Associated Production of Higgs Bosons and Heavy Quarks in Two Photon Collisions at NLO

Frank Fugel

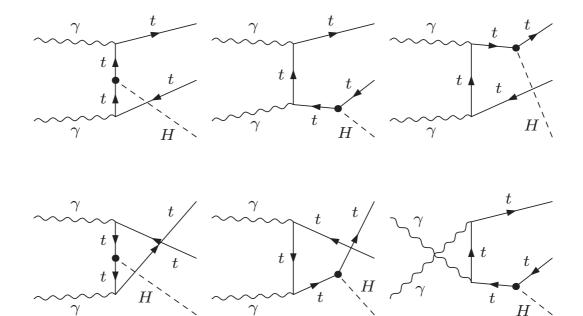
II. Institut für Theoretische Physik Universität Hamburg

In collaboration with Bernd A. Kniehl and Gudrun Heinrich

Outline

- Introduction
- Born results
- NLO calculations
- Outlook

Introduction

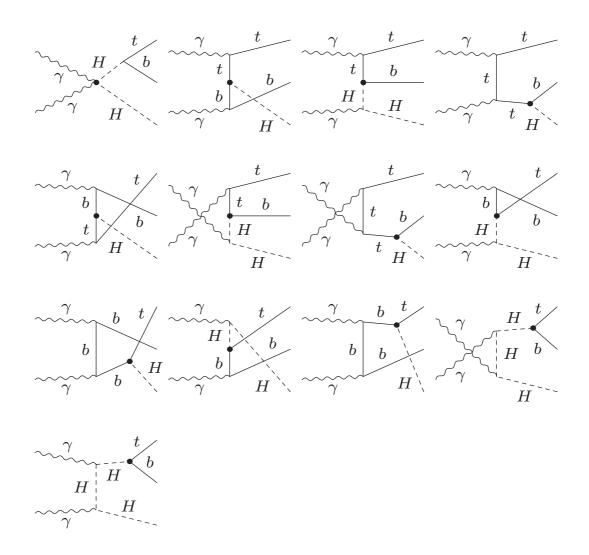

Laser back-scattering technique

- \rightarrow A future Linear Collider could be run in two photon mode
- \rightarrow Processes which proceed via two photon collisions can be studied
- \rightarrow Calculate cross sections of subprocesses and integrate over photon distributions

It turns out that the photon collider is a very useful tool

In this work: $\gamma \gamma \to t \, \overline{t} \, H$ at $\mathcal{O}(\alpha_s)$

Born niveau diagrams:



- \rightarrow Check on results given in literature
- \rightarrow Good test of applied methods

Associated Higgs production also possible in $e^+e^-\text{-}\text{collisions:} \rightarrow \text{Compare results}$

Then one could consider: $\gamma \gamma \rightarrow t \, \overline{b} \, H^- \ / \ \overline{t} \, b \, H^+$ at $\mathcal{O}(\alpha_s)$

Born niveau diagrams:

Known results for $\gamma\gamma$ collisions

- All cross sections known at LO $\rightarrow Q\bar{Q}H$: [Boos *et al.*], [Cheung] $\rightarrow Q\bar{Q}\Phi$: [Guo *et al.*] $\rightarrow tbH^{\pm}$: [He *et al.*], [Kanemura *et al.*]
- $\mathcal{O}(\alpha_s)$ and $\mathcal{O}(\alpha_{ew})$ results known for $Q\bar{Q}H \rightarrow$ [Hui *et al.*]

Known results for e^+e^- -collisions

- All cross sections known at LO \rightarrow [Djouadi *et al.*], ...
- QCD results: $\rightarrow Q\bar{Q}H$: [Dittmaier *et al.*], [Dawson *et al.*] $\rightarrow Q\bar{Q}\Phi$: [Dawson *et al.*], [Dittmaier *et al.*]
- SUSY-QCD results: $\rightarrow Q\bar{Q}\Phi$: [Zhu], [Häfliger *et al.*]
- Full $\mathcal{O}(\alpha_s)$ results also known for $t\bar{b}H^-/\bar{t}bH^+$: \rightarrow [Kniehl *et al.*]
- $\mathcal{O}(\alpha_{ew})$ results known for $Q\bar{Q}H$: \rightarrow [Belanger *et al.*], [Denner *et al.*], [You *et al.*]

Relevance: $\gamma \gamma \to Q \, \bar{Q} \, H$ resp. $\gamma \gamma \to Q \, \bar{Q} \, \Phi$

