Weak decays of B meson and charmonium in the light of the search for new physics

(Based on PhD Thesis)

Chien-Thang Tran^{a,b,*}

a) Bogoliubov Laboratory of Theoretical Physics, JINR

b) Moscow Institute of Physics and Technology

*) ctt@theor.jinr.ru

BLTP-JINR-Dubna, April 14th, 2017

What I will present today

- 1. Leptonic decays of *B* meson: $B^- \rightarrow \ell^- \bar{\nu}_\ell$, where $\ell = e, \mu, \tau$
- 2. Semileptonic decays of B meson: $\bar{B}^0 \to D^* \ell \bar{\nu}_\ell$ and $\bar{B}^0 \to D \ell \bar{\nu}_\ell$
- 3. Possible New Physics (NP) in decays $B
 ightarrow D^{(*)} au
 u_{ au}$
- 4. Tau plarization as probe for NP in decays $B
 ightarrow D^{(*)} au
 u_{ au}$
- 5. Semileptonic decays of charmonium:
 - $$\begin{split} J/\psi &\to D^- \ell \nu_{\ell}, \qquad J/\psi \to D^{*-} \ell \nu_{\ell}, \\ J/\psi &\to D^-_s \ell \nu_{\ell}, \qquad J/\psi \to D^{*-}_s \ell \nu_{\ell}. \end{split}$$
- 6. Covariant Confined Quark Model (CCQM): tool for hadronic calculation

Introduction Model B meson (semi)leptonic decays NP Analysis Tau polarization Semileptonic J/ ψ decays Summary

Why study (semi)leptonic **B** decays?

- Testing the Standard Model
- CKM matrix elements |V_{ub}| and |V_{cb}|
- Leptonic decay constant f_B and form factors of hadronic transitions
- Possible New Physics (NP) beyond the SM

• Experiments:

[1] BABAR semilep. tag [3] Belle semilep. tag [2] BABAR had. tag [4] Belle had. tag [ArXiv:0912.2453, 1207.0698, 1503.05613, 1208.4678] Average: $\mathcal{B}(B^- \to \tau \bar{\nu}) =$ (1.09 ± 0.24) × 10⁻⁴ [HFAG, 17]

- SM prediction: (0.81 \pm 0.06) \times 10^{-4} $_{\rm [UTfit\ Collab.]}$

Why study (semi)leptonic B decays? Ratios of branching fractions $R(D^{(*)}) \equiv \frac{\mathcal{B}(\bar{B}^0 \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{(*)}\mu^-\bar{\nu}_{\mu})}$

[2] BABAR had. tag [3] Belle semilep. tag [4] Belle had. tag [5] LHCb

Average ratios

 $R(D)|_{expt} = 0.403 \pm 0.047,$

$$R(D^*)|_{\text{expt}} = 0.310 \pm 0.017,$$

SM expectations

 $R(D)|_{\rm SM} = 0.300 \pm 0.008, \qquad R(D^*)|_{\rm SM} = 0.252 \pm 0.003,$

 \rightarrow SM excess: 1.9 σ and 3.2 σ , respectively.

Why study (semi)leptonic **B** decays? R(D)- $R(D^*)$ correlation: SM excess $\approx 4 \sigma$

Theoretical attempts to explain the excess:

- Specific NP models: two-Higgs-doublet models (2HDMs), Minimal Supersymmetric Standard Model (MSSM), Leptoquark models, etc.
- Model-independent approach: impose general SM+NP effective Hamiltonian for transition $b \rightarrow c \ell \bar{\nu}$ (this work!).

Covariant Confined Quark Model

G. V. Efimov, M. A. Ivanov, V. E. Lyubovitskij, J. G. Körner, P. Santorelli,...

- Main assumption: hadrons interact via quark exchange only
- Interaction Lagrangian

$$\mathcal{L}_{\rm int} = g_H \cdot H(x) \cdot J_H(x)$$

Quark current

$$J_{H}(x) = \int dx_{1} \int dx_{2} \ F_{H}(x; x_{1}, x_{2}) \cdot \bar{q}_{f_{1}}^{a}(x_{1}) \ \Gamma_{H} \ q_{f_{2}}^{a}(x_{2})$$

Vertex Function

$$F_{H}(x; x_{1}, x_{2}) = \delta(x - w_{1}x_{1} - w_{2}x_{2}) \Phi_{H}((x_{1} - x_{2})^{2})$$

where $w_i = m_{q_i}/(m_{q_1} + m_{q_2})$ Translational invariant: $F_H(x + c; x_1 + c, x_2 + c) = F_H(x; x_1, x_2)$

• Nonlocal Gaussian-type vertex functions with fall-off behavior in Euclidean space to temper high energy divergence of quark loops

$$\widetilde{\Phi}_{H}(-k^{2}) = \int dx \ e^{ikx} \Phi_{H}(x^{2}) = e^{k^{2}/\Lambda_{H}^{2}}$$

where Λ_H characterizes the meson size.

Compositeness condition

• Compositeness condition $Z_H = 0$

Salam 1962; Weinberg 1963

 Z_H – wave function renormalization constant of the meson H.

$$Z_H^{1/2} = < H_{\text{bare}} | H_{\text{dressed}} > = 0$$

• $Z_H = 1 - \tilde{\Pi}'(m_H^2) = 0$ where $\tilde{\Pi}(p^2)$ is the meson mass operator.

$$\Pi_{P}(p) = 3g_{P}^{2} \int \frac{dk}{(2\pi)^{4}i} \widetilde{\Phi}_{P}^{2}(-k^{2}) \operatorname{tr}[S_{1}(k+w_{1}p)\gamma^{5}S_{2}(k-w_{2}p)\gamma^{5}]$$
$$\Pi_{V}(p) = g_{V}^{2}[g^{\mu\nu} - \frac{p^{\mu}p^{\nu}}{p^{2}}] \int \frac{dk}{(2\pi)^{4}i} \widetilde{\Phi}_{V}^{2}(-k^{2}) \operatorname{tr}[S_{1}(k+w_{1}p)\gamma_{\mu}S_{2}(k-w_{2}p)\gamma_{\nu}]$$

Matrix elements

- Matrix elements are described by a set of Feynman diagrams which are convolutions of quark propagators and vertex functions.
- Let **I** be the matrix element corresponding to the Feynman diagram:
 - j external momenta;
 - n quark propagators;
 - *loop* integrations;
 - *m* vertices.
 - In the momentum space it will be represented as

$$\Pi(p_1, ..., p_j) = \int [d^4 k]^\ell \prod_{i_1=1}^m \Phi_{i_1+n} \left(-K_{i_1+n}^2\right) \prod_{i_3=1}^n S_{i_3}(\tilde{k}_{i_3} + \tilde{p}_{i_3})$$
$$K_{i_1+n}^2 = \sum_{i_2} (\tilde{k}_{i_1+n}^{(i_2)} + \tilde{p}_{i_1+n}^{(i_2)})^2$$

- $ilde{k}_i$ are linear combinations of the loop momenta k_i
- \tilde{p}_i are linear combinations of the external momenta p_i

• Use the Schwinger representation of the propagator:

$$\frac{m+k}{m^2-k^2}=(m+k)\int_0^\infty d\alpha\,\exp[-\alpha(m^2-k^2)]$$

• Choose a simple Gaussian form for the vertex function

$$\Phi(-\kappa^2) = \exp\left(\kappa^2/\Lambda^2\right)$$

where the parameter Λ characterizes the hadron size.

• We imply that the loop integration *k* proceed over Euclidean space:

$$k^0 o e^{irac{\pi}{2}}k_4 = ik_4\,, \qquad k^2 = (k^0)^2 - \vec{k}^2 o - k_E^2 \le 0\,.$$

• We also put all external momenta *p* to Euclidean space:

$$p^0 \to e^{i \frac{\pi}{2}} p_4 = i p_4 , \qquad p^2 = (p^0)^2 - \vec{p}^2 \to -p_E^2 \leq 0$$

so that the quadratic momentum form in the exponent becomes negative-definite and the loop integrals are absolutely convergent. • Convert the loop momenta in the numerator into derivatives over external momenta:

$$k_i^{\mu}e^{2kr}=rac{1}{2}rac{\partial}{\partial r_{i\,\mu}}e^{2kr},$$

- Move the derivatives outside of the loop integrals.
- Calculate the scalar loop integral:

$$\prod_{i=1}^{n} \int \frac{d^{4}k_{i}}{i\pi^{2}} e^{kAk+2kr} = \prod_{i=1}^{n} \int \frac{d^{4}k_{i}^{E}}{\pi^{2}} e^{-k_{E}Ak_{E}-2k_{E}r_{E}} = \frac{1}{|A|^{2}} e^{-rA^{-1}r}$$

where a symmetric $n \times n$ real matrix A is positive-definite.

