Адронный вклад в аномальный магнитный момент мюона от процесса рассеяния света на свете в рамках нелокальной кварковой модели.

> Жевлаков А.С. Руководитель: Раджабов А.Е. (ИДСТУ СО РАН)

3 июня 2014, ЛТФ им.Н.Н.Боголюбова

<u> イロト (</u>) ・ () ・ () - 三

Защита будет проводиться в совете при Иркутском государственном университете:

Ведущей организацией: Институт ядерной физики им. Будкера СО РАН (Новосибирск).

Оппоненты:

- Иванов Михаил Алексеевич, доктор физико-математических наук, профессор, объединенный институт ядерных исследований, ЛТФ им.Боголюбова, Дубна
- Киселев Алексей Владимирович, кандидат физико-математических наук, старший научный сотрудник, институт математика им.Соболева СО РАН, Новосибирск

Вычисление вклада сильных взаимодействий от процесса рассеяния света на свете в аномальный магнитный момент мюона в рамках нелокальной кварковой модели:

- разработка эффективной теоретической модели сильных взаимодействий.
- вычисление вклада сильных взаимодействий в рамках построенной модели, оценка ошибки вычисления вклада.
- Оравнение с предсказаниями других теоретическими моделей сильного взаимодействия.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Научные положения, выносимые на защиту:

- Построен явный вид вершинных функций описывающих нелокальное взаимодействие кварков с тремя или с четырьмя внешними калибровочными полями. Построены формфакторы перехода скалярных и псевдоскалярных мезонов в два виртуальных фотона.
- Вычислен вклад в аномальный магнитный момент мюона от процесса рассеяния света на свете с участием легких скалярных и псевдоскалярных мезонных состояний.
- Вычислен вклад в аномальный магнитный момент мюона от процесса рассеяния света на свете в случае контактной диаграммы типа кварковый бокс.

Аппробация работы

Данная работа была представлена на школах и конференциях:

- Международная Байкальская летняя школа по физике Элементарных Частиц и Астрофизике, организуемая Иркутским Государственным Университетом и Объединенным Институтом Ядерных Исследований (Дубна) (п. Большие Коты) 2010, 2011.
- 2. Ляпуновские чтения. (Иркутск, ИДСТУ СО РАН, 2011).
- Dubna International Advanced School of Theoretical Physics HIC for FAIR Workshop and School Dense QCD phases in Heavy-Ion Collisions DM2010, 2010 (г. Дубна. 21 августа - 4 сентября, 2010).
- Dubna International Advanced School of Theoretical Physics Helmholtz International School "Lattice QCD, Hadron Structure and Hadronic Matter"(Дубна, Сентябрь 5-17, 2011).
- 5. The "International Workshop on e- e+ collisions from phi to psi"(Новосибирск, Институт Ядерной Физики им.Будкера СО РАН, сентябрь 19-22, 2011).

- 6. XXI International Baldin Seminar "Relativistic Nuclear Physics and Quantum Chromodinamics" (Россия, Моск. Обл., г.Дубна, ОИЯИ, 10-15 сентября, 2012).
- 7. The 7-th APCTP-BLTP JINR Joint Workshop "Modern problems in nuclear and elementary particle physics". (Россия, Иркутская область, п. Большие Коты, 14-19 июля, 2013).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

и на семинаре в Институте математики им. Соболева СО РАН.

План

Введение.

Глава 1. Нелокальная кварковая модель.

1.1 Лагранжиан.

1.2 Введение внешних калибровочных полей.

1.3 Выводы.

Глава 2. Рассеяние света на свете І. Промежуточный мезонное состояние.

- 2.1 Промежуточный псевдоскалярное состояние.
- 2.2 Промежуточный скалярное состояние.
- 2.3 Выводы.

Глава 3. Рассеяние света на свете II. Контактные диаграммы.

- 3.1 Диаграмма кварковый бокс.
- 3.2 Вычисление вклада от контактной диаграммы.
- 3.3 Дискуссия
- 3.4 Выводы.

Заключение.

Приложение.

Список литературы.

