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Introduction
Most of real-world problems are described by systems of equations
rather then by an isolated single equation. Moreover, most often
equations which arise in natural sciences and engineering are of
polynomial type with respect to unknowns.
Thus, in development of all three computer-aided approaches

1 symbolic algebraic analysis,
2 numerical solving,
3 visualization,

one has to pay a primary attention to systems of polynomially-
nonlinear equations.

Goal of symbolic algebraic analysis: given equations, extract from
them as much information on solutions as possible without (generally
impossible) explicit integration/solving and/or "simplify/rewrite" the
equations for the further numerical solving.
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Introduction (cont.)
But what can we hope to do algorithmically in the general
(polynomially-nonlinear) case of equation systems?

Check compatibility, i.e., consistency.
Detect dimension of the solution space
("arbitrariness" in general analytical solution for DEs).
Eliminate a subset of variables.
Reduce the problem to (a finite set) of "simpler" problems.
Check satisfiability of an extra equation on the solutions.
Find Lie symmetries (DEs).
Formulate a well-posed initial value problem (PDEs).
Compute "hidden constraints" for dependent variables or
numerical indices (ADEs).
Rewrite into another form more appropriate for numerical solving.
Generate finite difference schemes (for PDEs).
........................................................................................
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Introduction (cont.)

Is there a "universal" algorithmic tool for the listed subproblems?

If the system has polynomial nonlinearity in unknowns with
"algorithmically computable" coefficients, then such a tool exists and
based on transformation of the system into another set of equations
with certain "nice" properties.

For the conventional polynomial systems and some their
generalizations to noncommutative polynomials, for linear PDEs and
linear finite difference equations (FDEs) / recurrence relations (RRs)
such a form is canonical, i.e., uniquely defined by the initial systems
and an order on the variables, and called reduced Gröbner basis (GB)
(Buchberger’65).

Another "nice" canonical form is called Involutive Basis (IB) (Gerdt,
Blinkov’98). IB is also GB, although (in most cases) redundant as a
Gröbner one.
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Introduction (cont): Simple Examples
Compatibility{

ux + 1 = 0,
uy + u = 0

cross−derivation
=⇒

{
∂y (ux + 1) = 0,
∂x(uy + u) = 0

=⇒ ux = 0 =⇒ 1=0 (!)

contradiction
Solution space{

uxxy = 0,
uxyy = 0

=⇒ u = C xy + f1(x) + f2(y)

arbitrary constant and two functions
Elimination {

uxxy − u = 0,
uxyy − u = 0

ux�uy

=⇒

{
ux − uy = 0,

uyyy − u = 0

⇑ ux eliminated
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Introduction (cont.)
The method of Gröbner bases has been applied successfully to:

commutative algebra and algebraic geometry
invariant theory
Lie symmetry analysis of differential equations
dynamical systems
partial differential equations
symbolic summation and integration
non-commutative algebra
robotics
numerics (e.g. wavelets construction and difference schemes
generation)
systems theory (e.g. control theory)
constrained dynamics (Dirac’s formalism)
reduction of loop Feynman integrals (Tarasov’98,V.Smirnov &
A.Smirnov’05)
.....................................
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Introduction (cont.): Basic Idea

The general strategy if the Gröbner basis approach is to
Transform a set F of equations (that describes the problem at
hand) another set G of polynomials with certain "nice" properties
(called a Gröbner basis) such that
F and G are "equivalent" and G is "simple" than F .

From the theory and practice of Gröbner bases it is known:
Because of some "nice" special properties of Gröbner bases,
many problems that are difficult for general F are "easy" for
Gröbner basis G
There are algorithms and their implementations for transforming
an F into G.
The solution of the problem for G can often be easily translated
back into a solution of the problem for F .
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Basic Notions
The theory of Gröbner bases is centered around the concept of ideals
generated by finite sets of multivariate polynomials. Thus, to introduce
the basic of Gröbner bases theory, we start our discussion by defining
some related basic algebraic structures.

Definition. A ring < R,+, · > is a nonempty set R with the two binary
operations addition (+) and multiplication (·) on R such that < R,+ >
is an abelian group, (·) is associative with an identity e
(e · a = a · e = a, ∀a ∈ R), and the distributive law

a · (b + c) = a · b + a · c, (a + b) · c = a · c + b · c

holds ∀a, b, c ∈ R. If (·) is commutative, then the ring is called
commutative. < R,+, · > is called a field if every nonzero element of R
has a multiplicative inverse in R.

