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Abstract

We review evolution equations for truncated Mellin moments
of the parton densities and discuss some applications

Main �nding (D.K. and A. Kotlorz, Phys. Lett. B644, 284, 2007)
n-th truncated moment of the parton distribution

q̄n(xmin,Q
2) =

1∫
xmin

dx xn−1 q(x ,Q2)

︸ ︷︷ ︸
truncated moment (TMM)

obeys also the DGLAP equation, but with a rescaled splitting function

P ′(z) = znP(z)

EXPERIMENTS PROVIDE CUT MOMENTS!
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Motivation

PDFs play the central role in DGLAP approach
Moments - a natural candidate in QCD analysis

originate from OPE - basic formalism of the quantum �eld
theory

directly re�er to sum rules - fundamental relations in QCD

contributions to momentum or spin of the nucleon coming
from quarks and gluons

Evolution equations for truncated moments
(generalization of the full moments version)

enables directly to study physical values and their evolution

allows to avoid uncertainties from non-available experimentally
small-x region

Moment approach is a powerful tool to study SF
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Operator product expansion (OPE)

OPE refers directly to the moments of the structure functions.

OPE enables to derive from QCD sum rules for the structure functions.

The product of two electromagnetic currents in the hadronic tensor
W µν can be expanded in terms of a sum of local operators multiplied
by Wilson coe�cients.

The local operators in OPE for QCD are quark and gluon operators.

The contribution of any operator to W µνLµν is of order(
1

x

)n (
Q

M

)2−t

t − twist n− spin
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OPE

The Mellin moments of the structure functions∫ 1

0

dx xn−1 Fi (x ,Q2) =
∑
A

CA
n,i (Q

2)MA
n

CA
n,i (Q

2) - Fourier transforms of the Wilson coe�cients

MA
n (Q2) - parametrize the diagonal matrix elements of the composite

operators between nucleon states

In DGLAP formulation

MA
n (Q2) =

∫ 1

0

dx xn−1 qA(x ,Q2)

qA(x ,Q2) - parton distribution function
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Evolution of SFs and PDFs

Q2 Evolution

F (x ,Q2) =
∑
A

CA︸︷︷︸
coe�cient f.

⊗ qA︸︷︷︸
evolved PDF

(x)

f ⊗ g (x) =

∫ 1

x

dz

z
f (z) g

(x
z

)
CA - Wilson coe�cient functions

computed in PQCD

CA = CA(0)(x)︸ ︷︷ ︸
LO∼δ(1−x)

+ αsC
A(1)(x) + α2

sC
A(2)(x) + ...
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DGLAP formulation

Standard DGLAP approach

Q2 evolution + initial parton densities
Dokshitzer, Gribov, Lipatov, Altarelli, Parisi

operates on the parton densities q(x ,Q2) (PDFs)

describes their Q2 evolution

requires a knowledge of the initial PDFs at low-Q2 scale for the wide
range of x-values x ∈ (0; 1)

Standard kinematic variables

q - the virtual photon momentum Q2 = −q2 > 0,

x - the Bjorken variable x = Q2

2pq
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DGLAP evolution equations

PDFs q(x ,Q2) (unpolarised as well as polarised) obey the evolution
equations of type

Evolution

∂q(x ,Q2)

∂ lnQ2
=

αs
2π

P(x , αs(Q
2)︸ ︷︷ ︸

SPLITTING F.

⊗ q(x ,Q2)︸ ︷︷ ︸
PDF

P(x , αs(Q
2)) = P(0)(x) +

αs(Q
2)

2π
P(1)(x) +

(
αs(Q

2)

2π

)2

P(2)(x) + ...

Input - initial PDFs q(x ,Q2
0 ) at low scale Q2

0 ∼ 1 GeV2
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DGLAP in moment space

Simple form of the evolution equations

∂q̄n(Q
2)

∂ lnQ2
=

αs(Q
2)

2π
γn q̄n(Q

2)

Mellin transform

q̄n =

1∫
0

dx xn−1 q(x) γn =

1∫
0

dx xn−1 P(x)

Invert Mellin transform

q(x) =
1

2πı

c+i∞∫
c−i∞

dn x−n q̄n
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Solving the DGLAP equations

Initial PDFs at Q2
0

crucial point: small-x behavior
⇓

Evolution from Q2
0 to Q2

↙ ↘x− space
(polynomial expansion technique)