Движение точечной заряженной частицы со спинов 1/2 описывается уравнением Дирака

$$i\hbar\frac{\partial\psi}{\partial t} = \left[\frac{p^2}{2m} - \frac{e}{2m}(\vec{L} + 2\vec{S})\vec{B}\right]\psi\tag{1}$$

Магнитный момент μ можно связать со спином частицы S.

$$L_{I} = \vec{\mu}_{S}\vec{B}; \qquad \vec{\mu}_{S} = g_{S}(\frac{e}{2m})\vec{s};$$
$$a = \frac{g_{S}-2}{2}; \qquad \mu = (1+a)\frac{eh}{2m}$$
(2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

В общем виде вершину взаимодействия фермиона, спин 1/2, с внешним полем можно представить как:

$$-ie\bar{u}(p')\left\{\gamma_{\mu}F_{1}(q^{2})+i\sigma_{\mu\nu}\frac{q_{\nu}}{2m}F_{2}(q^{2})+\gamma_{5}\sigma_{\mu\nu}\frac{q_{\nu}}{2m}F_{3}(q^{2})\right\}u(p)e_{\mu}(q),\quad(3)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

*F*₁ – распределение электрического заряда,

 F_2 – соответствует аномальному магнитному моменту (AMM)

$$a = (g - 2)/2 = F_2(0),$$

F₃ – аномальный дипольный момент.

В Стандартной модели электрослабого взаимодействия $a \neq 0$. Это обусловлено квантовыми поправками.

Вклады	ФАКТОР 10 ⁻¹¹
QED (leptons)	$116\;584\;718.85\pm0.04$
$HVP(lo)[e^+e^-]$	$6~923\pm42$
HVP(ho)	-98.4 ± 0.7
HLbyL	105 ± 26
EW	153 ± 1
Total SM	116591801 ± 49
Exp	116592089 ± 63
TheorExp.	262 ± 89

Таблица: Вклады различных взаимодействия в g-2 мюона в Стандартной модели Phys. Rev. D 83 (2011) 094006

by Graziano Venanzoni, arXiv:1203.1501v1

by Graziano Venanzoni, arXiv:1203.1501v1

$(g-2)_{\mu}$. Адронный вклад

 $a_{\mu}^{HVP}=(692.3\pm4.2) imes10^{-10}({\sf Davier,\,Hoecker,\,Zhang})$

- Вклад адронной поляризации вакуума составляет 99% и дает теоретической ошибки. Его можно извлекать из экспериментов по измерению сечения рассеяния e⁺e[−] → адроны и τ → адроны.
- Вклад от процесса рассеяния света на свете (LbL) составляет 1% и другую половину ошибки. Является модельно зависимым.

(4)

$N\chi QM$

Лагранжиан нелокальной кварковой модели:

$$\mathcal{L} = \bar{q}(x)(i\hat{\partial} - m_c)q(x) + \frac{G}{2}[J_S^a(x)J_S^a(x) + J_P^a(x)J_P^a(x)] - \frac{H}{4}T_{abc}[J_S^a(x)J_S^b(x)J_S^c(x) - 3J_S^a(x)J_P^b(x)J_P^c(x)]$$
(5)

$$T_{abc} = \frac{1}{6} \epsilon_{ijk} \epsilon_{mnl} (\lambda_a)_{im} (\lambda_b)_{jn} (\lambda_c)_{kl},$$

Нелокальный ток:

$$J_{M}^{a}(x) = \int d^{4}x_{1}d^{4}x_{2} f(x_{1})f(x_{2}) \bar{q}(x-x_{1})\Gamma_{M}^{a}q(x+x_{2}), \qquad (6)$$

$$q(x) \rightarrow Q(x,y) = Pexp(-i\int_{x}^{y} dz^{\mu}A_{\mu}(z))q(y)$$
(7)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$N\chi QM$

Бозонизованное действие получается в виде:

$$S = \ln \det A - \int d^4x \left[\sigma^a S^a + \pi^a P^a + \frac{G}{2} (S^a S^a + P^a P^a) + \frac{H}{4} T_{abc} (S^a S^b S^c + S^a P^b P^c) \right]$$

где

$$A = (\widehat{p} - m_c)\delta(p - p') + f(p)[\sigma^a(p - p') + i\gamma^5\pi^a(p - p')]\lambda^a f(p')$$

 $N\chi QM$.