Example. <Z,+, · > is a commutative ring, but not a field, whereas
< Q,+, · > is a field.
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Basic Notions (cont.)

Definition. Let N denote the nonnegative integers and let
µ = (µ1, . . . , µn) be a power vector (multiindex) in Nn and let
(x1, . . . , xn) be variables. Then a monomial xµ := xµ1

1 · · · xµn
n . The total

degree of xµ is |µ| = µ1 + · · ·+ µn. A polynomial f in (x1, . . . , xn) with
coefficient in a field K is the finite sum

f (x1, . . . , xn) :=
∑

µ

aµxµ , aµ ∈ K .

The total degree of f is max{µ | aµ 6= 0}.

Remark. The set of all polynomials in (x1, . . . , xn) over the coefficient
field K is denoted by K[x1, . . . , xn]. It forms a commutative ring called
polynomial ring.
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Basic Notions (cont.)

Definition. Let < R,+, ·, > be a commutative ring. A nonempty subset
I ∈ R is called an ideal if I is closed under addition and is closed
under inside-outside multiplication.

Definition. Let F = { f1, . . . , fs } be a set of polynomials. Then the ideal
I generated by F , denoted also by Id(F ), is given by

I={
s∑

i=1

hi fi | hi ∈ K[x1, . . . , xn] } .

The polynomial set F is called basis of the ideal I. Since F is finite, I
is finitely generated.

Hilbert Basis Theorem. Every ideal I ⊆ K[x1, . . . , xn] is finitely
generated.
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Monomial Order
Obviously, there are many bases for one ideal. We can always add any
linear combination of the generators, or suppress one of them if it is a
linear combination of the others. However, among the different bases
of an ideal stands a very useful basis: Gröbner basis (Buchberger’65).

A Gröbner basis is defined in terms of an ideal (i.e. its generating set)
and a monomial order.

Definition. A total (linear) order � on the monomials is called
admissible if

(i) m 6= 1 ⇐⇒ m � 1, (ii) m1 � m2 ⇐⇒ m1m � m2m

for any monomials m, m1, m2.

Given � and f ∈ F ⊂ R, there is the leading monomial of f denoted by
lm(f ). Correspondingly, the leading term lt(f ) and the leading
coefficients lc(f ) are given by lt(f ) := lc(f ) · lm(f ). We shall denote the
set of leading monomials in F by lm(F ).
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Monomial Order: Examples
Assume that x1 � x2 � · · · � xn

Lexicographical order (Lex)
xα �lex xβ if in the vector difference α−β = {α1−β1, . . . , αn−βn}
the left-most nonzero entry is positive.
Graduated (total degree then) lexicographical order (GradLex)
xα �grlex xβ if

|α| =
n∑

i=1

αi � |β| =
n∑

i=1

βi or if |α| = |β| then α �lex β.

Graduated (total degree then) reverse lexicographical order
(GradRevLex) or (DegRevLex) xα �grlex xβ if

|α| =
n∑

i=1

αi � |β| =
n∑

i=1

βi or if |α| = |β|

and in α− β the right-most nonzero entry is negative.
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Monomial Order: Examples (cont.)

In the bivariate case x � y :
Lex

1 ≺ x ≺ x2 ≺ x3 ≺ · · · ≺ y ≺ xy ≺ x2y ≺ · · · ≺ y2 ≺ xy2 ≺ x2y ≺ · · ·

GradLex, GradRevLex

1 ≺ y ≺ x ≺ y2 ≺ xy ≺ x2 ≺ y3 ≺ xy2 ≺ x2y ≺ x3 ≺ · · · .

In the threevariate case x � y � z:

x2yz2 �grlex xyz3 , x2yz2 ≺grevlex xyz3

since α− β = {1, 0,−1}.
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Gröbner Bases

Definition:. (Buchberger’65) A finite subset G ⊂ R is Gröbner basis of
ideal I = Id(G) ∈ R if

∀f ∈ I, ∃g ∈ G : lm(g) | lm(f ) .

