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Reduction problem for Feynman integrals

A given Feynman graph Γ → tensor reduction → various
scalar Feynman integrals that have the same structure of
the integrand with various distributions of powers of
propagators

F (a1, . . . , an) =

∫
· · ·

∫
ddk1 . . . ddkh

Ea1

1 . . . Ean
n

.

d = 4 − 2ε; the denominators Er are either quadratic or
linear with respect to the loop momenta pi = ki, i = 1, . . . , h
or to the independent external momenta
ph+1 = q1, . . . , ph+N = qN of the graph.
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Methods: analytical, numerical, semianalytical . . .

An old analytical strategy:
to evaluate, by some methods, every scalar Feynman
integral generated by the given graph.

A traditional strategy:

to derive, without calculation, and then apply integration by
parts (IBP) relations [K.G. Chetyrkin and F.V. Tkachov’81]

between the given family of Feynman integrals as
recurrence relations.

A general integral from the given family is expressed as a
linear combination of some basic (master) integrals.
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The whole problem of evaluation→
constructing a reduction procedure

evaluating master integrals

No common definition of the master integrals.

After solving the reduction problem for a given family, we
qualify some integrals as master integrals.
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The notion of a master integral depends on the chosen
relations and the ordering.

F (a1, . . . , an) are functions of integer variables
a1, . . . , an ∈ N

n

F : an infinitely dimensional linear space of such functions.
The simplest basis:

Ha1,...,an(a′1, . . . , a
′
n) = δa1,a′

1
. . . δan,a′

n

The relations we have can be described as elements of the
adjoint vector space F∗, i.e. the linear functionals on F :

r ∈ F∗, f ∈ F → 〈r, f〉
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Classes of relations:
IBP: ∫

. . .

∫
ddk1ddk2 . . .

∂

∂ki

(
pj

1

Ea1

1 . . . Ean
n

)
= 0 ,

→ ∑
αiF (a1 + bi,1, . . . , an + bi,n) = 0 ,

Lorentz-invariance (LI) identities [T. Gehrmann and E. Remiddi’00]

parity conditions, symmetry relations, e.g.,

F (a1, . . . , an) = (−1)d1a1+...dnanF (aσ(1), . . . , aσ(n)),

Boundary conditions (for a subset of indices ij one has):

F (a1, a2, . . . , an) = 0 when ai1 ≤ 0, . . . aik ≤ 0
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All these relations form an infinitely dimensional vector
subspace R ⊂ F∗.
The set of solutions of all those relations:

S = {f ∈ F : 〈r, f〉 = 0 ∀ r ∈ R}
The dimension of S might be infinite but, practically, it
appears to be finite.

Feynman integrals are a point of the solution space.

An integral F (a1, . . . , an) can be expressed via some other
integrals F (a1

1, . . . , a
1
n), . . ., F (ak

1, . . . , a
k
n) if there exists an

element r ∈ R such that

〈r, F 〉 = F (a1, . . . , an) +
∑

ka′
1,...,a

′
n
F (a′1, . . . , a

′
n) .
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To define of master (irreducible) integral we also need a
priority between the points (a1, . . . , an) → ordering (to know
which integrals to get rid of and which ones to leave).

Feynman integrals are simpler, from the analytic point of
view, if they have more non-positive indices.
Solving IBP relations by hand → reducing indices to zero

Sectors (‘topologies’):
2n regions labelled by subsets ν ⊆ {1, . . . , n}:
σν = {(a1, . . . , an) : ai > 0 if i ∈ ν , ai ≤ 0 if i 	∈ ν}
A sector σν is lower than σν′ if ν ⊂ ν′

F (a′1, . . . , a′n) 
 F (a1, . . . , an) if the sector of (a1, . . . , an) is
lower than the sector of (a′1, . . . , a′n).
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To define an ordering completely introduce it in some way
inside the sectors. At least the corner point with ai = 1 and
ai = 0 is lower than any other point in the given sector.