⇓
Results: PDFs

⇓
Moments

n− space
(Mellin transform)

⇓
Results: untruncated moments

⇓
PDFs

***
Alternative / Complementary approach:

TRUNCATED MOMENTS

Dorota Kotlorz Evolution equations for cut moments



Introduction
Truncated Mellin moments approach (TMMA)

Perspectives

Non-diagonal di�erential evolution equations
Diagonal evolution equations for TMM
Applications of TMMA
Relations between un- and truncated MM

Truncated Mellin moments (TMM) - de�nitions

q̄n(Q
2) =

1∫
0

dx xn−1 q(x ,Q2)

︸ ︷︷ ︸
untruncated moment (umm)

q̄n(xmin,Q
2) =

1∫
xmin

dx xn−1 q(x ,Q2)

︸ ︷︷ ︸
truncated moment (TMM)

q̄n(xmin, xmax ,Q
2) =

xmax∫
xmin

dx xn−1 q(x ,Q2)

︸ ︷︷ ︸
double truncated moment (TTMM)
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TMMA - history

In this approach the main role is played by the truncated moments
of the quark and gluon distribution functions

History

Non-diagonal di�erential DGLAP evolution equations
(S. Forte, L. Magnea, A. Piccione, G. Ridol� 1999-2002)

Diagonal solutions in the double logarithmic ln2 x approximation
(D.K. and A. Kotlorz 2003)

Diagonal DGLAP evolution equations for TMM and TTMM
D.K. and A. Kotlorz, Phys. Lett. B644, 284 (2007)

Generalization
(S.V. Mikhailov 2012)
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Non-diagonal di�erential evolution equations

Every n-th truncated moment couples to (n + j)-th ones (j ≥ 0)

∂q̄n(xmin,Q
2)

∂ lnQ2
=

αs(Q
2)

2π

∞∑
j=0

Cjn(xmin) q̄n+j(xmin,Q
2)

Gn

(xmin
z

)
︸ ︷︷ ︸

anomalous dimension

≡
1∫

xmin/z

dx xn−1P(x) =
∞∑
j=0

Cjn(xmin) z
k

︸ ︷︷ ︸
Taylor series around z = 1

Gn(0) =

1∫
0

dx xn−1P(x) = γn

C
(M)
jn

(xmin ) = γ
(0)
n δj0−

4

3

MX
k=j

(−1)j

j ! (k − j)!
×

24 2

∞X
i=n+2

(i + k − 1)!

i !
ximin +

(n + k − 1)!

n!

 
xnmin +

n + k

n + 1

xn+1
min

! 35
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Non-diagonal di�erential evolution equations

Closed system of M + 1 equations:

dq̄N0
(xmin,Q

2)

d lnQ2
=

αs(Q
2)

2π
[C

(M)
0,N0

(xmin)q̄N0
(xmin,Q

2)

+C
(M)
1,N0

(xmin)q̄N0+1(xmin,Q
2)+

... + C
(M)
M,N0

(xmin)q̄N0+M(xmin,Q
2)]

dq̄N0+1(xmin,Q
2)

d lnQ2
=

αs(Q
2)

2π
[C

(M−1)
0,N0+1(xmin)q̄N0+1(xmin,Q

2)

+C
(M−1)
1,N0+1(xmin)q̄N0+2(xmin,Q

2)+ ...+C
(M−1)
M−1,N0+1(xmin)q̄N0+M(xmin,Q

2)]

...

dq̄N0+M(xmin,Q
2)

d lnQ2
=

αs(Q
2)

2π
C

(0)
0,N0+M

(xmin)q̄N0+M(xmin,Q
2)
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Non-diagonal di�erential evolution equations

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0.001  0.01

∫ x1  d
z 

∆q
N

S
(z

,Q
2 )

x

Q2=10 GeV2

a1=0

a1=-0.4

EXACT
ND-4

ND-30

A general form of the input

∆qNS(x ,Q2
0 ) = N(a1, a2, a3) x

a1 (1− x)a2 (1 + a3x)

Dorota Kotlorz Evolution equations for cut moments



Introduction
Truncated Mellin moments approach (TMMA)

Perspectives

Non-diagonal di�erential evolution equations
Diagonal evolution equations for TMM
Applications of TMMA
Relations between un- and truncated MM

Diagonal evolution equations for single and double TMM

Main �ndings

dq̄NSn (x ,Q2)

d lnQ2
=

αs(Q
2)