Для учета взаимодействия с внешним калибровочным полем:

$$q(x) \to Q(x,y) = \operatorname{Pexp}\left(ie \int_{y}^{x} du_{\mu} V_{\mu}(u)\right) q(x).$$
(8)

$$ie\Gamma^{\mu}(x,y,z) = -rac{\delta^3 S}{\delta V_{\mu}(x)\delta q(y)\delta \bar{q}(z)}.$$
 (9)

[J. Terning, Phys. Rev. D 44, 887 (1991)] Вершинная функция квар-антикварк-фотон $\Gamma_{\mu} = \gamma_{\mu} - (p_1 + p_2)_{\mu} m^{(1)}(p_1, p_2),$ кварк-антикварк-пара фотонов $\Gamma_{\mu\nu}(q_1, q_2) = -\left[2g_{\mu\nu}m^{(1)}(k, k_{12}) + (k + k_1)_{\mu}(k_1 + k_{12})_{\nu}m^{(2)}(k, k_1, k_{12}) + (k + k_2)_{\nu}(k_2 + k_{12})_{\mu}m^{(2)}(k, k_2, k_{12})\right]$ (10) $N\chi QM$

Рис.: Диаграммы описывающие взаимодействие кварков с внешними калибровочными полями и мезонами.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Light-by-Light

Рис.: Образование промежуточного мезонного состояния за счет 4-х кваркового взаимодействия при учете полного набора диаграмм. Три вида диаграмм, которые возможны в рамках нелокальной модели с учетом скалярных и псевдоскалярных токов.

Рис.: Топологически отличные диаграммы описывающие процесс рассеяния света на свете в нелокальной кварковой модели. Последняя диаграмма редуцируются за счет учета 4-х кваркового взаимодействия.

Рис.: Вклад процесса рассеяния света на свете с промежуточным мезонным состоянием.

$$\begin{aligned} \Pi_{\mu\nu\lambda\rho}(q_1,q_2,q_3) &= \\ &= \int d^4 x_1 \int d^4 x_2 \int d^4 x_3 e^{i(q_1 \times_1 + q_2 \times_2 + q_3 \times_3)} \left< 0 \right| \mathcal{T}(j_{\mu}(x_1) j_{\nu}(x_2) j_{\lambda}(x_3) j_{\rho}(0)) |0\rangle \,, \end{aligned}$$

где $j_\mu(x)$ – электромангнитный ток, а |0
angle отвечает КХД состоянию вакуума.

21

Вклад в АММ мюона:

$$a_{\mu}^{\mathrm{LbL}} = rac{1}{48m_{\mu}} \mathrm{Tr}\left((\hat{p}+m_{\mu})[\gamma^{
ho},\gamma^{\sigma}](\hat{p}+m_{\mu})\Pi_{
ho\sigma}(p,p)
ight),$$

где

$$\Pi_{\rho\sigma}(\rho',\rho) = -ie^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \int \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{1}{q_{1}^{2}q_{2}^{2}(q_{1}+q_{2}-k)^{2}} \times \\ \times \gamma^{\mu} \frac{\hat{\rho}'-\hat{q}_{1}+m_{\mu}}{(\rho'-q_{1})^{2}-m_{\mu}^{2}} \gamma^{\nu} \frac{\hat{\rho}-\hat{q}_{1}-\hat{q}_{2}+m_{\mu}}{(\rho-q_{1}-q_{2})^{2}-m_{\mu}^{2}} \gamma^{\lambda} \times \\ \times \frac{\partial}{\partial k^{\rho}} \Pi_{\mu\nu\lambda\sigma}(q_{1},q_{2},k-q_{1}-q_{2}).$$
(11)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\frac{\partial}{\partial k^{\rho}} \Pi^{\mu\nu\lambda\sigma}(q_{1}, q_{2}, k - q_{1} - q_{2}) = i\frac{\Delta^{\mu\nu}(q_{1} + q_{2}, q_{1}, q_{2})}{(q_{1} + q_{2})^{2} - M^{2}} \frac{\partial}{\partial k^{\rho}} \Delta^{\lambda\sigma}(q_{1} + q_{2}, -q_{1} - q_{2}, k)
+ i\frac{\Delta^{\nu\lambda}(-q_{1}, q_{2}, -q_{1} - q_{2})}{q_{1}^{2} - M^{2}} \frac{\partial}{\partial k^{\rho}} \Delta^{\mu\sigma}(-q_{1}, q_{1}, k)$$