It follows that f ∈ I is reducible modulo G

f −→
g

f ′ := f − lt(f )
lt(g)

g, f ′ ∈ I, . . . , f −→
G

0 .

Definition. Given a finite set F ⊂ R, a polynomial h ∈ R, and a
monomial order �, a normal form NF (h, F ) of p modulo F is defined as

NF (h, F ) = h̃ = h −
∑

ij

αijmij fj

with αij ∈ K, fj ∈ F , mij ∈M, lm(mijgj) � lm(h) and there are no
monomial in h̃ multiple of any element in lm(F ).
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Gröbner Bases (cont.)

Definition:. (Buchberger’65) A finite subset G ⊂ R is Gröbner basis of
ideal I = Id(G) ∈ R if

∀f ∈ I, ∃g ∈ G : lm(g) | lm(f ) .

It follows that f ∈ I is reducible modulo G

f −→
g

f ′ := f − lt(f )
lt(g)

g, f ′ ∈ I, . . . , f −→
G

0 .

Definition. Given a finite set F ⊂ R, a polynomial h ∈ R, and a
monomial order �, a normal form NF (h, F ) of p modulo F is defined as

NF (h, F ) = h̃ = h −
∑

ij

αijmij fj

with αij ∈ K, fj ∈ F , mij ∈M, lm(mijgj) � lm(h) and there are no
monomial in h̃ multiple of any element in lm(F ).
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Algorithms

Gröbner bases can be computed by Buchberger’s algorithm
(Buchberger’85) which implemented in most of modern
general-purpose computer algebra systems such as Maple,
Mathematica, Reduce, MuPAD, etc, or by more efficient algorithms: F4
(Faugère’98), involutive algorithm (Gerdt’05).

The fastest implementations are in
Maple (library FGb implementing F4)
Magma (F4)
JB and GINV (Involutive algorithm) http://invo.jinr.ru
Singular (Buchberger’s and involutive algorithms)
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Simplest Form of Buchberger’s Algorithm

Algorithm: Gröbner Basis(F ,�)

Input: F ∈ K[x1, . . . , xn] \ {0}, a finite set; ≺, an order
Output: G, a Gröbner basis of Id(F )
1: G := F ;
2: do
3: choose a pair f1, f2 ∈ G and compute S(f1, f2)
4: h := NF (S(f1, f2), G)
5: if h = 0 then
6: goto 3 and choose the next pair
7: else
8: G := G ∪ {h}
9: fi

10: od while h 6= 0
11: return G

S−polynomial S(f1, f2) := c1t1f1 − c2t2f2. Here c1, c2 ∈ K and t1, t2 are
monomials such that c1t1lm(f1) = c2t2lm(f2).
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Some Properties of GB

Uniqueness of (inter)reduced monic GB. Ideal(F ) = Ideal(G) ⇐⇒
GB(F )=GB(G).
Idempotency of reduced GB
G :=reduced GB =⇒ GB(G)=G.
Principal Ideal (generated by a single polynomial) Ideal(F ) is
principal ⇐⇒ GB(F ) has exactly one element.
Trivial Ideal. Ideal(F ) = K [x1, . . . , xN ] ⇐⇒ GB(F )={1}.
Solvability of a system of equations F is solvable ⇐⇒ 1/∈ G.
Finite Solvability of polynomial equations F has only finite many
solutions ⇐⇒ ∀ 1 ≤ i ≤ n | ∃f ∈GB(F ) such that lm(f ) is a power
of xi .
Number of Solutions of polynomial equations The number of
solutions of F (with multiplicities) = cardinality of {u |u /∈ "set of
multiples of lm(GB(F ))"}.
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Rings of Difference Polynomials
Let {y1, . . . , ym} be the set of difference indeterminates, e.g. functions
of n−variables {x1, . . . , xn}, and θ1, . . . , θn be the set of mutually
commuting difference operators (differences), e.g.,

θi ◦ y j = y j(x1, . . . , xi + 1, . . . , xn).

A difference ring R with differences θ1, . . . , θn is a commutative ring R
with a unity such that ∀f , g ∈ R, 1 ≤ i , j ≤ n θi ◦ f ∈ R and

θiθj = θjθi , θi ◦ (f + g) = θi ◦ f + θi ◦ g, θi ◦ (f g) = (θi ◦ f )(θi ◦ g)

Similarly one defines a difference field.