• Use the identity

$$P\left(\frac{1}{2}\frac{\partial}{\partial r}\right)e^{-r\mathbf{A}^{-1}r} = e^{-r\mathbf{A}^{-1}r}P\left(\frac{1}{2}\frac{\partial}{\partial r} - \mathbf{A}^{-1}r\right)$$

to move the exponent to the left.

• Employ the commutator

$$\left[\frac{\partial}{\partial \mathbf{r}_{i\,\mu}},\mathbf{r}_{j\,\nu}\right] = \delta_{ij}\,\mathbf{g}_{\mu\nu}$$

to make differentiation in

$$\mathsf{P}\left(rac{1}{2}rac{\partial}{\partial r}-\mathsf{A}^{-1}r
ight)$$

for any polynomial P. The necessary commutations of the differential operators are done by a FORM program.

• One obtains

$$\Pi = \int_{0}^{\infty} d^{n} \alpha F(\alpha_{1}, \ldots, \alpha_{n}),$$

where **F** stands for the whole structure of a given diagram.

Infrared confinement & Model parameters

One obtains $\Pi = \int_{0}^{\infty} d^{n} \alpha F(\alpha_{1}, \dots, \alpha_{n}),$

where F stands for the whole structure of a given diagram. The set of Schwinger parameters α_i can be turned into a simplex by introducing an additional

t-integration via the identity $1 = \int_{0}^{\infty} dt \, \delta(t - \sum_{i=1}^{n} \alpha_i)$

$$\Pi = \int_{0}^{\infty} dt t^{n-1} \int_{0}^{1} d^{n} \alpha \, \delta \left(1 - \sum_{i=1}^{n} \alpha_{i} \right) F(t\alpha_{1}, \ldots, t\alpha_{n}) \, .$$

Cut off the upper integration at $1/\lambda^2$

$$\Pi^{c} = \int_{0}^{1/\lambda^{2}} dt t^{n-1} \int_{0}^{1} d^{n} \alpha \, \delta \left(1 - \sum_{i=1}^{n} \alpha_{i}\right) F(t\alpha_{1}, \ldots, t\alpha_{n})$$

The infrared cut-off has removed all possible thresholds in the quark loop diagram.

MODEL PARAMETERS:

$m_{u/d}$	m _s	m _c	m _b	Λ _{D*}	$\Lambda_{D_s^*}$	Λ _D	Λ_{D_s}	$\Lambda_{J/\psi}$	Λ _B	λ
0.241	0.428	1.67	5.04	1.53	1.56	1.60	1.75	1.74	1.96	0.181

Leptonic decays of **B** meson

$$\frac{3g}{4\pi^2} \int \frac{d^4k}{4\pi^2 i} \widetilde{\Phi}(-k^2) \operatorname{tr}\left[O^{\mu} S_1(k+w_1p)\gamma^5 S_2(k-w_2p)\right] = f_P p^{\mu}$$
$$\frac{3g}{4\pi^2} \int \frac{d^4k}{4\pi^2 i} \widetilde{\Phi}(-k^2) \operatorname{tr}\left[O^{\mu} S_1(k+w_1p) \not\in_v S_2(k-w_2p)\right] = f_V m_v \epsilon_v^{\mu}$$

	This work	Other	Ref.
f _B	193.1	190.6±4.7	PDG 2014
f _{Bs}	238.7	242.0(9.5)	LAT [Bazavov:2011]
		259(32)	HPQCD LAT [Gray:2005]
f _{Bc}	489.0	$\textbf{489} \pm \textbf{4} \pm \textbf{3}$	LAT [Chiu:2007km]
f _{B*}	196.0	$196(24)^{+39}_{-2}$	LAT [Becirevic:1998]
		186.4 ± 3.2	QCDSR [Lucha:2014]
f _{Bs} *	229.0	$229(20)^{+41}_{-16}$	LAT [Becirevic:1998ua]
		215.2 ± 3.0	QCD SR [Lucha:2014nba]
f_{B_s}/f_B	1.236	1.20(3)(1)	HPQCD LAT [Gray:2005]
		1.229(26)	LAT [Bazavov:2011]
f _D	206.1	204.6±5.0	PDG 2014
f _{D*}	244.3	$\textbf{278} \pm \textbf{13} \pm \textbf{10}$	LAT [Becirevic:2012]
		$245(20)^{+3}_{-2}$	LAT [Becirevic:1998]
		$252.2\pm22.3\pm4$	QCD SR [Lucha:2014]
f _{Ds}	257.5	257.5±4.6	PDG 2014
$f_{D_s^*}$	272.0	311±9	LAT [Becirevic:2012]
-		$272(16)^{+3}_{-20}$	LAT [Becirevic:1998]
		$305.5\pm26.8\pm5$	QCD SR [Lucha:2014]
f_{D_s}/f_D	1.249	$1.258 {\pm} 0.038$	PDG 2014
$f_{D_{\epsilon}^{*}}/f_{D^{*}}$	1.113	$1.16{\pm}0.02{\pm}0.06$	LAT [Becirevic:2012]
, f _{J/ψ}	415.0	418±9	LAT & QCD SR [Becirevic:2013]

Leptonic decay constants (all in MeV)

Branching fractions of leptonic **B** decays

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}_\ell)\Big|_{\rm SM} = \frac{\Gamma(B^- \to \ell^- \bar{\nu}_\ell)}{\Gamma_{tot}} = \frac{G_F^2}{8\pi} m_B m_\ell^2 \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

	This work	Data	Ref.
$B^- o e^- ar{ u}_e$	$1.16 \cdot 10^{-11}$	$< 0.98 \cdot 10^{-6}$ $(0.88 \pm 0.12) \cdot 10^{-11}$	PDG UTfit
$B^- o \mu^- ar u_\mu$	$0.49 \cdot 10^{-6}$	$egin{aligned} (0.90 \pm 0.12) \cdot 10^{-11} \ &< 1.0 \cdot 10^{-6} \ (0.38 \pm 0.05) \cdot 10^{-6} \end{aligned}$	CKMfitter PDG UTfit
$B^- o au^- ar u_ au$	$1.10 \cdot 10^{-4}$	$\begin{array}{c} (0.38\pm 0.05)\cdot 10^{-6} \\ (1.06\pm 0.19)\cdot 10^{-4} \\ (0.81\pm 0.06)\cdot 10^{-4} \\ (0.25\pm 0.06)\cdot 10^{-4} \end{array}$	CKMfitter PDG UTfit
		$(0.85\pm0.12)\cdot10^{-4}$	CKMfitter

Semileptonic decays of **B** meson

$$\frac{\int_{a_{1}}^{Q^{\mu} = \gamma^{\mu}(1-\gamma_{5})}}{\frac{g_{1}}{q_{1}} + p_{1}} \qquad \langle D(p_{2})|\bar{c}O^{\mu}b|B(p_{1})\rangle \equiv T^{\mu} = N_{c} g_{B} g_{D} \int \frac{d^{4}k}{(2\pi)^{4}i} \times \tilde{\Phi}_{B} \left(-(k+w_{13}p_{1})^{2}\right) \tilde{\Phi}_{D} \left(-(k+w_{23}p_{2})^{2}\right) \times \operatorname{tr} \left[O^{\mu} S_{1}(k+p_{1})\gamma^{5} S_{3}(k)\gamma^{5} S_{2}(k+p_{2})\right] \\
\Phi_{B}(-(k+w_{13}p_{1})^{2}) \quad \Phi_{D^{(*)}}(-(k+w_{23}p_{2})^{2}) = F_{+}(q^{2})P^{\mu} + F_{-}(q^{2})q^{\mu},$$

$$\langle D^{*}(p_{2}, \epsilon_{2}) | \bar{c} O^{\mu} b | B(p_{1}) \rangle \equiv T^{\mu} =$$

$$= N_{c} g_{B} g_{D^{*}} \int \frac{d^{4}k}{(2\pi)^{4}i} \tilde{\Phi}_{B} \Big(-(k+w_{13}p_{1})^{2} \Big) \tilde{\Phi}_{D^{*}} \Big(-(k+w_{23}p_{2})^{2} \Big)$$

$$\times \operatorname{tr} \Big[O^{\mu} S_{1}(k+p_{1}) \gamma^{5} S_{3}(k) \not \in {}^{\dagger} S_{2}(k+p_{2}) \Big]$$

$$= \frac{\epsilon_{\alpha}^{\dagger}}{m_{1}+m_{2}} \Big(-g^{\mu\alpha} Pq A_{0}(q^{2}) + P^{\mu} P^{\alpha} A_{+}(q^{2}) + q^{\mu} P^{\alpha} A_{-}(q^{2}) + i \varepsilon^{\mu\alpha} Pq V(q^{2}) \Big) ,$$

$$Where P = p_{1} + p_{2}, q = p_{1} - p_{2}, \text{ and } \epsilon_{2} - \text{ polarization vector of } D^{*} \text{ so that}$$

$$\epsilon_{2}^{\dagger} \cdot p_{2} = 0. \text{ The particles are on-shell: } p_{1}^{2} = m_{1}^{2} = m_{B}^{2}, p_{2}^{2} = m_{2}^{2} = m_{D^{(*)}}^{2}.$$