2π
(P ′qq(n)⊗ q̄NSn )(x ,Q2)

d

d lnQ2

(
q̄Sn (x ,Q2)
Ḡn(x ,Q2)

)
=

αs(Q
2)

2π

(
P ′qq(n) P ′qG (n)
P ′Gq(n) P ′GG (n)

)
⊗

(
q̄Sn (x ,Q2)
Ḡn(x ,Q2)

)
Rescaled splitting functions:

P ′ij(n, x) = xn Pij(x)

Pij(x) = P
(0)
ij (x) +

αs(Q
2)

2π
P

(1)
ij (x) +

(
αs(Q

2)

2π

)2

P
(2)
ij (x) + · · ·

Anomalous dimension:

γ′s,n ≡
∫ 1

0

dx x s−1 P ′(n, x) = γs+n
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Diagonal evolution equations for single and double TMM

Main �ndings

ḡ1 n(x ,Q2) =
1

2

∑
q

e2q ×

×
[
∆q̄ n(x ,Q2) +

αs(Q
2)

2π

(
C ′q(n)⊗∆q̄ n + C ′G (n)⊗∆Ḡ n

)
(x ,Q2)

]
Rescaled Wilson coe�cients:

C ′i (n, x) = xn Ci (x)

Moments of the coe�cient functions:

C ′s,n ≡
∫ 1

0

dx x s−1 C ′(n, x) = Cs+n
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Comparison of the standard and TMM aproaches

Input: PDFs q(x ,Q2
0 )

⇓
Evolution from Q2

0 to Q2

∂q(x ,Q2)

∂ lnQ2
=

αs(Q
2)

2π
(P ⊗ q)

⇓
Results: PDFs q(x ,Q2)

Input: TMM q̄n(xmin,Q
2
0 )

⇓
Evolution from Q2

0 to Q2

∂q̄n(xmin,Q
2)

∂ lnQ2
=

αs(Q
2)

2π
(P ′ ⊗ q̄n)

⇓
Results: TMM q̄n(xmin,Q

2)

P ′(n, z) = zn P(z)

(A⊗ B) (x) ≡
1∫

x

dz

z
A

(x
z

)
B(z)
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Diagonal evolution equations for single and double TMM

There is no mixing between moments of di�erent orders

Evolution equation for TMM

∂q̄n(xmin,Q
2)

∂ lnQ2
=

αs(Q
2)

2π

1∫
xmin

dz

z
P ′(n, z) q̄n

(xmin
z

,Q2
)

The splitting function for TMM

P ′(n, z) = zn P(z)

The evolution equation for TTMM

∂q̄n(xmin, xmax ,Q
2)

∂ lnQ2
=

αs(Q
2)

2π

1∫
xmin

dz

z
P ′(n, z) q̄n

(xmin
z

,
xmax

z
,Q2

)
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Diagonal evolution equations for single and double TMM

Since the experimental data cover only a limited range of x , except very
small x → 0 as well as large x → 1, it is very natural and convenient to
deal with the double truncated moments. Truncation at large x is less
important in comparison to the small-x limit because of the rapid
decrease of the parton densities as x → 1, nevertheless a comprehensive
analysis requires an equal treatment of the both truncated limits.

TTMM is a subtraction of two TMM

q̄n(xmin, xmax ,Q
2) = q̄n(xmin,Q

2)− q̄n(xmax ,Q
2)

and also satis�es the DGLAP-type evolution
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Diagonal evolution equations for single and double TMM

dq̄n(xmin, xmax ,Q
2)

d lnQ2
=

αs(Q
2)

2π

1∫
xmin

dz

z
P ′(n, z) q̄n

(xmin
z

,
xmax

z
,Q2

)
This approach is valid for the coupled DGLAP equations for quarks and
gluons and for any approximation (LO, NLO, NNLO, etc.)

The evolution equations for TTMM are a generalization of those for the
single truncated and untruncated ones:
xmax = 1

dq̄n(x0,Q
2)

d lnQ2
=

αs(Q
2)

2π

1∫
x0

dz

z
P ′(n, z) q̄n

(x0
z

,Q2
)
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Diagonal evolution equations for single and double TMM

dq̄n(xmin, xmax ,Q
2)

d lnQ2
=

αs(Q
2)

2π

1∫
xmin

dz

z
P ′(n, z) q̄n

(xmin
z

,
xmax

z
,Q2

)
This approach is valid for the coupled DGLAP equations for quarks and
gluons and for any approximation (LO, NLO, NNLO, etc.)