F (a1, . . . , an) is a master integral if there is no element
r ∈ R acting on F as

〈r, F 〉 = F (a1, . . . , an) +
∑

ka′
1,...,a

′
n
F (a′1, . . . , a

′
n) , (1)

where all the points (a′1, . . . , a′n) are lower than (a1, . . . , an).
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A review of algorithmic approaches
‘Laporta’s algorithm’ [S. Laporta and E. Remiddi’96; S. Laporta’00; T. Gehrmann

and E. Remiddi’01]

‘When increasing the total power of the denominator and
numerator, the total number of IBP equations grows faster
than the number of independent Feynman integrals.
Therefore this system of equations sooner or later becomes
overdetermined, and one obtains the possibility to perform
a reduction to master integrals’
Various implementations:

one public version AIR [C. Anastasiou and A. Lazopoulos’04]

several private versions
[T. Gehrmann and E. Remiddi, M. Czakon, P. Marquard and D. Seidel, Y. Schröder,

C. Sturm, A. Onishchenko, . . . ]
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Reduction using Gröbner bases

Historically, suggested by O.V. Tarasov [O.V. Tarasov’98]

Reduce the problem to differential equations by
introducing a mass for every line,
aii

+ → ∂
∂m2

i

The approach of Gerdt based on Gröbner bases (the
use of Janet bases) [V.P. Gerdt’04, 05]

Another approach based on Gröbner bases (the
so-called sector-bases or s-bases)
[A.V. Smirnov and V.A. Smirnov’05]
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Baikov’s method [P.A. Baikov’96,’97; V.A. Smirnov and M. Steinhauser’03]

The basic ingredient:
∫

. . .

∫
dx1 . . . dxn

xa1

1 . . . xan
n

[P (x1, . . . , xn)](d−h−1)/2 ,

where P is constructed for a given family of integrals
according to some rules and h is the number of loops.
This representation is used

to understand which integrals are master integrals

to construct the coefficient functions ci(a1, . . . , an)

F (a1, . . . , an) =
∑

i

ki ci(a1, . . . , an) ,

where ki do not depend on indices.
A.V. Smirnov Dubna, July 18, 2006 – p.13



Indeed, for a candidate for a master integral with
a1, . . . , an = 0 or 1, the basic parametric representation
allows to construct a function that satisfies the relations R
and that vanishes if (a′1, . . . , a′n) is lower than (a1, . . . , an) (in
particular, if it belongs to a lower sector).

Suppose that (a1, . . . , an) is not a master integral. Then
substituting this function into (1) we get 0 on the left and 1
on the right and come to a contradiction.

Now suppose that we know that the integrals with the
indices A1 = (a1

1, . . . , a
1
n), . . ., Ak = (ak

1, . . . , a
k
n) are master

integrals and we constructed the corresponding solutions of
this type.
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These functions form a basis of the solution space S:

F =
∑

i

kiCi .

Substitute all Aj and solve the system of linear equations

F (Aj) =
∑

i

kiCi(Aj) for i ≤ j .

so the coefficients ki are expressed in terms of F (Ai).

Thus, the knowledge of ki and Ci → is enough to evaluate
any Feynman integral of the given class.
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The description of our method
Suppose first that we are interested in expressing any
integral in the positive sector σ{1,...,n} as a linear
combination of a finite number of integrals in it.
[A.V. Smirnov and V.A. Smirnov’05, A.V. Smirnov’06]

∑
ciF (a1 + bi,1, . . . , an + bi,n) = 0

The left-hand sides of IBP relations can be expressed in
terms of operators of multiplication by the indices ai and
shift operators Yi = i+, Y −

i = i−, where

(Y ±
i F )(a1, . . . , an) = F (a1, . . . , ai ± 1, . . . , an)
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Thus, one can choose certain operators fi corresponding to
IBP relations and write

(fiF )(a1, . . . , an) = 0 or (fiF ) ≡ 0

for any element of the solution space R. The choice is not
unique, we will get rid of Y −

i

Consider the algebra of operators A0 generated by shift
operators Y +

i and multiplication operators Ai. It acts on the
field of functions F of n integer variables.
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The ideal I of IBP relations generated by the elements fi.

For any element X ∈ I we have, in particular

(XF )(1, 1, . . . , 1) = 0 .