Remark. The above and below concepts are translated to differential
algebra if θi are the partial derivations

θi ◦ y j = ∂iy j(x1, . . . , xi , . . . , xn).
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Rings of Difference Polynomials (cont.)

Let K be a difference field. Denote by R := K{y1, . . . , ym} the
difference ring of polynomials over K in variables

{ θµ ◦ yk | µ ∈ Zn
≥0, k = 1, . . . , m } .

Denote by RL the set of linear polynomials in R and use the notations

Θ = { θµ | µ ∈ Zn
≥0 } .

A difference ideal I in R is an ideal I ∈ R close under the action of any
operator from Θ. If F := {f1, . . . , fk} ⊂ R is a finite set, then the
smallest difference ideal containing F denoted by Id(F ). If F ⊂ RL,
then Id(F ) is a linear difference ideal.
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Ranking

A total ordering ≺ over the set of θµy j is a ranking if it satisfies
1 θiθ

µ ◦ y j � θµ ◦ y j

2 θµy j � θν ◦ yk ⇐⇒ θiθ
µ ◦ y j � θiθ

ν ◦ yk ∀ i , j , k , µ, ν.

If µ � ν =⇒ θµ ◦ y j � θν ◦ yk the ranking is orderly.
If i � j =⇒ θµ ◦ y j � θν ◦ yk the ranking is elimination.

Given a ranking �,

every linear polynomial f ∈ RL \ {0} has the leading term a θ ◦ y j ,
θ ∈ Θ;
lc(f ) := a ∈ K \ {0} is the leading coefficient;
lm(f ) := θ ◦ y j is the leading monomial.
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Gröbner Bases

Given nonzero linear difference ideal I = Id(G) and term order �, its
generating set G = {g1, . . . , gs} ⊂ RL is a Gröbner basis (GB)
(Kondratieva,Levin,Mikhalev,Pankratiev’99) of I if

∀f ∈ I ∩ RL \ {0} ∃g ∈ G, θ ∈ Θ : lm(f ) = θ ◦ lm(g) .

It follows that f ∈ I is reducible modulo G

f −→
g

f ′ := f − lc(f ) θ ◦ (g/lc(g)), f ′ ∈ I, . . . , f −→
G

0 .
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Some Computer Algebra Systems and Packages

Software Commutative PDE LFDE Language
algebra

Maple + diffalg Ore_algebra Maple
Rif Maple

Gb C
FGb C

Mathematica + − − C
Reduce + − − Lisp

OreModules − LPDE LFDE Maple
Janet − LPDE − Maple
LDA − − LFDE Maple
GINV + − − Pyton/C++

JB + − − C
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Reduction of 1-loop Integral

Consider a simple one-loop propagator type scalar integral with one
massive and another massless particle studied, for example, in
Tarasov’98,Smirnov’04

f (k , n) :=
1

iπd/2

∫
dds

Pk
s−q,mPn

s,0
.

Here we apply the Gröbner basis method, as implemented in our
package LDA (Gerdt,Robertz’05), directly to the recurrence relations:

[d − 2k − n − 2m2k1+ − n 2+(1− − q2 + m2)] f (k + 1, n + 1) = 0,

[n− k − k 1+(q2 + m2 − 2−)− n2+(1− − q2 + m2)] f (k + 1, n + 1) = 0.

Here
1±f (k , n) = f (k ± 1, n), 2±f (k , n) = f (k , n ± 1).
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Conclusions

GB are the most universal algorithmic tool for the multivariate
equation systems of polynomial type. In particular for multivariate
recurrence relations with symbolic indices.
GB have found numerous applications in many areas of science
and technology.
There are efficient algorithms for computing polynomial GB. Their
extension to differential and difference systems is in progress.
There are many different implementations of the Gröbner basis
algorithms into computer algebra systems and software packages.
In practice, efficiency of constructing GB strongly depends on the
order chosen. Heuristically, reverse lexicographical order is best.
Complexity of computing GB is at least exponential in the number
of variables.
Blowing-up of intermediate (especially parametric) coefficients is
one of the main computational obstacles.
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