Gibbs potential transforms into well known

form of Higgs model with 〈φ〉 6= 0 – we obtain our world with

massive particles etc (EWSB). This phase transition determine

fate of Universe after inflation.
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1. 2HDM – simplest extension of SM Higgs sector, containing

2 scalar doublets (weak isospinors) φ1 and φ2.

2. Higss sector of MSSM – particular case of 2HDM

We have in mind Higgs model with parameters varying in time

with Lagrangian

L = LSM
gf + T − V + LY ;

LSM
gf – SM interaction, gauge bosons + fermions,

LY – Yukawa interaction of fermions to scalars ,

T – Higgs kinetic term, V – Higgs potential .
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With isoscalars

x1 = φ
†
1φ1, x2 = φ

†
2φ2, x3 = φ

†
1φ2

we have

V = −1
2

[
m2

11x1 + m2
22x2 +

(
m2

12x3 + h.c.
)]

+λ1
2 x2

1 + λ2
2 x2

2 + λ3x1x3 + λ4x3x
†
3 +

[
λ5
2 x2

3 + (λ6x1 + λ7x2)x3 + h.c.

]
.

λ5−7 and m12 are generally complex.

In the extremum of potential xi → 〈xi〉 = yi – common numbers.

Vacuum energy Vvac is given by the same equation with xi → yi.

Vacuum corresponds lowest value of this form.
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The extremes of the potential, EWSB
define the v.e.v.’s 〈φi〉 via

∂V

∂φi
(φ1 = 〈φ1〉, φ2 = 〈φ2〉) = 0.

This equation has trivial electroweak symmetry conserving so-

lution 〈φ1〉 = 0, 〈φ2〉 = 0 and electroweak symmetry violating

solutions.

With accuracy to the choice of z axis in the weak isospin space,

most general solution has form

〈φ1〉 = 1√
2

(
0
v1

)
, 〈φ2〉 = 1√

2




u

v2eiξ


 ;
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It is easy to check that ∂x1/∂φ2 = ∂x2/∂φ1 = 0 and

x3

(
∂x1
∂φ1

φ1

)
− x1

(
∂x1
∂φ1

φ2

)
= x∗3

(
∂x∗3
∂φ1

φ2

)
− x2

(
∂x∗3
∂φ1

φ1

)
= 0,

x3

(
∂x∗3
∂φ1

φ1

)
−x1

(
∂x∗3
∂φ1

φ2

)
=x∗3

(
∂x1
∂φ1

φ2

)
−x2

(
∂x1
∂φ1

φ1

)
=x3x∗3−x1x2.

Now, denoting Z = y∗3y3 − y1y2, the extremum condition can be

rewritten as
〈
x3

(
∂V
∂φ1

φ1

)
−x1

(
∂V
∂φ1

φ2

)〉
=Z

(
λ4y3+λ∗5y∗3+λ∗6y1+λ∗7y2−m∗2

12
2

)
=0,

〈
x∗3

(
∂V
∂φ1

φ2

)
−x2

(
∂V
∂φ1

φ1

)〉
=Z

(
λ1y1+λ3y2+λ∗6y∗3+λ6y3−m2

11
2

)
=0,

〈
x3

(
∂V
∂φ2

φ1

)
−x1

(
∂V
∂φ2

φ2

)〉
=Z

(
λ2y2+λ3y1+λ∗7y∗3+λ7y3−m2

22
2

)
=0.

Therefore, two opportunities can be realized for extremum,

Z = 0 and Z 6= 0.
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Z = y∗3y3 − y1y2 6= 0⇒ u 6= 0

The v.e.v.’s are given by the system of linear algebraic equations

with unique solution

λ1y1+λ3y2+λ∗6y∗3 + λ6y3 = m2
11/2,

λ2y2+λ3y1+λ∗7y∗3 + λ7y3 = m2
22/2,

λ4y∗3+λ5y3+λ6y1 + λ7y2 = m2
12/2.

In this case it is not possible to split the gauge boson mass

matrix into a neutral and charged sector, the interaction of gauge

bosons with fermions will not preserve electric charge, photon

become massive, etc. – we have a charged vacuum, with

a heavy photon! and other nonphysical properties (J. L. Diaz-

Cruz et al. (1992,1993).

We are in another word, BUT ...
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Z = y∗3y3 − y1y2 = 0⇒ u = 0

Standard vacuum
Another solution of extremum condition

2) with Z = y∗3y3 = y1y2 ⇒ u = 0 .

⇒ 〈φ1〉 = 1√
2

(
0
v1

)
, 〈φ2〉 = 1√

2




0

v2eiξ


 .

It satisfies a condition for U(1) symmetry of electromagnetism.

Standard v1 = v cosβ, v2 = v sinβ with the SM constraint

v =
(
GF

√
2

)−1/2
= 246 GeV. It can describe reality.