$$+ i\frac{\Delta^{\mu\lambda}(-q_{2}, q_{1}, -q_{1} - q_{2})}{q_{2}^{2} - M^{2}} \frac{\partial}{\partial k^{\rho}} \Delta^{\nu\sigma}(-q_{2}, q_{2}, k) + O(k)$$
(12)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

рассматриваем в статическом приделе по импульсу *k*. Третий импульс выражается из закона сохранения импульсов.

LbL с промежуточным мезонным состоянием

Усредняя по фазовому пространству мюона, получаем

$$a_{\mu}^{\text{LbL}} = -\frac{2\alpha^3}{3\pi^2} \int_{0}^{\infty} dQ_1^2 \int_{0}^{\infty} dQ_2^2 \int_{-1}^{1} dt \sqrt{1 - t^2} \frac{1}{Q_3^2} \times \sum_{\text{mesons}} \left[2 \frac{\mathcal{N}_1^5}{Q_2^2 + M_5^2} + \frac{\mathcal{N}_2^5}{Q_3^2 + M_5^2} \right],$$
(13)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

где

$$\begin{split} \mathcal{N}_{1}^{\mathcal{S}} &= \sum_{\mathrm{X}=\mathrm{A},\mathrm{B}'} \sum_{\mathrm{Y}=\mathrm{A},\mathrm{B}} \mathrm{X}_{\mathcal{S}} \left(\mathcal{Q}_{2}^{2};\mathcal{Q}_{2}^{2},0 \right) \mathrm{Y}_{\mathcal{S}} \left(\mathcal{Q}_{2}^{2};\mathcal{Q}_{1}^{2},\mathcal{Q}_{3}^{2} \right) \mathrm{Ts}_{1}^{\mathrm{XY}}, \\ \mathcal{N}_{2}^{\mathcal{S}} &= \sum_{\mathrm{X}=\mathrm{A},\mathrm{B}'} \sum_{\mathrm{Y}=\mathrm{A},\mathrm{B}} \mathrm{X}_{\mathcal{S}} \left(\mathcal{Q}_{3}^{2};\mathcal{Q}_{3}^{2},0 \right) \mathrm{Y}_{\mathcal{S}} \left(\mathcal{Q}_{3}^{2};\mathcal{Q}_{1}^{2},\mathcal{Q}_{2}^{2} \right) \mathrm{Ts}_{2}^{\mathrm{XY}}. \end{split}$$

Light-by-Light /переход мезона в два фотона

LbL. Формфактор мезона

$$\mathcal{A}\left(\gamma^{*}\left(q_{1},\epsilon_{1}\right)\gamma^{*}\left(q_{2},\epsilon_{2}\right)\rightarrow\mathcal{P}^{*}\left(p\right)\right)=-ie^{2}\varepsilon_{\mu\nu\rho\sigma}\epsilon_{1}^{\mu}\epsilon_{2}^{\nu}q_{1}^{\rho}q_{2}^{\sigma}\mathcal{F}_{\mathcal{P}^{*}\gamma^{*}}\left(p^{2};q_{1}^{2},q_{2}^{2}\right),$$