• Direct measurement of Yukawa couplings

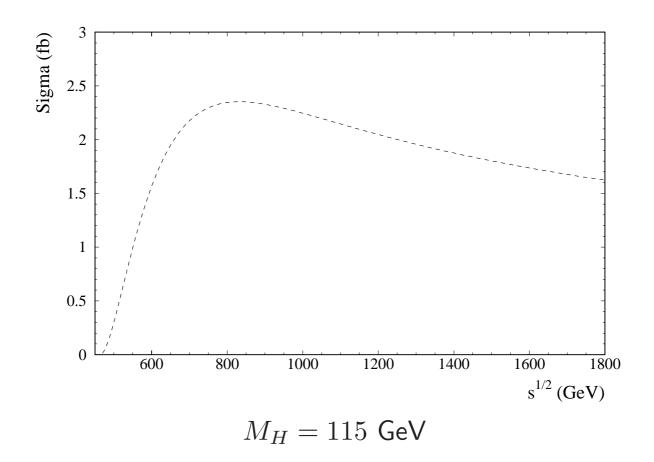
Relevance: $\gamma \gamma \rightarrow t \, \overline{b} \, H^- \ / \ \overline{t} \, b \, H^+$

- Direct investigation of $\tan\beta$
- Proof of new physics beyond Standard Model (if H[±] too heavy to be produced in pairs)

Relevance: NLO corrections

- Increase of precision for prediction
- In particular, reduction of scheme and scale dependences

Born results

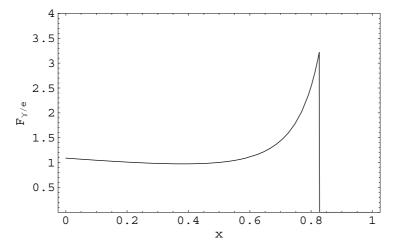

- First given in [Boos et al.], [Cheung] in 1992
- Also calculated by [Guo *et al.*] in 2000
- Recalculated by [Hui et al.] in 2004
- \rightarrow Recent results differ from results published in 1992; results of 2000?
- \rightarrow New and independent calculation desirable

Cross section of subprocess

Calculation:

• Fully automated computation with FeynArts3.2/FormCalc3.2

Results:



Cross section of full process

Calculation:

$$\sigma(s) = \int_{x_l}^{x_u} dx_1 \int_{x_l \cdot \frac{x_u}{x_1}}^{x_u} dx_2 F(x_1) F(x_2) \hat{\sigma}(x_1 x_2 s)$$

$$\begin{array}{lll} x_u & \doteq & \text{upper limit given by energy spectrum} \\ x_l & = & \frac{(2m_t + M_H)^2}{x_u s} \\ \hat{\sigma} & \triangleq & \text{cross section of subprocess} \end{array}$$

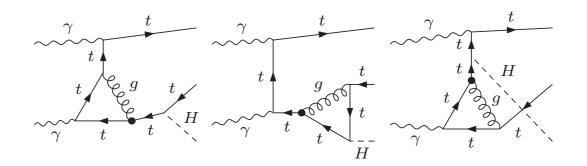
Energy spectrum of back-scattered photon versus energy fraction of incident electron

- Integration over photon distributions carried out together with phase space integration
- Independent calculation of Gudrun Heinrich based on CompHEP and a self-made routine for the integration over photon distributions

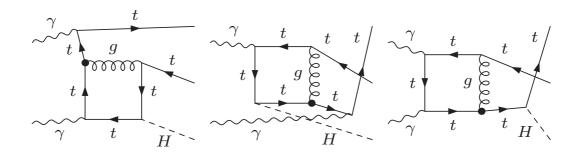
Results:

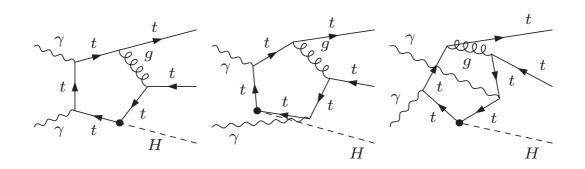
$m_t \; [{ m GeV}]$	M_H [GeV]	$\sqrt{s} \; [{\rm GeV}]$	σ [fb]
120	60	500	0.390(8)
		1000	2.18(6)
		2000	2.39(1)
150	60	1000	2.74(0)
		2000	3.42(1)
	140	1000	0.311(7)
		2000	0.805(8)
180	140	1000	0.341(2)
		2000	1.05(5)

- \rightarrow In agreement with G. H. and with [Hui *et al.*]
- \rightarrow Variation of parameters does not seem to resolve the problem