16/60

2

Form factors

Dipole interpolation

$$F(q^2) = rac{F(0)}{1-as+bs^2}, \quad s = rac{q^2}{m_{D^{(*)}}^2}.$$

 The dipole interpolation works very well for all form factors: dotted: calculated by FORTRAN solid: interpolation

The parameters of the dipole interpolation $F(q^2) = \frac{F(0)}{1 - as + bs^2}$:

	F +	F _	A_0	A_+	A_{-}	V
F(0)	0.78	-0.36	1.62	0.67	-0.77	0.77
a	0.74	0.76	0.34	0.87	0.89	0.90
Ь	0.038	0.046	-0.16	0.057	0.070	0.075
$F(q_{\max}^2)$	1.14	-0.53	1.91	0.99	-1.15	1.15
$F^{HQL}(q_{\max}^2)$	1.14	-0.54	1.99	1.12	-1.12	1.12

Linear q² behavior [Becirevic:2012]

$$F_0(q^2) = F_+(q^2) + \frac{q^2}{Pq} F_-(q^2)$$

$$\frac{F_0(q^2)}{F_+(q^2)} = 1 - \frac{\alpha}{q}q^2,$$

where the slope $\alpha = 0.020(1) \text{ GeV}^{-2}$ based on lattice results of the two FFs.

Our value: $\alpha = 0.019 \text{ GeV}^{-2}$.

Decay distribution and Helicity basis

$$\frac{d\Gamma}{dq^2 d \cos \theta} = \frac{|\mathbf{p}_2| \, \mathbf{v}}{(2\pi)^3 \, 32 \, m_1^2} \cdot \sum_{\text{pol}} |\mathcal{M}|^2 = \frac{G_F^2}{(2\pi)^3} \, |\mathcal{V}_{cb}|^2 \frac{|\mathbf{p}_2| \, \mathbf{v}}{64m_1^2} \, \mathcal{H}^{\mu\nu} \, \mathcal{L}_{\mu\nu} \, ,$$

where $|\mathbf{p}_2| = \lambda^{1/2} (m_1^2, m_2^2, q^2) / 2m_1, \, \mathbf{v} = 1 - m_\ell^2 / q^2 \text{ and } \theta$ - polar angle
between $\vec{q} = \vec{p}_1 - \vec{p}_2$ and \vec{p}_ℓ in the CM system $(\ell^- \bar{\nu}_\ell)$.

$$\begin{split} L_{\mu\nu} &= \operatorname{tr}\left[(\not k_1 + m_\ell)O_\mu \ \not k_2 O_\nu\right] = 8\left(k_{1\mu}k_{2\nu} + k_{1\nu}k_{2\mu} - k_1k_2g_{\mu\nu} + i\varepsilon_{\mu\nu\alpha\beta}k_1^\alpha k_2^\beta\right) \\ H^{\mu\nu} &= T^\mu T^{\dagger\nu}. \end{split}$$

The Lorentz contraction can be evaluated in terms of helicity amplitudes. First, we define an orthonormal and complete helicity basis $\epsilon^{\mu}(m)$ with three spin 1 components orthogonal to the momentum transfer q^{μ} , i.e. $\epsilon^{\mu}(m)q_{\mu} = 0$ for $m = \pm, 0$, and one spin 0 (time)-component m = t with $\epsilon^{\mu}(t) = q^{\mu}/\sqrt{q^2}$. $\epsilon^{\dagger}_{\mu}(m)\epsilon^{\mu}(n) = g_{mn}$ (orthonormality), $\epsilon_{\mu}(m)\epsilon^{\dagger}_{\nu}(n)g_{mn} = g_{\mu\nu}$ (completeness)

$$H^{\mu\nu}L_{\mu\nu} = \sum_{m,m',n,n'} H(m,n)L(m',n')g_{mm'}g_{nn'}, \quad (m,m',n,n'=t,+,0,-)$$

L(m, n) and H(m, n) now can be evaluated in different Lorentz systems: L(m, n) - in the $(\ell - \bar{\nu}_{\ell})$ -CM system whereas H(m, n) - in the B rest system.

Introduction Model B meson (semi)leptonic decays NP Analysis Tau polarization Semileptonic J/ψ decays Summary

Helicity Amplitudes

(a) $B \rightarrow D$:

$$\begin{aligned} H(m,n) &= \left(\epsilon^{\dagger \mu}(m)T_{\mu}\right) \cdot \left(\epsilon^{\dagger \nu}(n)T_{\nu}\right)^{\dagger} \equiv H_{m}H_{n}^{\dagger}.\\ H_{t} &= \frac{1}{\sqrt{q^{2}}}[(m_{1}^{2} - m_{2}^{2})F_{+}(q^{2}) + q^{2}F_{-}(q^{2})], \quad H_{0} = \frac{2m_{1}|\mathbf{p}_{2}|}{\sqrt{q^{2}}}F_{+}(q^{2}), \quad H_{\pm} = 0\\ \text{(b) } B \to D^{*}: \end{aligned}$$

$$\begin{aligned} H(m,n) &= \epsilon^{\dagger\mu}(m)\epsilon^{\nu}(n)H_{\mu\nu} = \epsilon^{\dagger\mu}(m)\epsilon^{\nu}(n)T_{\mu\alpha}\epsilon_{2}^{\dagger\alpha}(r)\epsilon_{2}^{\beta}(s)\delta_{rs}T_{\beta\nu}^{\dagger} \\ &= \epsilon^{\dagger\mu}(m)\epsilon_{2}^{\dagger\alpha}(r)T_{\mu\alpha}\cdot\left(\epsilon^{\dagger\nu}(n)\epsilon_{2}^{\dagger\beta}(s)T_{\nu\beta}\right)^{\dagger}\delta_{rs} \equiv H_{mr}H_{nr}^{\dagger}. \end{aligned}$$

$$\begin{split} H_t &\equiv H_{t0} = \frac{1}{m_1 + m_2} \frac{m_1 |\mathbf{p}_2|}{m_2 \sqrt{q^2}} [(m_1^2 - m_2^2)(A_+(q^2) - A_0(q^2)) + q^2 A_-(q^2)] \,, \\ H_{\pm} &\equiv H_{\pm\pm} = \frac{1}{m_1 + m_2} [-(m_1^2 - m_2^2)A_0(q^2) \pm 2m_1 |\mathbf{p}_2| V(q^2)] \,, \\ H_0 &\equiv H_{00} = \frac{1}{m_1 + m_2} \frac{1}{m_2 \sqrt{q^2}} [(m_2^2 - m_1^2)(m_1^2 - m_2^2 - q^2)A_0(q^2) + 4m_1^2 |\mathbf{p}_2|^2 A_+(q^2)] \,. \end{split}$$

Decay distribution in terms of Helicity amplitudes

$$\frac{d\Gamma(B \to D^{(*)}\ell^{-}\bar{\nu}_{\ell})}{dq^{2}d\cos\theta} = \frac{G_{F}^{2}|V_{cb}|^{2}|\mathbf{p}_{2}|q^{2}}{32(2\pi)^{3}m_{1}^{2}} \left(1 - \frac{m_{\ell}^{2}}{q^{2}}\right)^{2} \times \left\{ (1 - \cos\theta)^{2}|H_{+}|^{2} + (1 + \cos\theta)^{2}|H_{-}|^{2}) + 2\sin^{2}\theta|H_{0}|^{2} + \frac{m_{\ell}^{2}}{q^{2}} \left[\sin^{2}\theta(|H_{+}|^{2} + |H_{-}|^{2}) + 2|H_{t} - H_{0}\cos\theta|^{2}\right] \right\}$$

$$\frac{d\Gamma(B \to D^{(*)}\ell^{-}\bar{\nu}_{\ell})}{dq^{2}} = \frac{G_{F}^{2}|V_{cb}|^{2}|\mathbf{p}_{2}|q^{2}\nu^{2}}{12(2\pi)^{3}m_{1}^{2}} \left(1 - \frac{m_{\ell}^{2}}{q^{2}}\right)^{2} \times \left\{ (|H_{+}|^{2} + |H_{-}|^{2} + |H_{0}|^{2})(1 + \frac{m_{\ell}^{2}}{2q^{2}}) + \frac{3m_{\ell}^{2}}{2q^{2}}|H_{t}|^{2} \right\}$$

$$\times \left\{ (|H_{+}|^{2} + |H_{-}|^{2} + |H_{0}|^{2})(1 + \frac{m_{\ell}^{2}}{2q^{2}}) + \frac{3m_{\ell}^{2}}{2q^{2}}|H_{t}|^{2} \right\}$$