The evolution equations for TTMM are a generalization of those for the
single truncated and untruncated ones:
xmin = 0 and xmax = 1

dq̄n(Q2)

d lnQ2
=

αs(Q
2)

2π

1∫
0

dz

z
P ′(n, z) q̄n(Q2) =

αs(Q
2)

2π
γn q̄n(Q

2)
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Generalization of DGLAP equations (S.V. Mikhailov 2012)

If f (x ,Q2) is a solution of DGLAP equation with the kernel P(y):

∂f (z ,Q2)

∂ lnQ2
= (P ⊗ f )(z) ≡

1∫
0

P(y) f (x ,Q2) δ(z − xy) dx dy ,

then the multi-integrated function which is a generalization of the cut
moments

fk(z ; n1, n2, ..., nk ,Q
2) =

1∫
z

z
nk−1

k dzk

1∫
zk

z
nk−1−1

k−1 dzk−1 ...

1∫
z2

zn1−1
1 f (z1,Q

2) dz1

is also the solution of DGLAP equation
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Generalization of DGLAP equations

∂fk(z ; n1, n2, ..., nk ,Q
2)

∂ lnQ2
= (Pk ⊗ fk)(z ; n1, n2, ..., nk ,Q

2)

with the kernel Pk(y)

Pk(y) = P(y) · yn1+n2+...+nk

For k = 1 one obtains evolution equation for the truncated n1-th moment

f1(z ; n1) =

1∫
z

zn1−1
1 f (z1,Q

2) dz1
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Generalization of DGLAP equations

Evolution equation at k = 1:

∂f1(z ; n1,Q
2)

∂ lnQ2
= (P1 ⊗ f1)(z ; n1,Q

2) ≡

1∫
0

P1(y) f1(x ; n1,Q
2) δ(z − xy) dx dy ,

where
P1(y) = P(y) · yn1

If one puts z = 0, it reduces to the well known standard renorm-group
equation for the moments f1(0; n1,Q

2):

∂f1(0; n1,Q
2)

∂ lnQ2
=

 1∫
0

P(y) yn1−1 dy

 · f1(0; n1,Q2) ≡ γ(n1) · f1(0; n1,Q2)
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Generalization of DGLAP equations

Based on this generalization di�erent interesting partial solutions of
DGLAP can be constructed and applied to analysis of the experimental
data in di�erent restricted x-regions, respectively.

in progress...
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Characteristics and advantages

Truncated Mellin moments approach

Refers directly to the physical values - moments.

Allows direct study the evolution of moments and the scaling
violation

Allows to avoid uncertainties from the unmeasurable regions:
x → 0 and x → 1

Is valid in the polarised as well as in unpolarised case

Can be used for di�erent approximations: LO, NLO, NNLO,...

For the diagonal TMMA one can use standard methods of solving
DGLAP evolution equations

Generalization of DGLAP equations - novel promising tool!
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Determination of the PDFs from TMM - general idea

Reconstruction of the parton distributions

q(x ,Q2) = −x1−n ∂q̄n(x ,Q2)

∂x

1 Preparing available experimental data for TMM q̄n(x ,Q2
1 )

as a function of x at the scale Q2
1

2 Interpolation of the given data points into points which are
Chebyshev nodes. This allows to apply the Chebyshev polynomials
technique for solving the evolution equations

3 Evolution of the TMM from Q2
1 to Q2

2

4 Reconstruction of the parton density q(x ,Q2
2 ) from its TMM

at the scale Q2
2 with use of the �tting procedure

Dorota Kotlorz Evolution equations for cut moments



Introduction
Truncated Mellin moments approach (TMMA)

Perspectives

Non-diagonal di�erential evolution equations
Diagonal evolution equations for TMM
Applications of TMMA
Relations between un- and truncated MM

Reconstruction of PDFs - a general example

 0

 0.05

 0.1

 0.15

 0.2

 0.01  0.1  1

x

n-th moments data
for Q2

1 and xmin< x <1
n=1

n=1.5

n=2

1. PREPARING EXP. DATA

q̄n(x ,Q2
1 ) for xmin ≤ x ≤ 1

Experimentally moments can only be measured over some �nite x-range.
The limit x → 0 for the �nite Q2 requires in�nite energy transfers.