Also we can write

F (a1, a2, . . . , an) = (Y a1−1
1 . . . Y an−1

n F )(1, 1, . . . , 1)

The idea of the algorithm is to reduce the operator in the
right-hand side of the equation using the elements of the
ideal I → we need an ordering on the elements of the
algebra.
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Orderings on the algebra of operators
We had an ordering on the points in the sector — now we
need it to be compatible with a certain ordering on the
algebra of operators → an additional condition:

for any a, b ∈ σν and c ∈ Z
n such that a + c, b + c ∈ σν

one has a ≺ b if and only if a + c ≺ b + c.

Such an ordering on integrals in the positive sector ↔
ordering on the algebra A0:
a degree of a monomial is the degree of the point, it shifts
the corner of the sector to
a degree of an element of the algebra — the highest degree
among its monomials
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The obtained ordering on degrees satisfies the following
properties:
i) for any a ∈ N

n not equal to (0, . . . 0) one has a ≺ (0, . . . 0)
ii) for any a, b, c ∈ N

n one has a ≺ b if and only if a + c ≺ b + c.

E.g., lexicographical ordering:
A set (i1, . . . , in) is higher than a set (j1, . . . , jn),
(i1, . . . , in) 
 (j1, . . . , jn)
if there is l ≤ n such that i1 = j1, i2 = j2, . . . , il−1 = jl−1 and
il > jl.

Degree-lexicographical ordering: (i1, . . . , in) 
 (j1, . . . , jn) if∑
ik >

∑
jk, or

∑
ik =

∑
jk and (i1, . . . , in) 
 (j1, . . . , jn) in

the sense of the lexicographical ordering.
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An ordering can be defined by a matrix.

Lexicographical, degree-lexicographical and reverse
degree-lexicographical ordering for n = 5:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1

1 1 1 1 0

1 1 1 0 0

1 1 0 0 0

1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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Ordering on the positive sector →
ordering of monomials of operators Yi

For two monomials M1 = Y i1−1
1 . . . Y in−1

n and
M2 = Y j1−1

1 . . . Y jn−1
n

(M1 · F )(1, . . . , 1) 
 (M2 · F )(1, . . . , 1) if and only if M1 
 M2

The reduction problem is to reduce the monomial
Y a1−1

1 . . . Y an−1
n modulo the ideal of the IBP relations

Y a1−1
1 . . . Y an−1

n =
∑

rifi +
∑

ci1,...,inY i1−1
1 . . . Y in−1

n
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Apply to F at a1 = 1, . . . , an = 1 to obtain

F (a1, a2, . . . , an) =
∑

ci1,...,inF (i1, i2, . . . , in) ,

where integrals on the right-hand side are “master
integrals”.
The reduction procedure for an element X: similar to the
division of polynomials.
Searching for an element of the basis fi, such that the
highest member of X can be obtained by the highest
member of fi multiplied by a product of Yj (Ai treated as
coefficients), taking the difference with proper coefficients,
the degree of the resulting element is lower.
Irreducible monomials correspond to Feynman integrals
that cannot be reduced by the use of the current basis.
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But the reduction does not always lead to a reasonable
number of irreducible integrals → one has to build a special
basis first (for example, a Gröbner basis).

Building elements with lowest possible degrees
corresponds to resulting in master integrals with minimal
possible degrees.

The initial bases does not suit us — we need to build
special bases. The primary idea: an algorithm based on the
Buchberger algorithm — S-polynomials, reductions.
The problems:

complicated calculations

one is also interested in integrals not only in the positive
sector.

the problem of combining results in different sectorsA.V. Smirnov Dubna, July 18, 2006 – p.24



Our algorithm [A.S.& V.S’05] : to build a set of special bases of
the ideal of IBP relations (s-bases).
In the sector σ{1,...,n}, consider Yi as basic operators.
In the sector σν , consider Yi for i ∈ ν and Y −

i for other i as
basic operators.

Construct sector bases (s-bases), rather than Gröbner
bases for all the sectors.

An s-basis for a sector σν is a set of elements of a basis
which provides the possibility of a reduction to master
integrals in this sector and integrals whose indices lie in
lower sectors, i.e. σν′ for ν′ ⊂ ν.
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When performing calculations even in the positive
sector, we allow Yi in negative degrees (but the highest
degree has to stay in the positive sector) — the point is
that during the reduction procedure the use of such
elements will lead to reducing to integrals in lower
sectors.