Results for the semileptonic branching fractions and their ratios

	Unit	This work	Data	Ref.
$ar{B}^0 o D^+ \mu^- ar{ u}$	10-2	2.79	$\begin{array}{c} 2.17 \pm 0.12 \\ 2.21 \pm 0.16 \end{array}$	HFAG BABAR
$ar{B}^0 o D^+ au^- ar{ u}_ au$	10^{-2}	0.75	$\textbf{1.02} \pm \textbf{0.17}$	BABAR
$ar{B}^0 o D^{*+} \mu^- ar{ u}$	10 ⁻²	6.60	$\begin{array}{c} 5.05\pm0.12\\ 5.49\pm0.30\end{array}$	HFAG BABAR
$ar{B}^0 o D^{*+} au^- ar{ u}_ au$	10-2	1.57	$\textbf{1.76} \pm \textbf{0.18}$	BABAR

	This work	HQET	Data
R(D)	0.265	$\textbf{0.300} \pm \textbf{0.008}$	$\textbf{0.403} \pm \textbf{0.047}$
$R(D^*)$	0.237	$\textbf{0.252} \pm \textbf{0.003}$	$\textbf{0.310} \pm \textbf{0.017}$

The $\cos \theta$ distribution

• One can define the angular distribution $J(\theta)$ as:

$$\frac{d\Gamma(B \to D^{(*)}\ell^-\bar{\nu}_\ell)}{dq^2 d\cos\theta} = \frac{G_F^2 |V_{cb}|^2 |\mathbf{p}_2|q^2}{32(2\pi)^3 m_1^2} \left(1 - \frac{m_\ell^2}{q^2}\right)^2 \times J(\theta)$$
$$\widetilde{J}(\theta) \equiv \frac{J(\theta)}{\mathcal{H}_{\text{tot}}} = \frac{a+b\cos\theta + c\cos^2\theta}{2(a+c/3)}$$
$$\mathcal{H}_{\text{tot}} = (|H_+|^2 + |H_-|^2 + |H_0|^2)(1 + \frac{m_\ell^2}{2q^2}) + \frac{3m_\ell^2}{2q^2} |H_t|^2$$

• The *linear* coefficient $\frac{b}{2(a + c/3)}$ can be projected out by defining a forward-backward asymmetry:

$$\mathcal{A}_{FB}(q^2) = \frac{d\Gamma(F) - d\Gamma(B)}{d\Gamma(F) + d\Gamma(B)} = \frac{\int_0^1 d\cos\theta \, d\Gamma/d\cos\theta - \int_{-1}^0 d\cos\theta \, d\Gamma/d\cos\theta}{\int_0^1 d\cos\theta \, d\Gamma/d\cos\theta + \int_{-1}^0 d\cos\theta \, d\Gamma/d\cos\theta}$$
$$= \frac{b}{2(a+c/3)} = -\frac{3}{4} \frac{|H_+|^2 - |H_-|^2 + \frac{2m_\ell}{q^2}H_0H_t}{\mathcal{H}_{\text{tot}}}$$

• The *quadratic* coefficient c/2(a + c/3) is obtained by taking the second derivative of $\tilde{J}(\theta)$. Accordingly, we define a convexity parameter by:

$$\mathcal{C}_F^\ell(q^2) = rac{d^2 \widetilde{J}(heta)}{d\cos heta^2} = rac{c}{a+c/3} = rac{3}{4} \Big(1-rac{m_\ell}{q^2}\Big) rac{|H_+|^2+|H_-|^2-2|H_0|^2}{\mathcal{H}_{
m tot}}\,.$$

Forward-Backward Asymmetry $\mathcal{A}_{FB}(q^2)$

Lepton-side Convexity $C_F^{\ell}(q^2)$

• Solid: e^- mode

• Dashed: au^- mode

• Grid line: the threshold $q^2 = m_{\tau}^2$

Model B meson (semi)leptonic decays NP Analysis Tau polarization Semileptonic J/ψ decays Summary

The $\bar{B}^0 \to D^{*+} (\to D^0 \pi^+) \ell^- \bar{\nu}_{\ell}$ fourfold distribution

One has

$$\begin{aligned} \frac{d^4\Gamma(\bar{B}^0\to D^{*+}(\to D^0\pi^+)\ell^-\bar{\nu}_\ell)}{dq^2d\cos\theta d\chi d\cos\theta^*} &= \\ &= \frac{9}{8\pi}|N|^2J(\theta,\theta^*,\chi), \end{aligned}$$

$$|N|^2 = rac{G_F^2 |V_{cb}|^2 |\mathbf{p}_2| q^2 v^2}{(2\pi)^3 12 m_1^2} \mathcal{B}(D^* \to D\pi)$$

$$J(\theta, \theta^*, \chi) = J_{1s} \sin^2 \theta^* + J_{1c} \cos^2 \theta^* + (J_{2s} \sin^2 \theta^* + J_{2c} \cos^2 \theta^*) \cos 2\theta + J_3 \sin^2 \theta^* \sin^2 \theta \cos 2\chi + J_4 \sin 2\theta^* \sin 2\theta \cos \chi + J_5 \sin 2\theta^* \sin \theta \cos \chi + (J_{6s} \sin^2 \theta^* + J_{6c} \cos^2 \theta^*) \cos \theta + J_7 \sin 2\theta^* \sin \theta \sin \chi + J_8 \sin 2\theta^* \sin 2\theta \sin \chi + J_9 \sin^2 \theta^* \sin^2 \theta \sin 2\chi,$$

where $J_{i(a)}$ (i = 1, ..., 9; a = s, c) are coefficient functions depending on q^2 and the helicity amplitudes.

q^2 distribution and $\cos \theta$ distribution

• Firstly, integrating $J(\theta, \theta^*, \chi)$ over all angles one obtains:

$$\frac{d\Gamma(\bar{B}^0 \rightarrow D^*\tau^-\bar{\nu}_{\tau})}{dq^2} = |N|^2 J_{\rm tot} = |N|^2 (J_L + J_T),$$

where J_L and J_T are the longitudinal and transverse polarization amplitudes of D^* :

$$J_L = 3J_{1c} - J_{2c}, \qquad J_T = 2(3J_{1s} - J_{2s}).$$

• Secondly, integrating $J(\theta, \theta^*, \chi)$ over $\cos \theta^*$ and χ one recovers the two-fold $(q^2, \cos \theta)$ distribution that gives rise to the forward-backward asymmetry parameter A_{FB} and the lepton-side convexity parameter $C_{\mathcal{E}}^{\ell}(q^2)$:

$$\mathcal{A}_{FB}(q^2) = rac{3}{2} rac{J_{6c} + 2 J_{6s}}{J_{\rm tot}}, \qquad C_F^{\tau}(q^2) = rac{6 (J_{2c} + 2 J_{2s})}{J_{\rm tot}}.$$

$\cos \theta^*$ distribution and hadron-side convexity parameter

Integrating $J(\theta, \theta^*, \chi)$ over $\cos \theta$ and χ one obtains the $\cos \theta^*$ distribution. Its normalized form reads $\widetilde{J}(\theta^*) = (a' + c' \cos^2 \theta^*)/2(a' + c'/3)$, which can again be characterized by its convexity parameter

$$C_F^h(q^2) = \frac{d^2 \tilde{J}(\theta^*)}{d(\cos \theta^*)^2} = \frac{c'}{a' + c'/3} = \frac{3J_{1c} - J_{2c} - 3J_{1s} + J_{2s}}{J_{\text{tot}}/3}$$

The $\cos \theta^*$ distribution can be written as:

$$\widetilde{J}(\theta^*) = \frac{3}{4} \left(2F_L(q^2) \cos^2 \theta^* + F_T(q^2) \sin^2 \theta^* \right),$$

where $F_L(q^2)$ and $F_T(q^2)$ are the polarization fractions of D^* , given by:

$$F_L(q^2) = rac{J_L}{J_L + J_T}, \qquad F_T(q^2) = rac{J_T}{J_L + J_T}.$$

The hadron-side convexity parameter and the polarization fractions of the D^* meson are related by

$$C_F^h(q^2)=\frac{3}{2}\left(3F_L(q^2)-1\right).$$

χ distribution and trigonometric moments

The normalized χ distribution reads:

$$\widetilde{J}^{(I)}(\chi) = rac{1}{2\pi} \Big[1 + {\sf A}^{(1)}_{C}(q^2) \cos 2\chi + {\sf A}^{(1)}_{T}(q^2) \sin 2\chi \Big],$$

where $A_C^{(1)}(q^2) = 4J_3/J_{\rm tot}$ and $A_T^{(1)}(q^2) = 4J_9/J_{\rm tot}$.