Accessible for the polarised experiments: xmin = 0.004, Q2 ≥ 1GeV2.
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Reconstruction of PDFs - a general example

 0

 0.05

 0.1

 0.15

 0.2

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

x

n-th moments evolved
from Q2

1=100 to Q2
2=1

n=1.0
n=1.5
n=2.0

2. MOMENT EVOLUTION

Q2
1 → Q2

2

Non-integer moments - helpful in determination of the small-x behaviour
(A. Sidorov)

Second moment - sensitive in the large-x region
Can be used in �nal determination of γ (if necessary)
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Reconstruction of PDFs - a general example

 0

 2

 4

 6

 8

 10

 1e-05  1e-04  0.001  0.01  0.1  1

∆q
N

S
(x

,Q
2 0)

x

Reconstruction from n-th moment data
for Q2=100 GeV2 and x > 0.02

xmin

n=1.0
n=1.5
n=2.0

original

3. FITTING α, β, γ param.

Marquardt / MINUIT
minimization method

∆qNS(x ,Q2
0 ) = N(α, β, γ) xα (1− x)β (1 + γx)

gNS1 ∼ x−α

(
Q2

Q2
0

)α/2

α = −0.4 (Bartels, Ermolaev, Manaenkov, Ryskin)
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Reconstruction of PDFs - a general example

 0

 2

 4

 6

 8

 10

 1e-05  1e-04  0.001  0.01  0.1  1

∆q
N

S
(x

,Q
2 0)

x

Reconstruction from n-th moment data
for Q2=100 GeV2 and x > 0.001

xmin

n=1.0
n=1.5
n=2.0

original

Better �t
for the extended x-range data
xmin = 0.001

∆qNS(x ,Q2
0 ) = N(α, β, γ) xα (1− x)β (1 + γx)

α ∼ 0, −1 Satisfactory reconstruction as well
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Reconstruction of PDFs - a general example

n α β γ

true 0 3 20
1 -0.0143 2.987 21.31
1.5 -0.0117 2.990 21.02
2 -0.0121 2.991 21.10
2∗ 0 2.998 19.90

Table: 1. Reconstruction x
0 from

simulated data for x ≥ xmin = 0.021.
2∗: two-steps reconstruction

n α β γ

true -0.8 3 20
1 -0.7992 2.999 19.84
1.5 -0.7998 2.999 19.95
2 -0.8000 2.999 19.99

Table: 2. Reconstruction x
−0.8 from

simulated data for x ≥ xmin = 0.021.

Evolution Q2 : 100→ 1

∆qNS(x ,Q2
0 ) = N(α, β, γ) xα (1− x)β (1 + γx)

The best �t for n ≈ 1− α
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Reconstruction of PDFs - a general example

n α β γ

true 0 3 20
1 0.0010 3.000 19.90
1.5 0.0083 3.007 19.32
2 0.1363 3.087 11.19
2∗ 0 3.003 20.15

Table: 3. Reconstruction x
0 from

simulated data for x ≥ xmin = 0.001.
2∗: two-steps reconstruction

n α β γ

true -0.8 3 20
1 -0.7968 2.982 19.21
1.5 -0.7997 2.999 19.94
2 -0.8002 3.000 20.04

Table: 4. Reconstruction x
−0.8 from

simulated data for x ≥ xmin = 0.001.

Evolution Q2 : 100→ 1

∆qNS(x ,Q2
0 ) = N(α, β, γ) xα (1− x)β (1 + γx)

The best �t for n ≈ 1− α
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Reconstruction of PDFs - a general example

 0.001

 0.01

 0.1

 1

 10

 0.002  0.004  0.006  0.008  0.01

M
n(

0,
x,

Q
02 )/

x

x

n=1

n=1.2

n=1.5

n=2

Determination of the small-x
behaviour of the parton distributions
from the evolved to Q2

0 = 1 GeV2

truncated moments

q̄n(0, x ,Q2) =

∫ x

0

dz zn−1q(z ,Q2)

x → 0 : q̄n(0, x) =
N

n + α
xn+α

q̄n(0, x)/x ≈ N

n + α
xn+α−1 = N = const for n + α = 1

Small-x behaviour xα can be estimated via α = 1− n
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Reconstruction of the PDFs - test
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Reconstruction of LO Blümlein -
Böttcher (BB) �t

gNS1 (x ,Q2
0 = 4 GeV2) ∼ x−0.8

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.01  0.1  1

∫
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1
   gNS
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The �rst truncated moment of gNS1

vs the truncation point x0 calculated
from the reconstructed �t,

Q2 = 5 GeV2

HERMES x− range : 0.021 − 0.7
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Reconstruction of the PDFs - test
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2 - x∆dv
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Reconstruction of de Florian,
Navarro, Sassot (DNS) �t