The construction — close to the Buchberger algorithm
but it can be terminated when the ‘current’ basis
already provides us the needed reduction.

The basic operations are the same, i.e. calculating
S-polynomials and reducing them modulo current basis,
with a chosen ordering.
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After constructing s-bases for all non-trivial sectors one
obtains a recursive (with respect to the sectors) procedure
to evaluate F (a1, . . . , an) at any point and thereby reduce a
given integral to master integrals.

Many sectors — seemingly the problem becomes harder.
But the important simplification is that one is not trying to
solve the reduction problem in each sector separately but
allows to reduce the integrals in a given sector to lower
sectors — similarly to the “by hand” solutions.

Description of the algorithm (implemented in
Mathematica): [ A.V. Smirnov’06]
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Examples

A number of diagrams with up to 6 indices;

Reduction of a family of Feynman integrals relevant to
the three-loop static quark potential (7 indices);
[A.V. Smirnov and V.A. Smirnov’05]

A family of Feynman integrals with 9 indices
[A.G. Grozin, A.V. Smirnov and V.A. Smirnov, in preparation]

1 2

3 4

5

6

7 8

F (a1, . . . , a9) =∫ ∫ ∫
(−2v ·k)a1(−2v ·l)a2(−k2)a3(−l2)a4 [−(k − l)2]a5

(2v ·r)−a9ddk ddl ddr

(−r2 + m2)a6 [−(k + r)2 + m2]a7 [−(l + r)2 + m2]a8
.
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Symmetry:
(1 ↔ 2, 3 ↔ 4, 7 ↔ 8)
Boundary conditions: F (a1, . . . , a9) = 0 if one of the following
sets of lines has non-positive indices: {5, 7}, {5, 8}, {6, 7},
{6, 8}, {7, 8}, {3, 4, 6}.
Master integrals:

I1 = F (1, 1, 0, 1, 1, 1, 1, 0, 0), I2 = F (1, 1, 1, 1, 0, 0, 1, 1, 0),

I3 = F (1, 1, 0, 0, 0, 1, 1, 1, 0),

I4 = F (0, 1, 1, 0, 1, 1, 0, 1, 0), Ī4 = F (−1, 1, 1, 0, 1, 1, 0, 1, 0),

I5 = F (0, 0, 0, 1, 1, 1, 1, 0, 0), I6 = F (0, 1, 0, 0, 0, 1, 1, 1, 0),

I7 = F (0, 1, 0, 0, 1, 1, 1, 0, 0), Ī7 = F (0, 2, 0, 0, 1, 1, 1, 0, 0),

I8 = F (0, 0, 0, 0, 0, 1, 1, 1, 0).
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In[13]:= BuildBasis���1, �1, �1, �1, �1, 1, 1, 1, �1�,

�

�

����������������������������������

1 1 1 1 1 1 1 1 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1

�

�

																																		

, SearchStyle � 0, UsingSymmetries � 1


Even restrictions set

No regularized lines

Initial data protected. Use ClearBasis to clear it and the basis from memory.

Dimension � 9

Local symmetries: ���2, 1, 4, 3, 5, 6, 8, 7, 9�, �1, 1, 1, 1, 1, 1, 1, 1, 1���

Using the code 100 search style �MinimizingLengthWhenSearchingQ � 0�

Evaluation limit is 200000

New element of length 6

Degree is �1, 0, 0, 0, 0, 0, 1, 0, 0�

New element of length 6

Degree is �0, 1, 0, 0, 0, 0, 0, 1, 0�

New element of length 6

Degree is �1, 0, 0, 0, 0, 0, 1, 0, 0�

New element of length 9

Degree is �0, 0, 1, 0, 0, 0, 1, 0, 0�

New element of length 9

Degree is �0, 0, 0, 1, 0, 0, 0, 1, 0�

New element of length 13

Degree is �0, 0, 0, 0, 0, 1, 0, 0, 0�

New element of length 10

Degree is �0, 0, 0, 0, 1, 0, 1, 0, 0�

New element of length 10

Degree is �0, 0, 0, 0, 1, 0, 0, 1, 0�

New element of length 11

Degree is �0, 0, 0, 0, 0, 0, 1, 0, 0�
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New element of length 11