Besides, one can also define other angular distributions in the angular variable χ as follows:

$$J^{(II)}(\chi) = \left[\int_0^1 - \int_{-1}^0\right] d\cos\theta^* \int_{-1}^1 d\cos\theta \frac{d^4\Gamma}{dq^2 d\cos\theta d\chi d\cos\theta^*},$$
$$J^{(III)}(\chi) = \left[\int_0^1 - \int_{-1}^0\right] d\cos\theta^* \left[\int_0^1 - \int_{-1}^0\right] d\cos\theta \frac{d^4\Gamma}{dq^2 d\cos\theta d\chi d\cos\theta^*}.$$

The normalized forms of these distributions read:

$$\begin{split} \widetilde{J}^{(II)}(\chi) &= \frac{1}{4} \Big[A_C^{(2)}(q^2) \cos \chi + A_T^{(2)}(q^2) \sin \chi \Big], \\ \widetilde{J}^{(III)}(\chi) &= \frac{2}{3\pi} \Big[A_C^{(3)}(q^2) \cos \chi + A_T^{(3)}(q^2) \sin \chi \Big], \end{split}$$

where

$$A_C^{(2)}(q^2) = \frac{3J_5}{J_{\rm tot}}, \qquad A_T^{(2)}(q^2) = \frac{3J_7}{J_{\rm tot}}, \qquad A_C^{(3)}(q^2) = \frac{3J_4}{J_{\rm tot}}, \qquad A_T^{(3)}(q^2) = \frac{3J_8}{J_{\rm tot}}.$$

Another method to project the coefficient functions J_i (i = 3, 4, 5, 7, 8, 9) out from the full angular decay distribution is to take the appropriate trigonometric moments of the normalized decay distribution $\tilde{J}(\theta^*, \theta, \chi)$. The trigonometric moments are defined by

$$W_i = \int d\cos heta d\cos heta^* d\chi M_i(heta^*, heta,\chi) \widetilde{J}(heta^*, heta,\chi) \equiv \langle M_i(heta^*, heta,\chi)
angle,$$

where $M_i(\theta^*,\theta,\chi)$ defines the trigonometric moment that is being taken. One finds

$$\begin{split} W_{T}(q^{2}) &\equiv \langle \cos 2\chi \rangle = \frac{2J_{3}}{J_{\text{tot}}} = \frac{1}{2}A_{C}^{(1)}(q^{2}), \\ W_{IT}(q^{2}) &\equiv \langle \sin 2\chi \rangle = \frac{2J_{9}}{J_{\text{tot}}} = \frac{1}{2}A_{T}^{(1)}(q^{2}), \\ W_{A}(q^{2}) &\equiv \langle \sin \theta \cos \theta^{*} \cos \chi \rangle = \frac{3\pi}{8}\frac{J_{5}}{J_{\text{tot}}} = \frac{\pi}{8}A_{C}^{(2)}(q^{2}), \\ W_{IA}(q^{2}) &\equiv \langle \sin \theta \cos \theta^{*} \sin \chi \rangle = \frac{3\pi}{8}\frac{J_{7}}{J_{\text{tot}}} = \frac{\pi}{8}A_{T}^{(2)}(q^{2}), \\ W_{I}(q^{2}) &\equiv \langle \cos \theta \cos \theta^{*} \cos \chi \rangle = \frac{9\pi^{2}}{128}\frac{J_{4}}{J_{\text{tot}}} = \frac{3\pi^{2}}{128}A_{C}^{(3)}(q^{2}), \\ W_{II}(q^{2}) &\equiv \langle \cos \theta \cos \theta^{*} \sin \chi \rangle = \frac{9\pi^{2}}{128}\frac{J_{8}}{J_{\text{tot}}} = \frac{3\pi^{2}}{128}A_{T}^{(3)}(q^{2}). \end{split}$$

Trigonometric moments

In our quark model all helicity amplitudes are real, which implies the vanishing of all terms proportional to $\sin \chi$ and $\sin 2\chi$, namely $J_{7,8,9}$, within the SM. This does not necessarily hold when considering complex NP Wilson coefficients, as can be seen in the next section.

Analyzing New Physics in the decays $B ightarrow D^{(*)} au u_{ au}$

Effective Hamiltonian for the quark-level transition $b
ightarrow c au^- ar{
u}_ au$

$$\mathcal{H}_{eff} = 2\sqrt{2}G_F V_{cb}[(1+V_L)\mathcal{O}_{V_L} + V_R\mathcal{O}_{V_R} + S_L\mathcal{O}_{S_L} + S_R\mathcal{O}_{S_R} + T_L\mathcal{O}_{T_L}]$$

where the four-fermion operators are written as

- Here, $\sigma_{\mu
 u} = i \left[\gamma_{\mu}, \gamma_{\nu}\right]/2$
- $P_{L,R} = (1 \mp \gamma_5)/2$ the left and right projection operators
- V_{L,R}, S_{L,R}, and T_L complex Wilson coefficients governing NP contributions.
- In the SM: $V_{L,R} = S_{L,R} = T_L = 0$.
- Assumption: neutrino is always left handed and NP only affects leptons of the third generation.

Matrix element and NP form factors

$$\mathcal{M} = \frac{G_F V_{cb}}{\sqrt{2}} \Big[(1 + V_R + V_L) \langle D^{(*)} | \bar{c} \gamma^{\mu} b | \bar{B}^0 \rangle \bar{\tau} \gamma_{\mu} (1 - \gamma^5) \nu_{\tau} \\ + (V_R - V_L) \langle D^{(*)} | \bar{c} \gamma^{\mu} \gamma^5 b | \bar{B}^0 \rangle \bar{\tau} \gamma_{\mu} (1 - \gamma^5) \nu_{\tau} \\ + (S_R + S_L) \langle D^{(*)} | \bar{c} b | \bar{B}^0 \rangle \bar{\tau} (1 - \gamma^5) \nu_{\tau} \\ + (S_R - S_L) \langle D^{(*)} | \bar{c} \gamma^5 b | \bar{B}^0 \rangle \bar{\tau} (1 - \gamma^5) \nu_{\tau} \\ + T_L \langle D^{(*)} | \bar{c} \sigma^{\mu\nu} (1 - \gamma^5) b | \bar{B}^0 \rangle \bar{\tau} \sigma_{\mu\nu} (1 - \gamma^5) \nu_{\tau} \Big].$$

The axial and pseudoscalar hadronic matrix elements do not contribute to $\bar{B}^0 \rightarrow D$; and the scalar hadronic matrix element does not contribute to $\bar{B}^0 \rightarrow D^*$.

We need more form factors to describe NP operators:

$$\begin{aligned} \langle D(p_2)|\bar{c}b|\bar{B}^0(p_1)\rangle &= (m_1+m_2)F^S(q^2),\\ \langle D(p_2)|\bar{c}\sigma^{\mu\nu}(1-\gamma^5)b|\bar{B}^0(p_1)\rangle &= \frac{iF^T(q^2)}{m_1+m_2}\left(P^{\mu}q^{\nu}-P^{\nu}q^{\mu}+i\varepsilon^{\mu\nu Pq}\right),\\ \langle D^*(p_2)|\bar{c}\gamma^5b|\bar{B}^0(p_1)\rangle &= \epsilon_{2\alpha}^{\dagger}P^{\alpha}G^S(q^2), \end{aligned}$$

$$\begin{split} \langle D^*(p_2)|\bar{\varepsilon}\sigma^{\mu\nu}(1-\gamma^5)b|\bar{B}^0(p_1)\rangle &= -i\epsilon_{2\alpha}^{\dagger} \Big[\left(P^{\mu}g^{\nu\alpha} - P^{\nu}g^{\mu\alpha} + i\varepsilon^{P\mu\nu\alpha} \right) G_1^{\mathsf{T}}(q^2) \\ &+ \left(q^{\mu}g^{\nu\alpha} - q^{\nu}g^{\mu\alpha} + i\varepsilon^{q\mu\nu\alpha} \right) G_2^{\mathsf{T}}(q^2) \\ &+ \left(P^{\mu}q^{\nu} - P^{\nu}q^{\mu} + i\varepsilon^{Pq\mu\nu} \right) P^{\alpha} \frac{G_0^{\mathsf{T}}(q^2)}{(m_1 + m_2)^2} \Big], \end{split}$$

Form factors for NP operators

NP form factors for $\bar{B}^0 \to D$ (left) and $\bar{B}^0 \to D^*$ (right) in the full momentum transfer range $0 \le q^2 \le q_{max}^2 = (m_{\bar{B}^0} - m_{D^{(*)}})^2$.