∆uv (x ,Q2
0 = 0.5 GeV2) ∼ x0.1

∆dv (x ,Q2
0 = 0.5 GeV2) ∼ x−0.1
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∫
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The �rst truncated moment of the
polarised function ∆uv + ∆dv vs the
truncation point x0, calculated from
the reconstructed �t, Q2 = 10 GeV2

COMPASS x− range : 0.006 − 0.7
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Reconstruction of the PDFs - remarks

The results of the reconstruction of the initial PDFs from their truncated
moments are satisfactory.

However...

Success of the determination of the parton densities from their
truncated moments depends on the number of the �tted parameters
and also on accessible x-range of the experimental data.

For larger number of adjustable parameters the obtained �ts can be
not unique.

An additional knowledge of the small-x behaviour of the parton
densities, based either on the experimental data or the theoretical
expectations, makes the �t procedure more reliable.
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Contributions to BSR

Knowledge of the small-x behavior of gNS1 = g
p
1 − gn1 is necessary

for determination of the Bjorken sum rule.

Bjorken sum rule (BSR)

The BSR is a fundamental rule and must be hold as a rigorous prediction
of QCD in the limit of the in�nite momentum transfer Q2

IBSR ≡ Γp1 − Γn1 =

1∫
0

dx ( gp1 (x ,Q2)− gn1 (x ,Q2) ) =

gA

6

[
1− αs

π
− 3.58

α2
s

π2
− 20.21

α3
s

π3
+ ...

]
︸ ︷︷ ︸

leading twist

+
∞∑
i=2

µ2i (Q
2)

Q2i−2︸ ︷︷ ︸
higher twists
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Contributions to BSR

gA - neutron β-decay constant

gA = F + D = 1.267± 0.004

The BSR for the �avour symmetric sea quarks scenario (∆ū = ∆d̄):

IBSR(Q2 →∞) ≈ 0.211

The small-x contribution to the BSR

∆IBSR(x1, x2,Q
2) ≡

x2∫
x1

dx gNS1 (x ,Q2)

1st double truncated moment of gp−n1
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HT - modi�cations of scaling variables (O. Teryaev, D.K.)

SHIFT (O.Teryaev, D.K. 2013)

Q2 −→ Q2 + M2

x −→ x̄ =
Q2 + M2

W 2 + Q2 + M2
= x

1 + α

1 + αx

α ≡ M2

Q2

Q2 →∞⇒ α = 0, x̄ = x

Q2 → 0⇒ α→∞, x̄ = 1, SF → 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

S
hi

fte
d 

x

x

α=20
α=3
α=1

α=1/3
α=1/20

Nachtmann

The shifted x (x̄) vs x
for di�erent values of α.
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Comparison of SHIFT and NO SHIFT results
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Comparison of SHIFT and NO SHIFT results
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Resummed twists for Q2 −→ 0

Comparison with JLab EG1b data
Phys.Rev.D78:032001,2008
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Contributions to BSR

Comparison with COMPASS data
arXiv:1001.4654v1,2010
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Analysis of the structure function g2

For a complete description of the nucleon spin, one needs two polarised
structure functions: g1 and g2. Recently, a new generation of
experiments with high polarised luminosity, performed at Je�erson Lab,
allows more precise study of the polarised structure functions and their
moments. This is crucial in our understanding of the QCD spin sum
rules, higher-twist e�ects and quark-hadron duality.

The function g1 has a simple interpretation in the parton model:

g1(x) =
1

2

∑
i

e2i (∆qi (x) + ∆q̄i (x)),

describing the distribution of quark spin in the nucleon, while function g2
has no such physical meaning in this classic model. Due to the technical
di�culties of obtaining transversely polarised targets, the structure
function g2 has not been a topic of investigations for a long time.
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Analysis of the structure function g2

Recently, new experimental data at low and intermediate momentum
transfers make g2 also a valuable and hopeful tool to study the spin
structure of the nucleon.

