QCD in terms of gauge invariant dynamical degrees of freedom ${ }^{1}$

Hans-Peter Pavel
Bogoliubov Laboratory of Theoretical Physics, JINR Dubna and
Institut für Kernphysik, TU Darmstadt

Dubna, 22. March 2013

[^0]- Gribov ambiguity (1978) \rightarrow Attempt of an exact resolution of the Gauss-laws to have an QCD Hamiltonian at low energy (a.o. Jackiw+Goldstone, Faddeev, T.D.Lee)
- Unconstrained Hamiltonian of 2-color QCD
- Derivative expansion
- Spectrum: Role of fermions, Renormalisation
- Extension to SU(3)

Aim: Alternative nonperturbative formulation of QCD

The QCD action

$$
\begin{aligned}
\mathcal{S}[A, \psi, \bar{\psi}] & :=\int d^{4} x\left[-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi\right] \\
F_{\mu \nu}^{a} & :=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f_{a b c} A_{\mu}^{b} A_{\nu}^{c}, \quad a=1, . ., 8 \\
D_{\mu} & :=\partial_{\mu}-i g A_{\mu}^{a} \tau_{a} / 2
\end{aligned}
$$

is invariant under the $S U(3)$ gauge transformations $U[\omega(x)] \equiv \exp \left(i \omega_{a} \tau_{a} / 2\right)$

$$
\begin{aligned}
\psi^{\omega}(x) & =U[\omega(x)] \psi(x) \\
A_{a \mu}^{\omega}(x) \tau_{a} / 2 & =U[\omega(x)]\left(A_{a \mu}(x) \tau_{a} / 2+\frac{i}{g} \partial_{\mu}\right) U^{-1}[\omega(x)]
\end{aligned}
$$

chromoelectric: $\quad E_{i}^{a} \equiv F_{i 0}^{a} \quad$ and chromomagnetic $\quad B_{i}^{a} \equiv \frac{1}{2} \epsilon_{i j k} F_{j k}^{a}$
$\Pi_{a i}=-E_{a i}$ momenta can. conj. to the spatial $A_{a i} \rightarrow$ canonical Hamiltonian

$$
\begin{aligned}
& H_{C}=\int d^{3} x\left[\frac{1}{2} E_{a i}^{2}+\frac{1}{2} B_{a i}^{2}(A)-g A_{a i} j_{i a}(\psi)+\bar{\psi}\left(\gamma_{i} \partial_{i}+m\right) \psi\right. \\
&\left.-g A_{a 0}\left(D_{i}(A)_{a b} E_{b i}-\rho_{a}(\psi)\right)\right]
\end{aligned}
$$

with the covariant derivative $D_{i}(A)_{a b} \equiv \delta_{a b} \partial_{i}-g f_{a b c} A_{c i}$

Exploit the time dependence of the gauge transformations to put

$$
A_{a 0}=0, \quad a=1, . ., 8 \quad \text { (Weyl gauge) }
$$

The dynamical vaiables $A_{a i},-E_{a i}, \psi_{\alpha r}$ and $\psi_{\alpha r}^{*}$ are quantized in the Schrödinger functional approach imposing the equal-time (anti-)CR, e.g. $-E_{a i}=-i \partial / \partial A_{a i}$. The physical states Φ

$$
\begin{aligned}
H \Phi & =\int d^{3} x\left[\frac{1}{2} E_{a i}^{2}+\frac{1}{2} B_{a i}^{2}[A]-A_{a i} j_{i a}(\psi)+\bar{\psi}\left(\gamma_{i} \partial_{i}+m\right) \psi\right] \Phi=E \Phi, \\
G_{a}(x) \Phi & =\left[D_{i}(A)_{a b} E_{b i}-\rho_{a}(\psi)\right] \Phi=0, \quad a=1, . ., 8 .
\end{aligned}
$$

The Gauss law operators G_{a} are the generators of the residual time independent gauge transformations, satisfying $\left[G_{a}, H\right]=0$ and $\left[G_{a}, G_{b}\right]=i f_{a b c} G_{c}$.