The parameters of the dipole interpolation:

	F ^S	F ^T	G ^s	G_0^T	G_1^T	G_2^T
F(0)	0.80	0.77	-0.50	-0.073	0.73	-0.37
а	0.22	0.76	0.87	1.23	0.90	0.88
Ь	-0.098	0.043	0.060	0.33	0.074	0.064 .
$F(q_{\max}^2)$	0.89	1.11	-0.73	-0.13	1.10	-0.55
$F^{HQL}(q_{\max}^2)$	0.88	1.14	-0.62	0	1.12	-0.50

Allowed regions for NP couplings

Assuming that besides the SM contribution, only one of the NP operators is switched on at a time, and NP only affects the tau modes.

 $A_{FB}(B \rightarrow D\tau \nu)$

-0.2

-0.2

 $A_{\rm FB}({\rm B}{\rightarrow}D^*\tau\nu)$

Lepton-side convexity $C_F^{\tau}(q^2)$

Hadron-side convexity parameter $C_F^h(q^2)$

Certain combinations of angular observables where the form factor dependence drops out (at least in most NP scenarios).

$$H_T^{(1)} = rac{\sqrt{2}J_4}{\sqrt{-J_{2c}(2J_{2s}-J_3)}},$$

which equals to one not only in the SM but also in all NP scenarios except the tensor one. Therefore $H_T^{(1)}(q^2)$ plays a prominent role in confirming the appearance of the tensor operator \mathcal{O}_{T_I} in the decay $\bar{B}^0 \to D^* \tau^- \bar{\nu}_{\tau}$.

PMC.: The black dashed line is the SM prediction. The red dotted line, which is almost identical to the SM one, represents the best fit value of T_L . The blue dot-dashed line and the red line are the prediction for $T_L = 0.21i$ and $T_L = 0.18 + 0.27i$, respectively.

Tau polarization in the decays $ar{B}^0 o D^{(*)} au^- ar{
u}_ au$

• First measurement by Belle: [arXiv:1612.00529]

$$P_L^{ au} = -0.38 \pm 0.51 ({
m stat.})^{+0.21}_{-0.16} ({
m syst.})$$
 (in $ar{B}^0 o D^* au^- ar{
u}_{ au}$)

• We define three orthogonal unit vectors as follows:

$$ec{e}_L = rac{ec{p}_ au}{ec{p}_ auec{l}}, \qquad ec{e}_N = rac{ec{p}_ au imes ec{p}_{D^{(*)}}}{ec{p}_ au imes ec{p}_{D^{(*)}}ec{l}}, \qquad ec{e}_ au = ec{e}_N imes ec{e}_L,$$

where \vec{p}_{τ} and $\vec{p}_{D(*)}$ - three-momenta of the τ^{-} and the mesons in the W^{-} rest frame.

• Longitudinal (L), normal (N), and transverse (T) polarization four-vectors of the τ^- in the W^- rest frame:

$$s_L^\mu = \Big(rac{|ec p_ au|}{m_ au}, rac{m{E}_ au}{m_ au} rac{ec p_ au}{|ec p_ au|}\Big), \qquad s_N^\mu = (0, ec e_N), \qquad s_T^\mu = (0, ec e_ au).$$

• The tau polarization components:

$$P_i(q^2) = \frac{d\Gamma(s_i^{\mu})/dq^2 - d\Gamma(-s_i^{\mu})/dq^2}{d\Gamma(s_i^{\mu})/dq^2 + d\Gamma(-s_i^{\mu})/dq^2}, \qquad i = L, N, T, \qquad q^{\mu} = p_B^{\mu} - p_{D^{(*)}}^{\mu}$$

(Note that $P_N(q^2) = 0$ in the SM.)

Lepton polarization: $ar{B}^0 o D^{(*)} e^- ar{ u}_e$ vs. $ar{B}^0 o D^{(*)} au^- ar{ u}_ au$

Result for tau polarization in the SM

 P_L - P_T correlation: $\sin \theta_{OD} / \cos \theta_{OD} = P_T / P_L$. Dashed line - $B \rightarrow D^*$, solid line - $B \rightarrow D$. The arrows show the direction of increasing q^2 . The dots on the dashed line stand for $q^2 = 4$, 6, 8, 10 GeV². The dots on the solid line - $q^2 = 4$, 8, 10, 11.5 GeV²

	This work	Other	Ref.
$< P_L^D >$	0.33	$\begin{array}{c} 0.34 \pm 0.03 \\ 0.325 \pm 0.009 \end{array}$	Alonso et al. ArXiv:1702.02773 Tanaka et al. ArXiv:1005.4306
$< P_T^D >$	0.84	$\textbf{0.839} \pm \textbf{0.007}$	Alonso et al. ArXiv:1702.02773
$< P_{L}^{D^{*}} >$	-0.50	$\begin{array}{c} -0.497 \pm 0.013 \\ -0.38 \pm 0.51 \substack{+0.21 \\ -0.16} \end{array}$	Tanaka et al. arXiv:1212.1878 Belle Collab. arXiv:1612.00529
$< P_{T}^{D^{*}} >$	0.46	•••	

Analyzing the polarization of the tau through its decays

As analyzing modes for the τ^- polarization we will consider the four dominant τ^- decay modes

In W rest frame, θ_{τ} - angle between \vec{p}_{τ} and the direction opposite to the direction of the $D^{(*)}$

In τ rest frame, θ_d - angle between $d^$ and the longitudinal polarization axis, which is chosen to coincide with the direction of the τ in the *W* rest frame.

 χ - azimuthal angle.

In terms of the angles θ_d and χ , the decay distribution is written as follows:

$$\frac{d\Gamma}{dq^2 d\cos\theta_d d\chi/2\pi} =$$

$$= \mathcal{B}_d \frac{d\Gamma}{dq^2} \frac{1}{2} \left[1 + \mathcal{A}_d (\mathcal{P}_T(q^2) \sin\theta_d \cos\chi + \mathcal{P}_N(q^2) \sin\theta_d \sin\chi + \mathcal{P}_L(q^2) \cos\theta_d) \right].$$

Through an analysis of this decay distribution one can determine the components of the q^2 -dependent polarization vector $\vec{P}(q^2) = (P_T(q^2), P_N(q^2), P_L(q^2))$.

Upon χ integration, one obtains

$$\frac{d\Gamma}{dq^2 d\cos\theta_d} = \mathcal{B}_d \frac{d\Gamma}{dq^2} \frac{1}{2} \left(1 + \mathcal{A}_d P_L(q^2) \cos\theta_d \right)$$

with a polar analyzing power of A_d ($A_d = 1$ for $d = \pi$)

Upon $\cos \theta_d$ integration one has

$$\frac{d\Gamma}{dq^2 d\chi/2\pi} = \mathcal{B}_d \frac{d\Gamma}{dq^2} \Big(1 + A_d \frac{\pi}{4} \big(P_T(q^2) \cos \chi + P_N(q^2) \sin \chi \big) \Big)$$

with an azimuthal analyzing power of $A_d \pi/4$.

For more details: our recent paper [arXiv:1701.02937].

Longitudinal, transverse, and normal polarization of au^- in $ar{B}^0 o D au^- ar{ u}_ au$

- Thick black dashed lines: SM prediction
- Gray bands include NP effects corresponding to the 2σ allowed regions
- Red dotted lines represent the best-fit values of the NP couplings

Longitudinal, transverse, and normal polarization of au^- in $ar{B}^0 o D^* au^- ar{ u}_ au$

 q^2 averages of the polarization components and the total polarization. One can also calculate the average polarizations over the whole q^2 region. For example, the average longitudinal polarization $\langle P_L^D \rangle$ is calculated by:

$$\langle P_L^D \rangle = \frac{\int dq^2 C(q^2) (P_L^D(q^2) \mathcal{H}_{\text{tot}}^D)}{\int dq^2 C(q^2) \mathcal{H}_{\text{tot}}^D},$$

where $C(q^2) = |p_2|(q^2 - m_\tau^2)^2/q^2$ is the q^2 -dependent piece of the phase-space factor.