The function g2 provides knowledge on higher twist e�ects, which are
re�ection of the quark-gluon correlations in the nucleon.
A particular important role in this analysis is played by moments of the
spin structure functions

Γn1 =

∫ 1

0

dx xn−1g1(x ,Q2),

Γn2 =

∫ 1

0

dx xn−1g2(x ,Q2).

They are a sensitive tool for testing the QCD sum rules and
determination of the higher twist contributions.
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Determination of the higher twist e�ects

The experimental value of the function g2, measured in the small to
intermediate Q2 region, consists of two parts: the twist-2 (leading) and
the higher twist term:

g2(x ,Q2) = gLT2 (x ,Q2) + gHT2 (x ,Q2).

The leading-twist term gLT2 can be determined from the other structure
function - g1 via the Wandzura-Wilczek relation

gLT2 (x ,Q2) = gWW
2 (x ,Q2) = −g1(x ,Q2) +

∫ 1

x

dy

y
g1(y ,Q2).

Then, from the measurements of g1 and g2, one is able to extract the
higher-twist term gHT2 .
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Wandzura-Wilczek relation in terms of TMM

We �nd a generalization of the Wandzura-Wilczek relation for the TMM:

ḡn2 (x0,Q
2) =

1− n

n
ḡn1 (x0,Q

2)− xn0
n

ḡ01 (x0,Q
2)

For x0 = 0 one obtains the well known form

ḡn2 (Q2) =
1− n

n
ḡn1 (Q2)

ḡn1,2(Q
2) =

1∫
0

dx xn−1 g1,2(x ,Q2)

ḡn1,2(x0,Q
2) =

1∫
x0

dx xn−1 g1,2(x ,Q2)
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Generalization of the Wandzura-Wilczek relation for TMM

The generalization of the WW relation for TMM at two di�erent points
of the truncation for n = 1 implies

Partial twist-2 contributions to the BC sum rule

x2∫
x1

dx gWW
2 (x ,Q2) = (x2 − x1)

1∫
x2

dx

x
g1(x ,Q2)− x1

x2∫
x1

dx

x
g1(x ,Q2)

1∫
x0

dx gWW
2 (x ,Q2) = −x0

1∫
x0

dx

x
g1(x ,Q2)

x0∫
0

dx gWW
2 (x ,Q2) = x0

1∫
x0

dx

x
g1(x ,Q2)
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Generalization if Wandzura-Wilczek relation for TMM

Determination of Higher twist (HT) e�ects from moments of g2

gHT2 ≡ g2 − gLT2

Wandzura-Wilczek (WW) relation (generalization for TMMA)

ḡ2(x , n) =
1− n

n
ḡ1(x , n)− xn

n
ḡ1(x , 0)

x2∫
x1

dx gWW
2 (x ,Q2) = (x2 − x1)

1∫
x2

dx

x
g1(x ,Q2)− x1

x2∫
x1

dx

x
g1(x ,Q2)

HT corrections provide information on the quark-hadron duality
(between short- and long-distance regions of parton interactions)
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Q2 evolution of g2

While a general DGLAP-type equation for g2 does not exist, for the
twist-3 component of g2 suitable evolution equations have been
formulated by V. M. Braun, G. P. Korchemsky and A. N. Manashov.
In the leading twist-2 approximation, the Q2 evolution of g2 is governed
by the evolution of g1, according to the Wandzura-Wilczek relation.

The second term on the WW relation is the n = 0th truncated moment
of the function g1, which evolves in the same way as g1 itself
(P ′(0, z) = P(z)). This leads to

DGLAP evolution equation for g2

dgWW
2 (x ,Q2)

d lnQ2
=

αs(Q
2)

2π

1∫
x

dz

z
P

(x
z

)
gWW
2 (z ,Q2)
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Q2 evolution of g2

Taking also into account that twist-3 parton distributions obey the
DGLAP-type scale dependence (Braun, Korchemsky, Manashov),
we obtain a system of evolution equations for

g2 = gEXP2 = gWW
2 + g twist−3

2 :

d
[
gEXP2 (x ,Q2)− gWW

2 (x ,Q2)
]

d lnQ2
=

=
αs(Q

2)

2π

1∫
x

dz

z
Ptwist−3

(x
z

) [
gEXP2 (z ,Q2)− gWW

2 (z ,Q2)
]

dgWW
2 (x ,Q2)

d lnQ2
=

αs(Q
2)

2π

1∫
x

dz

z
P

(x
z

)
gWW
2 (z ,Q2)
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Q2 evolution of g2
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Relations for MM

The evolution equations for the truncated moments are very similar to
those for the parton densities. In both cases one deals with functions of
two variables x and Q2 (with additionally �xed index n for moments),
which obey the di�erentio-integral Volterra-like equations.