NLO calculations

Diagrams for NLO QCD corrections


Self-energy corrections


Vertex corrections

Boxes

Pentagons

- \rightarrow 5-point tensor integrals of rank 3 occur
- \rightarrow Soft singularities occur which have to be cancelled against IR singularities arising from soft gluon radiation at tree level

Calculations

- Use FeynArts/FormCalc to generate diagrams
- Reduce N-point tensor integrals to "basis" set of scalar integrals [Giele *et al.*]
- Use FORM to perform reduction
- Work in framework of dipole subtraction method [Catani *et al.*]
- Use FORTRAN to integrate over phase space and photon distributions
- Optimisation necessary (Calculate functions only once)

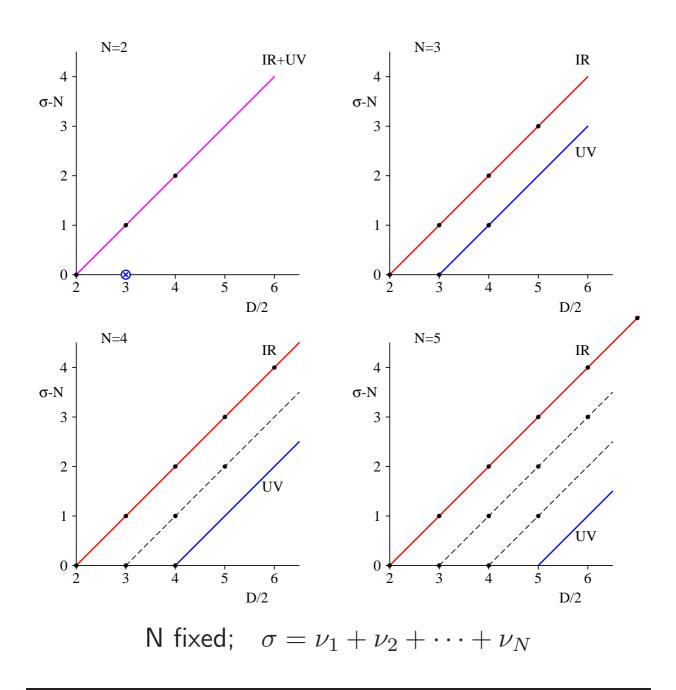
Problem: Exceptional phase space configurations

- Reimplement everything directly in FORTRAN $(\rightarrow$ FORTRAN90)
- Again optimise (store integrals when calculated)
- Use methods of [Ellis *et al.*] in order to treat exceptional phase space configurations
- Provide results for "basis" set of scalar integrals \rightarrow Reduction to master integrals

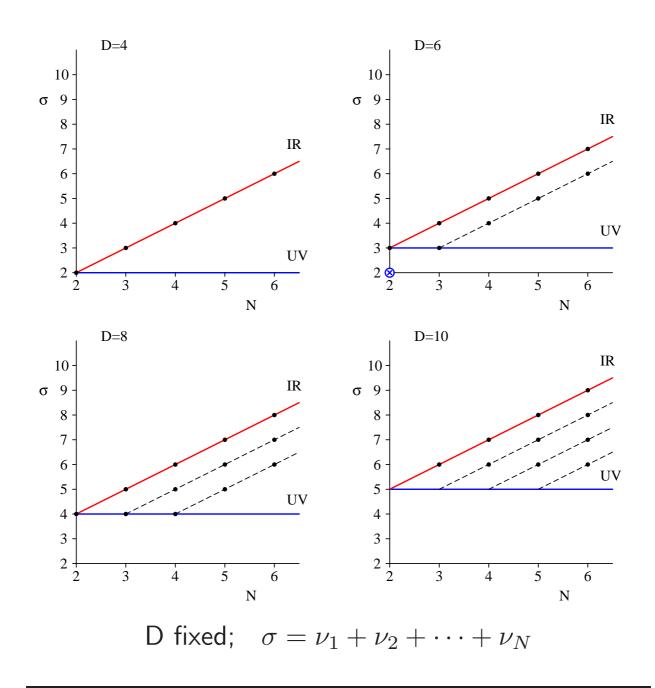
Independent calculation based on different reduction method performed by Gudrun Heinrich as a strong check on results