Angular momentum operators $\left[J_{i}, H\right]=0$

$$
J_{i}=\int d^{3} x\left[-\epsilon_{i j k} A_{a j} E_{a k}+\Sigma_{i}(\psi)+\text { orbital parts }\right], \quad i=1,2,3,
$$

The matrix element of an operator O is given in the Cartesian form

$$
\left\langle\Phi^{\prime}\right| O|\Phi\rangle \propto \int d A d \bar{\psi} d \psi \Phi^{\prime *}(A, \bar{\psi}, \psi) O \Phi(A, \bar{\psi}, \psi) .
$$

For $S U(3)$ Yang-Mills QM of spat.const.gluon fields: P. Weisz and V. Ziemann (1986)

Point trafo to new set of adapted coordinates,
$A_{a i}, \psi_{\alpha} \rightarrow 3$ gauge angles q_{j}, the pos. definite symmetric 3×3 matrix S, and new ψ_{β}^{\prime}

$$
A_{a i}(q, S)=O_{a k}(q) S_{k i}-\frac{1}{2 g} \epsilon_{a b c}\left(O(q) \partial_{i} O^{T}(q)\right)_{b c} \quad, \quad \psi_{\alpha}\left(q, \psi^{\prime}\right)=U_{\alpha \beta}(q) \psi_{\beta}^{\prime}
$$

orthog. $O(q)$ and unitary $U(q)$ related via

$$
O_{a b}(q)=\frac{1}{2} \operatorname{Tr}\left(U^{-1}(q) \tau_{a} U(q) \tau_{b}\right)
$$

Generalisation of the (unique) polar decomposition of A and corresponds to

$$
\chi_{i}(A)=\epsilon_{i j k} A_{j k}=0 \quad(\text { "symmetric gauge" })
$$

Preserving the $C C R->$ old canonical momenta in terms of the new variables

$$
\begin{aligned}
-E_{a i}(q, S, p, P) & =O_{a k}(q)\left[P_{k i}+\epsilon_{k i l}^{*} D_{l s}^{-1}(S)\left(\Omega_{s j}^{-1}(q) p_{j}+\rho_{s}\left(\psi^{\prime}\right)+D_{n}(S)_{s m} P_{m n}\right)\right] \\
\Rightarrow \quad G_{a} \Phi & \equiv O_{a k}(q) \Omega_{k i}^{-1}(q) p_{i} \Phi=0 \quad \Leftrightarrow \quad \frac{\delta}{\delta q_{i}} \Phi=0 \quad \text { (Abelianisation) }
\end{aligned}
$$

Ang. mom. op. $\quad J_{i}=\int d^{3} x\left[-2 \epsilon_{i j k} S_{m j} P_{m k}+\Sigma_{i}\left(\psi^{\prime}\right)+\rho_{i}\left(\psi^{\prime}\right)+\right.$ orbital parts $]$
$\rightarrow S$ colorless spin 0,2 glueball field, ψ^{\prime} colorless reduced quark fields of spin 0,1 Reduction: Color \rightarrow Spin (unusual spin-statistics relation specific to $\mathrm{SU}(2)$!)

The correctly ordered physical quantum Hamiltonian (Christ and Lee 1980) in terms of the physical variables $S_{i k}(\mathbf{x})$ and the can. conj. $P_{i k}(\mathbf{x}) \equiv-i \delta / \delta S_{i k}(\mathbf{x})$ reads

$$
\begin{array}{r}
H(S, P)=\frac{1}{2} \mathcal{J}^{-1} \int d^{3} \mathbf{x} P_{a i} \mathcal{J} P_{a i}+\frac{1}{2} \int d^{3} \mathbf{x}\left[B_{a i}^{2}(S)-S_{a i} j_{i a}\left(\psi^{\prime}\right)+\bar{\psi}^{\prime}\left(\gamma_{i} \partial_{i}+m\right) \psi^{\prime}\right] \\
-\mathcal{J}^{-1} \int d^{3} \mathbf{x} \int d^{3} \mathbf{y}\left\{\left(D_{i}(S)_{m a} P_{i m}+\rho_{a}\left(\psi^{\prime}\right)\right)(\mathbf{x}) \mathcal{J}\right. \\
\left.\left\langle\left.\mathbf{x} a\right|^{*} D^{-2}(S) \mid \mathbf{y} b\right\rangle\left(D_{j}(S)_{b n} P_{n j}+\rho_{b}\left(\psi^{\prime}\right)\right)(\mathbf{y})\right\}
\end{array}
$$