где $q_{1,2}$ – импульсы фотонов, $\epsilon_{1,2}$ их векторы поляризации, $p = q_1 + q_2$. Для различных псевдоскалярных состояний мы получаем:

$$\begin{aligned} & F_{\pi_{0}^{*}\gamma^{*}\gamma^{*}}\left(p^{2};q_{1}^{2},q_{2}^{2}\right) = g_{\pi}(p^{2})F_{u}\left(p^{2};q_{1}^{2},q_{2}^{2}\right), \\ & F_{\eta^{*}\gamma^{*}\gamma^{*}}\left(p^{2};q_{1}^{2},q_{2}^{2}\right) = \frac{g_{\eta}(p^{2})}{3\sqrt{3}}\times \\ & \times \left[\left(5F_{u}\left(p^{2};q_{1}^{2},q_{2}^{2}\right) - 2F_{s}\left(p^{2};q_{1}^{2},q_{2}^{2}\right)\right)\cos\theta(p^{2}) - \right. \\ & -\sqrt{2}\left(5F_{u}\left(p^{2};q_{1}^{2},q_{2}^{2}\right) + F_{s}\left(p^{2};q_{1}^{2},q_{2}^{2}\right)\right)\sin\theta(p^{2})\right], \\ & F_{\eta^{\prime*}\gamma^{*}\gamma^{*}}\left(p^{2};q_{1}^{2},q_{2}^{2}\right) = \frac{g_{\eta^{\prime}}(p^{2})}{3\sqrt{3}}\times \\ & \times \left[\left(5F_{u}\left(p^{2};q_{1}^{2},q_{2}^{2}\right) - 2F_{s}\left(p^{2};q_{1}^{2},q_{2}^{2}\right)\right)\sin\theta(p^{2}) + \right. \\ & \left. +\sqrt{2}\left(5F_{u}\left(p^{2};q_{1}^{2},q_{2}^{2}\right) + F_{s}\left(p^{2};q_{1}^{2},q_{2}^{2}\right)\right)\cos\theta(p^{2})\right]. \end{aligned}$$

Light-by-Light / meson to two photons

Переходный формфактор псеводскалярного мезона в два фотона запишется как,

$$F_{i}\left(p^{2};q_{1}^{2},q_{2}^{2}\right) = 8 \int \frac{d_{E}^{4}k}{(2\pi)^{4}} \frac{f(k_{1}^{2})f(k_{2}^{2})}{D_{i}(k_{1}^{2})D_{i}(k_{2}^{2})D_{i}(k^{2})} \times \\ \times \left[m_{i}(k^{2}) - m_{i}^{(1)}(k_{1},k)J_{1} - m_{i}^{(1)}(k_{2},k)J_{2}\right], \\ J_{1} = k^{2} + \frac{q_{2}^{2}(kq_{1})(k_{1}q_{1}) - q_{1}^{2}(kq_{2})(k_{1}q_{2})}{q_{1}^{2}q_{2}^{2} - (q_{1}q_{2})^{2}}, \\ J_{2} = k^{2} + \frac{q_{1}^{2}(kq_{2})(k_{2}q_{2}) - q_{2}^{2}(kq_{1})(k_{2}q_{1})}{q_{1}^{2}q_{2}^{2} - (q_{1}q_{2})^{2}},$$
(15)

где

$$k_1 = k + q_1;$$
 $k_2 = k - q_2;$

и конечно-разностная производная первого порядка

$$m^{(1)}(p,q) = \frac{m(p^2) - m(q^2)}{p^2 - q^2}$$
(16)

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 三臣 - のへで

В специальной кинематике

$$F_{i}\left(q_{1}^{2};q_{1}^{2},0\right) = 8 \int \frac{d_{E}^{4}k}{(2\pi)^{4}} \frac{f(k_{1}^{2})f(k^{2})}{D_{i}(k_{1}^{2})D_{i}^{2}(k^{2})} \times$$

$$\times \left[m_{i}(k^{2}) - m_{i}^{(1)}(k_{1},k)\overline{J}_{1} - m_{i}'(k^{2})\overline{J}_{2}\right],$$

$$\overline{J}_{1}\left(k,q_{1}\right) = \left(kq_{1}\right) + \frac{2}{3}\left[k^{2} + 2\frac{(kq_{1})^{2}}{q_{1}^{2}}\right],$$

$$\overline{J}_{2} = \frac{4}{3}\left[k^{2} - \frac{(kq_{1})^{2}}{q_{1}^{2}}\right],$$

$$F_{i}\left(0;0,0\right) = \frac{1}{m_{d,i}}\left[\frac{1}{4\pi^{2}} - 8m_{c,i}\int \frac{d_{E}^{4}k}{(2\pi)^{4}}\frac{m_{i}(k^{2}) - 2m_{i}'(k^{2})k^{2}}{D_{i}^{3}(k^{2})}\right],$$
(17)
(18)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Light-by-Light / переход мезона в два фотона

Поведение переходного формфактора пиона в специальной кинематике.