Degree is �0, 0, 0, 0, 0, 0, 0, 1, 0�

New element of length 11

Degree is �0, 0, 1, 0, 0, 1, 0, 0, 0�

New element of length 11

Degree is �0, 0, 0, 1, 0, 1, 0, 0, 0�

Saved element 6 of length 13

Saved element 7 of length 11

Saved element 8 of length 11

Test results: �False, False, False, False, False, True, True, True, False�

Sorting

Permutation � �10, 9, 6, 8, 7, 5, 12, 4, 11, 2, 1, 3�

Sorting over

Trying to reduce elements

Reducing basis element 11 of length 6

�1, 0, 0, 0, 0, 0, 1, 0, 0�

�d, 1, 7, 1, 12�

�1, 0, 0, 0, 0, 0, 0, 0, 0�

Reduction over

Degree is �1, 0, 0, 0, 0, 0, 0, 0, 0�

Element reduced. New length: 17

Saved element 1 of length 17

Test results: �True, False, False, False, False, True, True, True, False�

Sorting

Permutation � �1, 2, 3, 11, 4, 5, 6, 7, 8, 9, 10, 12�

Sorting over

Reducing basis element 12 of length 6

�1, 0, 0, 0, 0, 0, 1, 0, 0�

�d, 1, 7, 1, 12�

�0, 1, 0, 0, 0, 0, 0, 1, 0�

�d, 1, 18, 1, 12�

�1, 0, 0, 0, 0, 0, 0, 0, 0�
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same degree

�d, 1, 28, 1, 18�

�0, 1, 0, 0, 0, 0, 0, 0, 0�

Reduction over

Degree is �0, 1, 0, 0, 0, 0, 0, 0, 0�

Element reduced. New length: 19

Saved element 2 of length 19

Test results: �True, True, False, False, False, True, True, True, False�

Sorting

Permutation � �1, 2, 3, 12, 4, 5, 6, 7, 8, 9, 10, 11�

Sorting over

Reducing basis element 12 of length 6

�0, 1, 0, 0, 0, 0, 0, 1, 0�

�d, 1, 7, 1, 12�

�0, 1, 0, 0, 0, 0, 0, 0, 0�

same degree

Basis element 4 replaced

Degree is �0, 1, 0, 0, 0, 0, 0, 0, 0�

�d, 1, 18, 1, 20�

�0, 0, 0, 0, 0, 1, 0, 0, 1�

�d, 1, 7, 1, 14�

�0, 0, 0, 0, 0, 0, 1, 0, 1�

�d, 1, 19, 1, 12�

�0, 0, 0, 0, 0, 0, 0, 1, 1�

Reduction over

Degree is �0, 0, 0, 0, 0, 0, 0, 1, 1�

Element reduced. New length: 20

Saved element 2 replaced, new length: 17

Test results: �True, True, False, False, False, True, True, True, False�

Sorting

Permutation � �1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11�

Sorting over
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Reducing basis element 12 of length 11

�0, 0, 1, 0, 0, 1, 0, 0, 0�

�d, 1, 12, 1, 14�

�0, 0, 1, 0, 0, 0, 1, 0, 0�

�d, 1, 24, 1, 12�

�0, 0, 1, 0, 0, 0, 0, 1, 0�

�1, 0, 0, 0, 0, 0, 0, 0, 0�

same degree

Basis element 6 replaced

Degree is �1, 0, 0, 0, 0, 0, 0, 0, 0�

�d, 3, 26, 7, 18�

�0, 0, 1, 0, 0, 0, 0, 0, 0�

Reduction over

Degree is �0, 0, 1, 0, 0, 0, 0, 0, 0�

Element reduced. New length: 141

Saved element 3 of length 141

Test results: �True, True, True, False, False, True, True, True, False�

Sorting

Permutation � �1, 2, 3, 4, 12, 5, 6, 7, 8, 9, 10, 11�

Sorting over

Reducing basis element 12 of length 9

�0, 0, 1, 0, 0, 0, 1, 0, 0�

�d, 1, 10, 1, 12�

�0, 0, 1, 0, 0, 0, 0, 0, 0�

same degree

Basis element 5 replaced

Degree is �0, 0, 1, 0, 0, 0, 0, 0, 0�

�0, 0, 0, 0, 0, 0, 1, 0, 1�

Reduction over

Degree is �0, 0, 0, 0, 0, 0, 1, 0, 1�

Element reduced. New length: 159

Saved element 3 replaced, new length: 21
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Test results: �True, True, True, False, False, True, True, True, False�

Sorting

Permutation � �1, 2, 3, 12, 4, 5, 6, 7, 8, 9, 10, 11�

Sorting over

Reducing basis element 12 of length 11

�0, 0, 0, 1, 0, 1, 0, 0, 0�

�d, 1, 12, 1, 14�

�0, 0, 0, 1, 0, 0, 1, 0, 0�

�d, 1, 24, 1, 12�

�0, 0, 0, 1, 0, 0, 0, 1, 0�

�0, 1, 0, 0, 0, 0, 0, 0, 0�

same degree

Basis element 7 replaced

Degree is �0, 1, 0, 0, 0, 0, 0, 0, 0�

�d, 3, 26, 7, 18�

�0, 0, 0, 1, 0, 0, 0, 0, 0�

Reduction over

Degree is �0, 0, 0, 1, 0, 0, 0, 0, 0�

Element reduced. New length: 141

Saved element 4 of length 141

Test results: �True, True, True, True, False, True, True, True, False�

Sorting

Permutation � �1, 2, 3, 4, 5, 12, 6, 7, 8, 9, 10, 11�

Sorting over

Reducing basis element 12 of length 9

�0, 0, 0, 1, 0, 0, 0, 1, 0�

�d, 1, 10, 1, 12�

�0, 0, 0, 1, 0, 0, 0, 0, 0�

same degree

Basis element 6 replaced

Degree is �0, 0, 0, 1, 0, 0, 0, 0, 0�

�0, 0, 0, 0, 0, 0, 0, 1, 1�
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Reduction over

Degree is �0, 0, 0, 0, 0, 0, 0, 1, 1�

Element reduced. New length: 159

Saved element 4 replaced, new length: 21

Test results: �True, True, True, True, False, True, True, True, False�

Sorting

Permutation � �1, 2, 12, 3, 4, 5, 6, 7, 8, 9, 10, 11�

Sorting over

Reducing basis element 12 of length 10

�0, 0, 0, 0, 1, 0, 1, 0, 0�

�d, 1, 11, 1, 12�

�0, 0, 0, 0, 1, 0, 0, 0, 0�

Reduction over

Degree is �0, 0, 0, 0, 1, 0, 0, 0, 0�

Element reduced. New length: 22

Saved element 5 of length 22

Testing element 1

Testing element 2

Testing element 3

Testing element 4

Testing element 5

Testing element 6

Testing element 7

Testing element 8

Testing element 9

Testing element 10

Testing element 11

Testing element 12

Test results: �True, True, True, True, True, True, True, True, False�

Sorting

Permutation � �1, 2, 3, 4, 5, 6, 12, 7, 8, 9, 10, 11�

Sorting over
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Reducing basis element 12 of length 10