with the FP operator

$$
{ }^{*} D_{k l}(S) \equiv \epsilon_{k m i} D_{i}(S)_{m l}=\epsilon_{k l i} \partial_{i}-g\left(S_{k l}-\delta_{k l} \operatorname{tr} S\right)
$$

and the Jacobian $\mathcal{J} \equiv \operatorname{det}\left|{ }^{*} D\right|$
The matrix element of a physical operator O is given by

$$
\left\langle\Psi^{\prime}\right| O|\Psi\rangle \propto \int_{\text {S pos.def. }} \int_{\bar{\psi}^{\prime}, \psi^{\prime}} \prod_{\mathbf{x}}\left[d S(\mathbf{x}) d \bar{\psi}^{\prime}(\mathbf{x}) d \psi^{\prime}(\mathbf{x})\right] \mathcal{J} \Psi^{\prime *}\left[S, \bar{\psi}^{\prime}, \psi^{\prime}\right] O \Psi\left[S, \bar{\psi}^{\prime}, \psi^{\prime}\right]
$$

The inverse of the FP operator and hence the physical Hamiltonian can be expanded in the number of spatial derivatives \equiv expansion in $\lambda=g^{-2 / 3}$

Introduce UV cutoff a : infinite spatial lattice of granulas $G(\mathbf{n}, a)$ at $\mathbf{x}=a \mathbf{n}\left(\mathbf{n} \in Z^{3}\right)$ and averaged variables

$$
S(\mathbf{n}):=\frac{1}{a^{3}} \int_{G(\mathbf{n}, a)} d \mathbf{x} S(\mathbf{x})
$$

and the discretised spatial derivatives.
Expansion of the Hamiltonian in $\lambda=g^{-2 / 3}$

$$
H=\frac{g^{2 / 3}}{a}\left[\mathcal{H}_{0}+\lambda \sum_{\alpha} \mathcal{V}_{\alpha}^{(\partial)}+\lambda^{2}\left(\sum_{\beta} \mathcal{V}_{\beta}^{(\Delta)}+\sum_{\gamma} \mathcal{V}_{\gamma}^{(\partial \partial \neq \Delta)}\right)+\mathcal{O}\left(\lambda^{3}\right)\right]
$$

The "free" Hamiltonian

$$
\mathcal{H}_{0}=\sum_{\mathbf{n}} \mathcal{H}_{0}^{Q M}(\mathbf{n})
$$

is the sum of the Hamiltonians of $S U(2)$-Yang-Mills quantum mechanics of constant fields in each box. The interaction terms

$$
\mathcal{V}^{(\partial)}, \mathcal{V}^{(\Delta)}, \ldots
$$

lead to interactions between the granulas.

Intrinsic system $S=R^{T}(\alpha, \beta, \gamma) \operatorname{diag}\left(\phi_{1}, \phi_{2}, \phi_{3}\right) R(\alpha, \beta, \gamma)$ with Jac. $\prod_{i<j}\left(\phi_{i}-\phi_{j}\right)$ Zeroth order Hamiltonian

$$
\begin{aligned}
H & =\frac{g^{2 / 3}}{V^{1 / 3}}\left[\mathcal{H}^{G}+\mathcal{H}^{D}+\mathcal{H}^{C}\right]+\frac{1}{2} m\left[\left(\widetilde{u}_{L}^{(0) \dagger} \widetilde{v}_{R}^{(0)}+\sum_{i=1}^{3} \widetilde{u}_{L}^{(i) \dagger} \widetilde{v}_{R}^{(i)}\right)+\text { h.c. }\right] \\
\mathcal{H}^{G} & :=\frac{1}{2} \sum_{i j k}^{\text {cyclic }}\left(-\frac{\partial^{2}}{\partial \phi_{i}^{2}}-\frac{2}{\phi_{i}^{2}-\phi_{j}^{2}}\left(\phi_{i} \frac{\partial}{\partial \phi_{i}}-\phi_{j} \frac{\partial}{\partial \phi_{j}}\right)+\left(\xi_{i}-\widetilde{J}_{i}^{Q}\right)^{2} \frac{\phi_{j}^{2}+\phi_{k}^{2}}{\left(\phi_{j}^{2}-\phi_{k}^{2}\right)^{2}}+\phi_{j}^{2} \phi_{k}^{2}\right), \\
\mathcal{H}^{D} & :=\frac{1}{2}\left(\phi_{1}+\phi_{2}+\phi_{3}\right)\left(\widetilde{N}_{L}^{(0)}-\widetilde{N}_{R}^{(0)}\right)+\frac{1}{2} \sum_{i j k}^{\text {cyclic }}\left(\phi_{i}-\left(\phi_{j}+\phi_{k}\right)\right)\left(\widetilde{N}_{L}^{(i)}-\widetilde{N}_{R}^{(i)}\right), \\
\mathcal{H}^{C} & :=\sum_{i j k}^{\operatorname{cyclic}} \frac{\widetilde{\rho}_{i}\left(\xi_{i}-\widetilde{J}_{i}^{Q}+\widetilde{\rho}_{i}\right)}{\left(\phi_{j}+\phi_{k}\right)^{2}},
\end{aligned}
$$