Ę

Light-by-Light / переход мезона в два фотона

DRZ, EPJC 72 (2012), arXiv:1204.3729

LbL. Контактные слагаемые.

Для вычисления вклада в AMM мюона нам потребуется вычислить производную от этого тензора

$$J^{\mu
u\lambda}_{\sigma
ho} = rac{\partial}{\partial\Delta_
ho} \left. T^{\mu
u\lambda}_{\sigma}(\Delta,k_1,k_2,k_3)
ight|_{\Delta=0}.$$

Выражение для тензора рассеяния света на свете четвертого ранга выписано подробно в статье Nuovo Cim. А **30** (1975) и содержит в себе 138 структур, которые с учётом симметрии и калибровочной инвариантности можно сократить до 17. Используя подобные схемы, можно записать общий вид для тензора $J^{\mu\nu\lambda}_{\sigma\rho}$, важного для вычисления AMM /Кураев и др. Yad. Fiz. **50** (1989)/:

$$J^{\mu\nu\lambda}_{\sigma\rho}(123) = \sum_{ijl} A^{ijl}_{\rho\sigma} k^{\mu}_{i} k^{\nu}_{j} k^{\lambda}_{l} + \sum_{i} B^{i}_{\rho\sigma} k^{\mu}_{i} g^{\nu\lambda} + \sum_{i} C^{i}(\bar{k}^{\mu}_{i})_{\rho\sigma} g^{\nu\lambda} + \sum_{ijl} d^{ijl}(\bar{k}^{\mu}_{i})_{\rho\sigma} k^{\nu}_{j} k^{\lambda}_{l} + \sum_{i} E^{i}(123) k^{\mu}_{i} [\nu\lambda]_{\rho\sigma} + \sum_{j} F^{j}_{\rho\sigma}(123) k^{\nu}_{j} g^{\mu\lambda} + \dots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Рис.: Топологически отличный диаграммы процесса рассеяния света на свете в нелокальной кварковой модели. Последняя редуцированна 4-х кварковым взаимодействием и вычислена в ранее.

LbL. Контактные слагаемые.

Зависимость вклада в АММ мюона от величины массы кварка.

π, K -loops	π^0,η,η'	scalars	quark-loop	Total	Ref.
-4.5(8.1)	82.7(6.4)	-	9.7(11.1)	89.6(15.4)	Hayakawa
-19(13)	85(13)	-6.8(2.0)	21(3)	83(32)	Bijnens
-	83(12)	-	-	80(40)	Knecht
0(10)	114(10)	-	0	136(25)	Melnikov
-	-	-	-	110(40)	Bijnens-2007
-19(19)	114(13)	-7(7)	2.3 [c-quark]	105(26)	P.R.V.
-19(13)	99(16)	-7(2)	21(3)	116(40)	N.J.
-	81(2)	-	107(2)	188(4)	Goecke, Fischer
-	-	-	-	118-148	Bougheza
-	68(3) $[\pi^0]$	-	82(6)	150(3)	Greynat
-	-	-3.1(0.8)	-	76(4)-125(7)	Masjuan, Pauk
-(11 - 71)	-	-	-	-	Engel
-20(5)	-	-	-	-	Bijnens-2012
—	-	-	143	143	Pivovarov
—	58.5(8.7)	11	101	168(12)	Our results
-45	$+\infty$	-	60	-	no FF

Заключение

- Получены вершинные функции взаимодействия кварк-антикварка с внешним калибровочным полем, вплоть до случая взаимодействия четырех фотонов.
- Получен вид переходного формфактора в два виртуальных фотона, для случая легких скалярных и псевдоскалярных мезонов.