In this case quantities yi cannot be considered as independent,

the v.e.v.’s cannot be obtained directly by minimization of form

Vvac in yi – equations for v.e.v.’s form system of nonlinear equa-

tions with many specific features.
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Simple model
We construct toy model with λ1 = λ2 = λ3 = λ, λ4 = λ6 = λ7 =

0, m2
11 = m2

22 = 2m2, m2
12 = 2µ and all real coefficients

V =
λ

2
(x1 + x2)

2 +
λ5

2

(
x2
3 + x

†2
3

)
−m2(x1 + x2)− µ2(x3 + x

†
3) .

Stability (positivity) condition reads in this case as λ > |λ5|.
This model contains extra symmetry φ1 ↔ φ2, it results in some

degenerations which are absent in more realistic case.



Z 6= 0, charged vacuum

The vacuum state is given by 2 equations

λ5y3−µ2 = 0 ⇒ y3 =
µ2

λ5
, λ(y1+y2)−m2 = 0 ⇒ y1+y2 =

m2

λ
.

In this case our degeneration don’t allow describe y1 and y2

separately. The vacuum energy in this case is independent on

relation between v1 and v2:

V ch
vac = −m4

2λ
− µ4

λ5
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Z = 0, neutral vacua

Let us present set of eq-s for v.e.v.’s in our case:

∂V/∂φ
†
1

∣∣∣
φi=vi

= λ(y1 + y2)v1 + λ5y3v2 −m2v1 − µ2v2 = 0 , (A)

∂V/∂φ
†
2

∣∣∣
φi=vi

= λ(y1 + y2)v2 + λ5y∗3v1 −m2v2 − µ2v1 = 0 . (B)

Let us organize:

〈(A)φ†2 − (B)†φ1〉 = (y2 − y1)(λ5y3 − µ2) = 0 . (1)

So that we have two solutions

(I) : y1 = y2 ≡ y = v2/2 (tanβ = 1), y3 = yeiξ ;

(II) : y3 = µ2/λ5 .
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Solution II

Solution (II) violates our accidental degeneracy. Having in mind

(A) we obtain

y1 + y2 = m2/λ.

This sum is the same as in the case of charged vacuum.

⇒ V II
vac = V ch

vac .

In this case condition Z = 0 (y2
3 = y1y2) allows specify y1, y2 in

contrast with the case of Z 6= 0 as

y1,2 ≡ v2
1,2 =

m2

2λ
±

√√√√ m4

4λ2 −
µ4

λ2
5

.
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Solutions I

For this solution we have with above equations for v.e.v.’

V I
vac =

λ

2
v4 +

λ5

2
v4cos2ξ −m2v2 − µ2v2cosξ .

To find extremum, first find minimum in ξ at fixed v. It gives

λ5v4sin2ξ − 2µ2sinξ ⇒




(a) sinξ = 0 ,

(b) cosξ = µ2

2λ5v2 .

After that we have for solution Ia

V Ia
vac = (λ + λ5)

2 v4 − (m2 + µ2)v2 ⇒ v2 = m2 + µ2

λ + λ5
⇒

⇒ V Ia
vac = −(m2 + µ2)2

2(λ + λ5)
,
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To find vacuum energy for solution Ib, we insert obtained value

cosξ and with cos2ξ = 2cos2ξ − 1. Finally we have

V Ib
vac = λ

2v4 + λ5
2 v4

(
2 µ4

4λ2
5v4 − 1

)
−m2v2 − µ4

2λ5
=

= (λ− λ5)
2 v4 −m2v2 − µ4

4λ5
⇒

⇒ v2 = m2

(λ− λ5)
, cosξ = µ2(λ− λ5)

2m2λ5
⇒

⇒ V Ib
vac = − m4

2(λ− λ5)
− µ4

4λ5
.

CP violated state based on potential with all real coefficients.



Let us compare energies for different vacua

V Ia
vac − V ch

vac = (m2λ5 − µ2λ)2

2λλ5(λ + λ5)

V Ib
vac − V ch

vac =
−m4λ2

5 + µ4λ(λ− λ5)
4λλ5(λ− λ5)

V Ib
vac − V Ia

vac = −[2m2λ5 − µ2(λ− λ5)]
2

4λ5(λ
2 − λ2

5)

What extremum is realized as vacuum state, depends on param-

eters.

In particular at µ2=m2/2, λ5=0.7λ and denoting m4/λ= ε, we

have CP violating vacuum state

V Ib
vac = −1.75ε (cosξ = 3/28 ≈ 0.1) , V Ia

vac = −0.66ε , V II
vac ≡ V ch

vac = −0.86ε .
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Variation of parameters of Gibbs potential with temperature and

density can change vacua. For each of them neutral direction

can different, some of realized during evolution vacuums can be

charged, CP violation can appear and disappear. Huge fluctua-

tions at these transitions can be related to a modern structure

of matter in Universe, domains of intermediate phases can exist

long time influencing evolution of Universe.

This sequence of phase transitions demands detail study.
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