	\bar{B}^0 –	→ D		
	$< P_L^D >$	$< P_T^D >$	$< P_N^D >$	$< ec{P}^D >$
SM (CCQM)	0.33	0.84	0	0.91
S _L	(0.36, 0.67)	(-0.68, 0.33)	(-0.76, 0.76)	(0.89, 0.96)
TL	(0.13, 0.31)	(0.78, 0.83)	(-0.17, 0.17)	(0.79, 0.90)
	$ar{B}^0 o$	→ D*		
	$< P_L^{D^*} >$	$< P_T^{D^*} >$	$< P_N^{D^*} >$	$ ec{P}^{D^*} >$
SM (CCQM)	-0.50	0.46	Ö	0.71
SL	(-0.40, -0.14)	(0.47, 0.62)	(-0.20, 0.20)	(0.69, 0.70)
TL	(-0.36, 0.24)	(-0.61, 0.26)	(-0.17, 0.17)	(0.23, 0.69)
V _R	-0.50	(0.32, 0.43)	0	(0.48, 0.67)

The predicted intervals for the polarizations in the presence of NP are given in correspondence with the 2σ allowed regions of the NP couplings

Semileptonic decays of J/ψ meson

- Weak decays of J/ψ are rare processes
- BESIII Collaboration $(10^{10} J/\psi \text{ events/year})$: at 90% C.L. $\mathcal{B}(J/\psi \rightarrow D_s^{*-}e^+\nu_e + c.c.) < 1.8 \times 10^{-6}$ (first time) and $\mathcal{B}(J/\psi \rightarrow D_s^-e^+\nu_e + c.c.) < 1.3 \times 10^{-6}$ (30 times more stringent)

M. Ablikim et al., Phys. Rev. D 90, 112014 (2014)

• Standard Model prediction: $pprox 10^{-9} - 10^{-10}$

SanchisLozano:1993, Wang:2007, Shen:2008

• (Approximate) spin symmetry of heavy mesons $BF \approx 10^{-9}; R \equiv \frac{\mathcal{B}(J/\psi \to D_s^* \ell \nu)}{\mathcal{B}(J/\psi \to D_s \ell \nu)} \approx 1.5$

Sanchis-Lonzano:1993

• QCD sum rules (QCD SR) BFs $\approx 10^{-10}$; $R \approx 3.1$

Wang:2007

• Covariant light-front quark model (LFQM) BFs are 2 – 8 times larger than Wang's

Shen:2008

Our aim: Crosscheck!

Matrix element and Decay width

• Matrix element

$$\mathcal{M} = rac{G_F}{\sqrt{2}} V_{cq} \left\langle D^- \left| ar{q} O_\mu c \right| J/\psi \right\rangle [ar{
u_\ell} O^\mu \ell], ext{where } q = s, d, O^\mu = \gamma^\mu (1 - \gamma_5).$$

• Decay width

$$\Gamma\left(J/\psi \to D_{(s)}^{(*)} - \ell^+ \nu_\ell\right) = \frac{G_F^2}{(2\pi)^3} \frac{|V_{cq}|^2}{64 m_1^3} \int_{m_\ell^D}^{(m_{J/\psi} - m_2)^2} \frac{s_1^+}{s_1^-} dq^2 \int_{s_1^-}^{s_1^+} ds_1 \frac{1}{3} H_{\mu\nu} L^{\mu\nu} ,$$

where
$$s_1=(p_D+p_\ell)^2$$
 .

Lepton tensor

$$\boldsymbol{L}^{\mu\nu} = \operatorname{tr}\left[(\boldsymbol{p}_{\ell} + m_{\ell})O^{\mu}\boldsymbol{p}_{\nu_{\ell}}O^{\nu}\right]$$

• Hadron tensor

$$\mathcal{H}_{\mu\nu} = \begin{cases} T^{\mathrm{VP}}_{\mu\alpha} \left(-g^{\alpha\alpha'} + \frac{p_{1}^{\alpha}\rho_{1}^{\alpha'}}{m_{1}^{2}} \right) T^{\mathrm{VP}\,\dagger}_{\nu\alpha'} & \text{for } V \to P \\ T^{\mathrm{VV}}_{\mu\alpha\beta} \left(-g^{\alpha\alpha'} + \frac{p_{1}^{\alpha}\rho_{1}^{\alpha'}}{m_{1}^{2}} \right) \left(-g^{\beta\beta'} + \frac{p_{2}^{\beta}\rho_{2}^{\beta'}}{m_{2}^{2}} \right) T^{\mathrm{VV}\,\dagger}_{\nu\alpha'\beta'} & \text{for } V \to V \end{cases}$$

Hadronic transition and Form factors

 $V \rightarrow P$ transition:

$$\left\langle D_{(s)}^{-}(p_2) \left| \bar{q} O_{\mu} c \right| J/\psi(\epsilon_1, p_1) \right\rangle \equiv \epsilon_1^{\alpha} \mathcal{T}_{\mu\alpha}^{\mathrm{VP}} = \frac{\epsilon_1^{\alpha}}{m_1 + m_2} \times \\ \times \left[-g_{\mu\nu} pq \mathcal{A}_0(q^2) + p_{\mu} p_{\nu} \mathcal{A}_+(q^2) + q_{\mu} p_{\nu} \mathcal{A}_-(q^2) + i \varepsilon_{\mu\nu\rho\sigma} p^{\rho} q^{\sigma} \mathcal{V}(q^2) \right]$$

 $V \rightarrow V$ transition:

$$\begin{split} \left\langle D_{(s)}^{*-}(\epsilon_{2},p_{2}) \left| \bar{q} O_{\mu} c \right| J/\psi(\epsilon_{1},p_{1}) \right\rangle &\equiv \epsilon_{1}^{\alpha} \epsilon_{2}^{*\beta} T_{\mu\alpha\beta}^{VV} \\ &= \varepsilon_{\mu\nu\alpha\beta} \epsilon_{1}^{\alpha} \epsilon_{2}^{*\beta} \left[\left(p^{\nu} - \frac{m_{1}^{2} - m_{2}^{2}}{q^{2}} q^{\nu} \right) A_{1}(q^{2}) + \frac{m_{1}^{2} - m_{2}^{2}}{q^{2}} q^{\nu} A_{2}(q^{2}) \right] \\ &+ \frac{i}{m_{1}^{2} - m_{2}^{2}} \varepsilon_{\mu\nu\alpha\beta} p_{1}^{\alpha} p_{2}^{\beta} \left[A_{3}(q^{2}) \epsilon_{1}^{\nu} \epsilon_{2}^{*} \cdot q - A_{4}(q^{2}) \epsilon_{2}^{*\nu} \epsilon_{1} \cdot q \right] \\ &+ (\epsilon_{1} \cdot \epsilon_{2}^{*}) \left[-p_{\mu} V_{1}(q^{2}) + q_{\mu} V_{2}(q^{2}) \right] \\ &+ \frac{(\epsilon_{1} \cdot q)(\epsilon_{2}^{*} \cdot q)}{m_{1}^{2} - m_{2}^{2}} \left[\left(p_{\mu} - \frac{m_{1}^{2} - m_{2}^{2}}{q^{2}} q_{\mu} \right) V_{3}(q^{2}) + \frac{m_{1}^{2} - m_{2}^{2}}{q^{2}} q_{\mu} V_{4}(q^{2}) \right] \\ &- (\epsilon_{1} \cdot q) \epsilon_{2}^{*} \mu V_{5}(q^{2}) + (\epsilon_{2}^{*} \cdot q) \epsilon_{1\mu} V_{6}(q^{2}) \,. \end{split}$$

Form factors

Form factors of the $V \rightarrow P$ transitions $J/\psi \rightarrow D$ (left) and $J/\psi \rightarrow D_s$ (right).

Form factors

Form factors of the $V \rightarrow V$ transitions $J/\psi \rightarrow D^*$ (up) and $J/\psi \rightarrow D^*_s$ (down). Note that in the left panels $A_1(0) = A_2(0)$ and $A_3(q^2) \equiv A_4(q^2)$.

Form factors Comparison

	J /1	$\psi \rightarrow D$: q ²	= 0	J /4	$b \rightarrow D_s$: q ²	= 0
	A 0	A +	A_	V	A 0	A +	A_	V
QCD SR	1.09	0.34	_	0.81	1.71	0.35	_	1.07
LFQM	2.75	0.18	_	1.6	3.05	0.13	_	1.8
our	1.79	0.41	2.71	1.26	2.52	0.50	2.88	1.43

Comparison of $J/\psi \rightarrow D_{(s)}$ form factors at maximum recoil with those obtained in QCD SR [Wang:2007] and LFQM [Shen:2008].

		$J/\psi ightarrow D^*: q^2=0$									
	A 1	A ₂	A 3	A 4	V 1	V ₂	V 3	V_4	V_5	V_6	
QCDSR	0.40	0.44	0.86	0.91	0.41	0.63	0.22	0.26	1.37	0.87	
our	0.42	0.42	0.41	0.41	0.51	0.39	0.11	0.11	1.68	1.05	
		$J/\psi ightarrow D_{s}^{*}: q^{2}=0$									
QCDSR	0.53	0.53	0.91	0.91	0.54	0.69	0.24	0.26	1.69	1.14	
our	0.51	0.51	0.37	0.37	0.60	0.34	0.11	0.11	1.84	1.24	

Comparison of $J/\psi \rightarrow D^*_{(s)}$ form factors at maximum recoil with those obtained in QCD SR [Wang:2007ys].