Вычислен вклад в аномальный магнитный момент мюона от процесса рассеяния света на свете с промежуточными легкими скалярными и псевдоскалярными резонансами в рамках нелокальной кварковой модели. Сумма вклада была оценена а^{LbL,S+PS} = (6.25 ± 0.83) · 10⁻¹⁰. Полученная величина в полтора раза меньше результатов полученных другими группами. Данный фактор объясняется тем что был полностью учтена кинетическая зависимость промежуточного виртуального состояния мезона, лежащего в не массовой поверхности.

Вычислен вклад в аномальный магнитный момент мюона для контактных диаграмм. Величина вклада от данного процесса составила $a_{\mu}^{LbL;contact} = 101 \cdot 10^{-11}$. Это позволило дать оценку на величину полного вклада в AMM мюона от LbL процесса в рамках нелокальной модели, и он равен примерно $a_{\mu}^{LbL} = 168(12) \cdot 10^{-10}$. 1) A.E. Dorokhov, A.E. Radzhabov, A.S. Zhevlakov "The pseudoscalar hadronic channel contribution of the light-by-light process to the muon (g - 2) within the nonlocal chiral quark model", The European Physical Journal C, 2011, v.71, Nº. 7, 1702

2) A.E. Dorokhov, A.E. Radzhabov, A.S. Zhevlakov "The Light-by-Light Contribution to the Muon (g-2) from Lightest Pseudoscalar and Scalar Mesons within Nonlocal Chiral Quark Model", Eur.Phys.J.C. 72, 2227, 2012.

3) A.E. Dorokhov, A.E. Radzhabov, A.S. Zhevlakov "Hadronic contribution to the muon anomalous magnetic moment (g-2) mu due to light-by-light scattering in a nonlocal quark model", Известия Вузов, Физика. Томск. 6, 2010, 75.

4) A.E. Dorokhov, A.E. Radzhabov, A.S. Zhevlakov "Calculation of Hadronic Contribution to the Anomalous Magnetic Momentum of Muon (g-2) from Light by Light Scattering Diagram in Nonlocal Chiral Quark Model ", Phys.Part. Nucl. Lett., 8, 2011, 768.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

5) A.E. Dorokhov, A.E. Radzhabov, A.S. Zhevlakov "Light-by-light contribution to the (g-2) of muon from pseudoscalar channel in the nonlocal SU(3)xSU(3) quark model.", Nucl.Phys.Proc.Suppl., 2011, v. 219-220, p. 267-270.

6) A.E. Dorokhov, A.E. Radzhabov, A.S. Zhevlakov "The light-by-light contribution to the (g-2) of muon from lightest pseudoscalar and scalar mesons within nonlocal chiral quark model.", Nucl.Phys.Proc.Suppl., 2012, v. 225-227, p. 273-276.

7) A.E. Dorokhov, A.E. Radzhabov, A.S. Zhevlakov "Pseudoscalar meson transition form factors in nonperturbative QCD approach.", Nucl.Phys.Proc.Suppl., 2012, v. 225-227, p. 141-145.

8) A.E. Dorokhov, A.E. Radzhabov, A.S. Zhevlakov "The muon anomaly and π^{0} light-by-light contribution. Estimation of the value and error band in nonlocal chiral quark model.", Nucl.Phys.Proc.Suppl., 2012, v. 225-227, p. 298-300.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- **9)** A.E. Dorokhov, A.E. Radzhabov, A.S. Zhevlakov "Status of the lepton g-2 and effects of hadronic corrections", JETP Letters. Vol.100 (2014).
- **10)** A.E. Dorokhov, A.E. Radzhabov, A.S. Zhevlakov "The meson-exchange induced light-by-light contribution to $(g 2)_{\mu}$ whithin the nonlocal chiral quark model", Acta.Phys.Polon.Supp. 6 (2013) 157-164.
- 11) A.E. Dorokhov, A.E. Radzhabov, A.S. Zhevlakov "Scalar mesons LbL contribution to the (g-2) of muon in $N\chi$ QM", PoS Baldin-ISHEPP-XXI, 2012, 063.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Thank you for attention.