The only di�erence lies in the splitting function, which for moments has
the rescaled form P ′ = xnP. This similarity allows one to solve the
equations for truncated moments with use of standard methods of solving
the DGLAP equations.

Analysis of the evolution, performed in moment space, when applying to
the truncated moments, implies dealing with such an exotic structure like
`Moment of Moment'.
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Relations for MM

truncated moment

q̄n(x) =

1∫
x

dz zn−1 q(z)

untruncated moment

q̄n ≡ q̄n(0) =

1∫
0

dz zn−1 q(z)

untruncated s−th moment of truncated n−th moment

M(s, n) =

1∫
0

dx x s−1 q̄n(x)
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Relations for MM

Relations between un- and truncated MM

M(s, n) =
1

s
q̄s+n

q̄n(x) =
1

2πı

∫ c+ı∞

c−ı∞

ds

s
x−s q̄s+n

q̄n = (n − s)M(n − s, s) = (n − s)

1∫
0

dx

x
xn−s q̄s(x)

Relations between the truncated and untruncated moments have a large
practical meaning and could be applied when the untruncated moments

are known e.g. from lattice calculations.
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PDF q (x ,Q2)

∂q(x ,Q2)

∂ lnQ2
=

αs(Q
2)

2π
(P⊗q)

∂q̄n
∂ lnQ2

=
αs(Q

2)

2π
γn q̄n

q(x ,Q2) =
1

2πı

∫
dn x−n q̄n

function

x-space
evol.

moment-
space
evol.

solution

TMM q̄n(x ,Q2)

∂q̄n(x ,Q2)

∂ lnQ2
=

αs(Q
2)

2π
(P ′ ⊗ q̄n)

∂M(s, n)

∂ lnQ2
=

αs(Q
2)

2π
γs+n M(s, n)

q̄n(x ,Q2) =
1

2πı

∫
ds x−sM(s, n)

Replacement: M(s, n)(Q2
0 ) =

1

s
q̄s+n(Q

2
0 )
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Possible future applications of TMMA

Studying the fundamental properties of nucleon structure

momentum fraction carried by quarks (moments of F1, F2)

quark helicities contributions to the spin of nucleon (moments of g1)
DIS and SIDIS experimental data

particularly important:
estimation of the polarised gluon contribution ∆G from more precise
COMPASS and RHIC data and resolving the spin puzzle:

1

2
∆Σ + ∆G + Lq + LG =

1

2
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The polarised structure function g1 for the proton at Q2 = 10 GeV2
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Results for di�erent
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RHIC - knowledge of the small-x behaviour of ∆G (x ,Q2)
A limit on the gluon spin contribution from PHENIX:

−0.7 < ∆G < 0.5
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Determination of Higher twist (HT) e�ects from moments of g2

gHT2 ≡ g2 − gLT2

Wandzura-Wilczek (WW) relation (generalization for TMMA)

ḡ2(x , n) =
1− n

n
ḡ1(x , n)− xn

n
ḡ1(x , 0)

Q2 evolution equations for g2

test of sum rules: Burkhardt-Cottingham (BC)
Efremov-Leader-Teryaev (ELT)

HT corrections provide information on the quark-hadron duality
(between short- and long-distance regions of parton interactions)
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TMMA for generalized parton distributions (GPDs)

Moments of GPDs can be related to the total angular momentum
(spin and orbital) carried by various quark �avors

Measurements sensitive to Generalized Parton Distributions -
- Deeply Virtual Compton Scattering (DVCS) (Je�erson Lab)

An important step towards a full accounting of the nucleon spin

In light of the recent progress in experimental program,
the comprehensive theoretical analysis of the structure functions

and their moments is of a great importance
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Summary

TMMA enables to study fundamental properties of the nucleon
in a restricted experimentally range of Bjorken-x
EXPERIMENTS PROVIDE CUT MOMENTS!
No uncertainties from the unmeasurable regions!

Evolution

TMM obey the same DGLAP-like evolution equations as PDFs!

P ′(z , n) = znP(z)
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