Tensor reduction method - [Giele *et al.*] Notation:

$$I_N^{\mu_1\mu_2\cdots\mu_m}(D; \{q_i\}, \{\nu_i\}) = \int \frac{d^D l}{i\pi^{D/2}} \frac{l^{\mu_1}l^{\mu_2}\cdots l^{\mu_m}}{d_1^{\nu_1}d_2^{\nu_2}\cdots d_N^{\nu_N}}$$


$$d_i = \left(l + q_i\right)^2 + i0$$

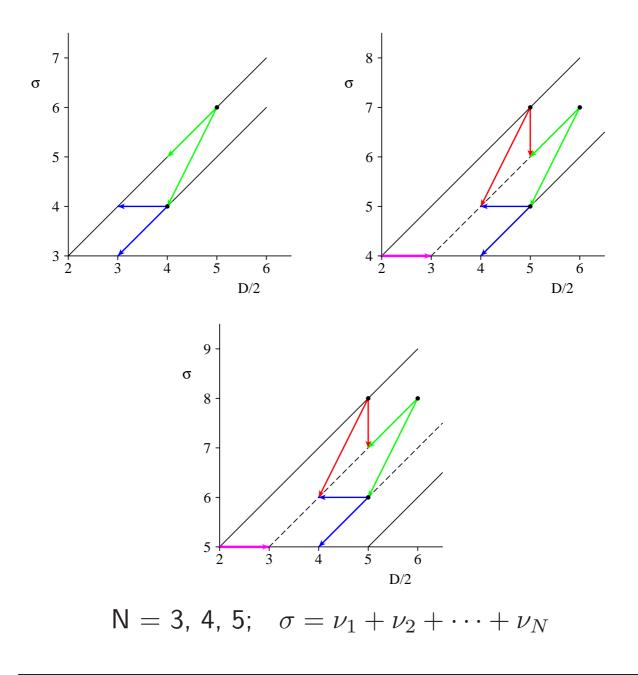
Davydychev decomposition:


$$I_{N}^{\mu_{1}\mu_{2}\cdots\mu_{m}}(D; \{q_{i}\}, \{1\}) = \sum_{\lambda, x_{1}, x_{2}, \dots, x_{N}} \delta_{(2\lambda + \sum_{i} x_{i} - m)} \left(-\frac{1}{2}\right)^{\lambda} x_{1}! x_{2}! \cdots x_{N}!$$

$$\times \left\{g^{\lambda} q_{1}^{x_{1}} q_{2}^{x_{2}} \cdots q_{N}^{x_{N}}\right\}^{\mu_{1}\mu_{2}\cdots\mu_{m}}$$

$$\times I_{N} \left(D + 2(m - \lambda); \{q_{i}\}, \{1 + x_{i}\}\right)$$


Produced integrals (1):



Produced integrals (2):

- Read off "basis" set of UV-divergent integrals
- Derive recursion relations for finite and IR-divergent integrals
- \rightarrow "Basis" set of integrals,

$$\begin{split} \mathcal{A}_{M}(p_{1},p_{2},\ldots,p_{M}) &= \\ & \sum_{\nu_{1}\nu_{2}\nu_{3}} K_{\nu_{1}\nu_{2}\nu_{3}}^{IR} I_{3}^{IR}(D = 2(\sigma - 1);\nu_{1},\nu_{2},\nu_{3}) \\ &+ \sum_{\{\nu_{\ell}\}} K_{\{\nu_{\ell}\}}^{fin} \tilde{I}_{N}^{UV}(D = 2\sigma;\{\nu_{\ell}\}) \\ &+ \sum_{\{\nu_{\ell}\}} K_{3}^{fin} I_{3}^{fin}(D = 4;1,1,1) \\ &+ \sum_{\text{triangles}} K_{4}^{fin} I_{4}^{fin}(D = 6;1,1,1,1) \\ &+ \sum_{\text{boxes}} K_{5}^{fin} I_{5}^{fin}(D = 6;1,1,1,1,1) \\ &+ \sum_{\text{pentagons}} K_{5}^{fin} I_{5}^{fin}(D = 6;1,1,1,1,1) \\ &+ \sum_{i=1}^{8} K_{i}^{UV} \mathcal{I}_{i}^{UV} \end{split}$$

- Need to know coefficients of IR-divergent triangles in D dimensions
 - \rightarrow Analytic instead of numeric methods
- Obtained IR-divergent contribution to amplitude is quite complex
 - \rightarrow Hard to cancel IR-divergences analytically
- \rightarrow Direct determination of IR-divergent contribution without use of recursion relations possible

Generalization of formalism to include masses: \rightarrow [Dittmaier]

Outlook

Todo list:

- Provide expressions for end points of reduction
- Construct real part according to dipole subtraction method
- Cancel divergences analytically
- Perform phase space integration
- Perform various checks
- . . .