�0, 0, 0, 0, 1, 0, 0, 1, 0�

�d, 1, 11, 1, 12�

�0, 0, 0, 0, 1, 0, 0, 0, 0�

Reduction over

Degree is �0, 0, 0, 0, 1, 0, 0, 0, 0�

Element reduced. New length: 22

Testing element 12

Test results: �True, True, True, True, True, True, True, True, False�

Sorting

Permutation � �1, 2, 3, 4, 5, 6, 7, 12, 8, 9, 10, 11�

Sorting over

Symmetry number 1 of element 1 �length 11�

Equal to basis element 4

Symmetry number 1 of element 2 �length 20�

�0, 0, 0, 0, 0, 0, 1, 0, 1�

New element of length 20

Degree is �0, 0, 0, 0, 0, 0, 1, 0, 1�

Testing element 13

Test results: �True, True, True, True, True, True, True, True, False�

Sorting

Permutation � �1, 2, 3, 4, 5, 13, 6, 7, 8, 9, 10, 11, 12�

Sorting over

Trying to reduce elements

No elements reduced

Symmetry number 1 of element 3 �length 159�

Equal to basis element 5

Ex9dim.nb 7



�

�

�����������������������������������������������������������

0 1 1 2 2 2 2 2 2 2 2 2 2
1 0 1 2 2 2 2 2 2 2 2 2 2
1 1 0 2 2 2 2 2 2 2 2 2 2
2 2 2 0 1 1 2 2 2 2 2 2 2
2 2 2 1 0 1 2 2 2 2 2 2 2
2 2 2 1 1 0 2 2 2 2 2 2 2
2 2 2 2 2 2 0 2 2 2 2 2 2
2 2 2 2 2 2 2 0 1 2 2 2 2
2 2 2 2 2 2 2 1 0 2 2 2 2
2 2 2 2 2 2 2 2 2 0 2 2 2
2 2 2 2 2 2 2 2 2 2 0 2 2
2 2 2 2 2 2 2 2 2 2 2 0 2
2 2 2 2 2 2 2 2 2 2 2 2 0

�

	






























































�1, 2�

�1, 0, 0, 0, 0, 0, 0, 0, 0�

New element of length 20

Degree is �1, 0, 0, 0, 0, 0, 0, 0, 0�

Testing element 14

Saved element 9 of length 20

All tests done

New element of length 17

Degree is �1, 0, 0, 0, 0, 0, 0, 0, 0�

New element of length 17

Degree is �0, 1, 0, 0, 0, 0, 0, 0, 0�

Sorting

Permutation � �1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 13, 14, 15�

Sorting over

Evaluation time: 6.27005

In[14]:= F���2, �2, �1, 0, �1, 2, 3, 4, �2��

In[15]:= %

Out[15]=
2 ��2 � d� �576 � 1864 d � 1010 d2 � 463 d3 � 319 d4 � 5 d5 � 11 d6� G��0, 0, 0, 0, 0, 1, 1, 1, 0��
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

3 d2 �2 � d� �4 � d�
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Examples of reduction:

F (1, . . . , 1, 0) = −3(d − 4)(3d − 10)
8(d − 5)(2d − 9)

I1 − 3(d − 4)(3d − 10)
16(d − 5)(2d − 9)

I2

− (d − 3)(3d − 10)(3d − 8)
8(d − 5)(3d − 13)(3d − 11)

I3 − 3(d − 2)(3d − 11)(3d − 10)(3d − 8)
64(d − 5)(2d − 9)(2d − 7)(3d − 13)

Ī4

+
9(d − 4)(d − 2)(3d − 10)(3d − 8)

64(d − 5)(2d − 9)(2d − 7)(3d − 13)
I5 − 3(3d − 10)(3d − 8)

32(d − 5)(2d − 9)(2d − 7)
Ī7 ,

F (1, . . . , 1,−1) =
3(d − 3)(3d − 11)

16(d − 5)(d − 4)(2d − 9)
I4

− (d − 2)(2d − 7)(2d − 5)
8(d − 3)(2d − 9)(3d − 13)

I6 − 3(2d − 7)2(2d − 5)(3d − 11)(3d − 7)
256(d − 4)2(d − 3)(2d − 9)

I7 .

A.V. Smirnov Dubna, July 18, 2006 – p.30



Conclusion

Other examples can be found in [A.V. Smirnov & V.A. Smirnov’05;

http://www.srcc.msu.ru/nivc/about/lab/lab4_2/index_eng.htm]

The algorithm consists of two parts: constructing the
bases and the reduction (that needs the bases files)

The reduction part of the algorithm is also available at
my site (not updated since January, but I am planning to
add a number of bases files and the updated reduction
algorithm)

The construction of the bases in problems with up to
five indices is often almost automatic. In complicates
cases one has to choose the ordering and some
options carefully to have the bases constructed.

A.V. Smirnov Dubna, July 18, 2006 – p.31



The algorithm can work successfully at the level of
modern calculations, e.g., in problems with up to 12
indices.

There are various interesting practical and
mathematical problems. Which orderings are optimal for
a given sector? What is the order of CPU time needed
for the construction of the corresponding s-basis? Will
the algorithm work for a given problem?

Further improvements are necessary for more
sophisticated calculations. Probably, implementing the
ideas used in other algorithms.

A purely mathematical problem: to prove that the
dimension of S is finite.

A.V. Smirnov Dubna, July 18, 2006 – p.32
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