Mode	Unit	This work	QCD SR	LFQM
$J/\psi ightarrow D^- e^+ u_e$	10^{-12}	17.1	$7.3^{+4.3}_{-2.2}$	$51\sim 57$
$J/\psi ightarrow D^- \mu^+ u_\mu$	10^{-12}	16.6	$7.1^{+4.2}_{-2.2}$	$47\sim55$
$J/\psi ightarrow D_s^- e^+ u_e$	10^{-10}	3.3	$1.8^{+0.7}_{-0.5}$	$5.3\sim 5.8$
$J/\psi ightarrow D_s^- \mu^+ u_\mu$	10^{-10}	3.2	$1.7^{+0.7}_{-0.5}$	$5.5\sim 5.7$
$J/\psi ightarrow D^{st -} e^+ u_e$	10^{-11}	3.0	$3.7^{+1.6}_{-1.1}$	•••
$J/\psi o D^{*-} \mu^+ u_\mu$	10^{-11}	2.9	$3.6^{+1.6}_{-1.1}$	•••
$J/\psi ightarrow D_s^{st -} e^+ u_e$	10^{-10}	5.0	$5.6^{+1.6}_{-1.6}$	•••
$J/\psi ightarrow D_s^{st -} \mu^+ u_\mu$	10 ⁻¹⁰	4.8	$5.4^{+1.6}_{-1.5}$	•••

Branching Fractions

	All in MeV	f _D	f_{D_s}	<i>f</i> _{D*}	$f_{D_s^*}$	
	This work	206	258	244	272	
	QCD SR	166	189	240	262	
$R\equiv {{\cal B}(J/\psi-W)\over {\cal B}(J/\psi-W)}$	$\frac{\mathcal{B}(J/\psi \to D_s^* \ell \nu)}{\mathcal{B}(J/\psi \to D_s \ell \nu)} = \begin{cases} 1.5\\ 3.1\\ 1.5 \end{cases}$			M.A. Sanchis-Lonzano Y.M. Wang This work		
$R_1 \equiv \frac{\mathcal{B}(J)}{\mathcal{B}(J)}$	$rac{\psi ightarrow D_{s}\ell u)}{\psi ightarrow D\ell u)}$	and	1	$R_2 \equiv rac{\mu}{\mu}$	B(J/ψ B(J/ψ	$rac{\partial D_s^* \ell u)}{\partial D^* \ell u)}$

 $\simeq |V_{cs}|^2/|V_{cd}|^2 \simeq 18.4$ under *SU*(3) flavor symmetry limit. Wang's: $R_1 \simeq 24.7$ and $R_2 \simeq 15.1$. This work: $R_1 \simeq 19.3$ and $R_2 \simeq 16.6$.

Summary

- Leptonic and semileptonic *B* decays within the SM in the framework of our covariant quark model with particular emphasis on how to isolate heavy lepton mass effects in the semileptonic decays.
- How to obtain the full angular decay distributions for $\bar{B}^0 \to D\tau^-\bar{\nu}_{\tau}$ and the cascade decay process $\bar{B}^0 \to D^{*+}(\to D^0\pi^+)\tau^-\bar{\nu}_{\tau}$ and how to define various physical observables in these decays.
- An analysis of possible NP in the semileptonic decays $\bar{B}^0 \rightarrow D^{(*)} \tau^- \bar{\nu}_{\tau}$ based on an effective Hamiltonian including NP operators.
- Current experimental data of R(D) and $R(D^*)$ prefer the operators \mathcal{O}_{S_L} and $\mathcal{O}_{V_{L,R}}$; the operator \mathcal{O}_{T_L} is less favored; and the operator \mathcal{O}_{S_R} is excluded at 2σ .
- Our analysis can serve as a map for setting up various strategies to identify the origins of NP. For example, firstly, one uses the null-tests $W_{IT}(q^2) = 0$ and $H_T^{(1)}(q^2) - 1 = 0$ to probe the operators \mathcal{O}_{V_R} and \mathcal{O}_{T_L} , respectively. Secondly, one measures the forward-backward asymmetry in the decay $\bar{B}^0 \rightarrow D\tau^- \bar{\nu}_{\tau}$. If $\mathcal{A}_{FB}^D(q^2)$ has a zero-crossing point, then it is a clear sign of the operator \mathcal{O}_{S_L} . The coupling V_L is more difficult to test because it is just a multiplier of the SM operator. However, if the tests above disconfirms \mathcal{O}_{V_R} , \mathcal{O}_{T_L} , and \mathcal{O}_{S_L} at the same time, then the modification of V_L to R(D)and $R(D^*)$ is a must.
- Tau polarization and its role in probing NP in the decays $ar{B}^0 o D^{(*)} au^- ar{
 u}_{ au}$.
- Prediction for branching fractions of the semileptonic decays of charmonium.

Conference Presentations

Analyzing New Physics in the decays $ar{B}^0 o D^{(*)} au^- ar{
u}_ au$:

- Oral presentation delivered at the Conference "Hadron Structure and QCD: from Low to High Energies", Gatchina, June 2016,
- Oral presentation delivered at the Helmholtz International Summer School " Quantum Field Theory at the Limits: from Strong Fields to Heavy Quarks", Dubna, July 2016.

Exclusive decays $J/\psi \rightarrow D_{(s)}^{(*)}\ell\nu_{\ell}$ in the Covariant Confined Quark Model:

- Oral presentation delivered at the Workshop on Dispersion Methods for Hadronic Contributions to QED Effects, Bratislava, Oct. 2015,
- Oral presentation at the International Conference on Precision Physics and Fundamental Physical Constants, Budapest, Oct. 2015.
- Poster presentation delivered at the 44th meeting of the Program Advisory Committee for Particle Physics of JINR, Dubna, Dec. 2015.

Leptonic and semileptonic weak decays of B mesons.

• Oral presentation delivered at the 6th Russian Youth Conference "Fundamental and innovative problems of modern physics", Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Nov. 2015.

Weak decays of B meson and charmonium in a covariant quark model

• Oral presentation delivered at the laboratory seminar of BLTP-JINR, Dubna, Nov. 2015.

Publication

- 1. M. A. Ivanov, J. G. Körner and C. T. Tran, Exclusive decays $B \rightarrow \ell^- \bar{\nu}$ and $B \rightarrow D^{(*)}\ell^- \bar{\nu}$ in the covariant quark model, Phys. Rev. D 92, 114022 (2015), arXiv:1508.02678.
- 2. M. A. Ivanov and C. T. Tran, Exclusive decays $J/\psi \rightarrow D_{(s)}^{(*)-}\ell^+\nu_{\ell}$ in a covariant constituent quark model with infrared confinement, Phys. Rev. D 92, 074030 (2015), arXiv:1701.07377.
- 3. M. A. Ivanov, J. G. Körner and C. T. Tran, Analyzing new physics in the decays $\bar{B}^0 \rightarrow D^{(*)} \tau^- \bar{\nu}_{\tau}$ with form factors obtained from the covariant quark model, Phys. Rev. D 94, 094028 (2016), arXiv:1607.02932.
- 4. M. A. Ivanov, J. G. Körner and C. T. Tran, Probing new physics in $\bar{B}^0 \rightarrow D^{(*)} \tau^- \bar{\nu}_{\tau}$ using the longitudinal, transverse, and normal polarization components of the tau lepton, Phys. Rev. D 95, 036021 (2017), arXiv:1701.02937.
- 5. C. T. Tran, M. A. Ivanov and J. G. Körner, Analyzing New Physics in $\bar{B}^0 \rightarrow D^{(*)} \tau^- \bar{\nu}_{\tau}$, HISS Conference Proceeding, arXiv:1702.06910.
- 6. M. A. Ivanov, J. G. Körner and C. T. Tran, Looking for new physics in leptonic and semileptonic decays of *B* meson, Summited to Physics of Particles and Nuclei Letters.

Thank you for your attention!

- Диссертационный совет: ЛТФ ОИЯИ
- Научный руководитель:

д.ф.-м.н., профессор М. А. Иванов (ЛТФ - ОИЯИ)

• Оппоненты:

д.ф.-м.н. В. О. Галкин (Вычислительный центр - РАН)

д.ф.-м.н. Д. И. Мелихов (НИИЯФ - МГУ)

• Ведущая организация:

Институт физики высоких энергий, г. Протвино.