and the total spin

$$
J_{i}=R_{i j}(\chi) \xi_{j}, \quad\left[J_{i}, H\right]=0
$$

in terms of the intrinsic spin ξ_{i} satisfying $\left[J_{i}, \xi_{j}\right]=0$ and $\left[\xi_{i}, \xi_{j}\right]=-i \epsilon_{i j k} \xi_{k}$
magn.pot. $B^{2}=\phi_{2}^{2} \phi_{3}^{2}+\phi_{3}^{2} \phi_{1}^{2}+\phi_{1}^{2} \phi_{2}^{2}$ has 0 -valleys $" \phi_{1}=\phi_{2}=0, \quad \phi_{3}$ arbitrary"
The matrix elements become
$\left\langle\Phi_{1}\right| \mathcal{O}\left|\Phi_{2}\right\rangle=\int d \alpha \sin \beta d \beta d \gamma \int_{0<\phi_{1}<\phi_{2}<\phi_{3}}^{d \phi_{1} d \phi_{2} d \phi_{3}\left(\phi_{1}^{2}-\phi_{2}^{2}\right)\left(\phi_{2}^{2}-\phi_{3}^{2}\right)\left(\phi_{3}^{2}-\phi_{1}^{2}\right) \int d \bar{\psi}^{\prime} d \psi^{\prime} \Phi_{1}^{*} \mathcal{O} \Phi_{2} .}$

$\left\langle\phi_{3}\right\rangle$ is raising with increasing excitation, whereas $\left\langle\phi_{1}\right\rangle$ and $\left\langle\phi_{2}\right\rangle$ are practically constant. $\left\langle B_{3}\right\rangle$ is practically constant with increasing excitation, whereas $\left\langle B_{1}\right\rangle$ and $\left\langle B_{2}\right\rangle$ are raising.

The energies of the quark-gluon ground state and the sigma-antisigma excitation are lower than that of the lowest pure-gluon state!

Vacuum: 4.11 (pure - glueball) $\leftrightarrow 3.22(5.63,-2.43,0.02)$ (quark - glueball)

1st and 2 nd order pert. theory in $\lambda=g^{-2 / 3}$ give the result (for the (+) b.c.)

$$
E_{\mathrm{vac}}^{+}=\mathcal{N} \frac{g^{2 / 3}}{a}\left[4.1167+29.894 \lambda^{2}+\mathcal{O}\left(\lambda^{3}\right)\right]
$$

for the energy of the interacting glueball vacuum, and

$$
E_{1}^{(0)+}(k)-E_{\mathrm{vac}}^{+}=\left[2.270+13.511 \lambda^{2}+\mathcal{O}\left(\lambda^{3}\right)\right] \frac{g^{2 / 3}}{a}+0.488 \frac{a}{g^{2 / 3}} k^{2}+\mathcal{O}\left(\left(a^{2} k^{2}\right)^{2}\right)
$$

for the energy spectrum of the interacting spin-0 glueball.
Lorentz invariance : $E=\sqrt{M^{2}+k^{2}} \simeq M+\frac{1}{2 M} k^{2} \quad \rightarrow \quad \widetilde{c}^{(i)}=1 /\left[2 \mu_{i}\right]$
\longrightarrow Consider $J=L+S$ states:

Consider the physical mass

$$
M=\frac{g_{0}^{2 / 3}}{a}\left[\mu+c g_{0}^{-4 / 3}\right]
$$

Demanding its independence of box size a, one obtains

$$
\gamma\left(g_{0}\right) \equiv a \frac{d}{d a} g_{0}(a)=\frac{3}{2} g_{0} \frac{\mu+c g_{0}^{-4 / 3}}{\mu-c g_{0}^{-4 / 3}}
$$

vanishes for $g_{0}=0$ (pert. fixed point) or $g_{0}^{4 / 3}=-c / \mu \quad($ IR fixed point, if $c<0)$
My (incomplete) result $c_{1}^{(0)} / \mu_{1}^{(0)}=5.95(1.34)$ suggests, that no IR fixed points exist.

$$
\text { for } c>0: \quad g_{0}^{2 / 3}(M a)=\frac{M a}{2 \mu}+\sqrt{\left(\frac{M a}{2 \mu}\right)^{2}-\frac{c}{\mu}}, \quad a>a_{c}:=2 \sqrt{c \mu} / M
$$

critical coupling $\left.g_{0}^{2}\right|_{c}=14.52$ (1.55) and

$$
\text { for } M \sim 1.6 \mathrm{GeV}: \quad a_{c} \sim 1.4 \mathrm{fm}(0.9 \mathrm{fm})
$$

Use idea of minimal embedding of $s u(2)$ in $s u(3)$ by Kihlberg + Marnelius (1982)

$$
\begin{aligned}
& \tau_{1}:=\lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \quad \tau_{2}:=-\lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & i \\
0 & 0 & 0 \\
-i & 0 & 0
\end{array}\right) \quad \tau_{3}:=\lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \tau_{4}:=\lambda_{6}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \tau_{5}:=\lambda_{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \quad \tau_{6}:=\lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \tau_{7}:=\lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \tau_{8}:=\lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
\end{aligned}
$$

The corresponding non-trivial non-vanishing structure constants $\left[\frac{\tau_{a}}{2}, \frac{\tau_{b}}{2}\right]=i c_{a b c} \frac{\tau_{c}}{2}$, have at least one index $\in\{1,2,3\}$
"symmetric gauge" for $\operatorname{SU}(3): \quad \chi_{a}(A)=\sum_{b=1}^{8} \sum_{i=1}^{3} c_{a b i} A_{b i}=0, \quad a=1, \ldots, 8$

Carrying out the coordinate transformation (generalized polar decomposition)

$$
\begin{aligned}
& A_{a k}\left(q_{1}, . ., q_{8}, \widehat{S}\right)=O_{a \hat{a}}(q) \widehat{S}_{\hat{a} k}-\frac{1}{2 g} c_{a b c}\left(O(q) \partial_{k} O^{T}(q)\right)_{b c} \\
& \psi_{\alpha}\left(q_{1}, . ., q_{8}, \psi^{R S}\right)=U_{\alpha \hat{\beta}}(q) \psi_{\hat{\beta}}^{R S} \\
& \widehat{S}_{\hat{a} k} \equiv\binom{S_{i k}}{\bar{S}_{A k}}=\left(\begin{array}{ccc}
\\
\frac{S_{i k} \text { pos. def. }}{W_{0}} & X_{3}-W_{3} & X_{2}+W_{2} \\
X_{3}+W_{3} & W_{0} & X_{1}-W_{1} \\
X_{2}-W_{2} & X_{1}+W_{1} & W_{0} \\
-\frac{\sqrt{3}}{2} Y_{1}-\frac{1}{2} W_{1} & \frac{\sqrt{3}}{2} Y_{2}-\frac{1}{2} W_{2} & W_{3} \\
-\frac{\sqrt{3}}{2} W_{1}-\frac{1}{2} Y_{1} & \frac{\sqrt{3}}{2} W_{2}-\frac{1}{2} Y_{2} & Y_{3}
\end{array}\right), c_{\hat{a} \hat{b} k} \widehat{S}_{\hat{b} k}=0
\end{aligned}
$$

exists and unique: $\quad \widehat{S}_{\hat{a} i} \widehat{S}_{\hat{a} j}=A_{a i} A_{a j}$ (6) $\quad d_{\hat{a} \hat{b} \hat{c}} \widehat{S}_{\hat{a} i} \widehat{S}_{\hat{b} j} \widehat{S}_{\hat{c} k}=d_{a b c} A_{a i} A_{b j} A_{c k}$
reduced gluons (glueballs): Spin $0,1,2,3$ reduced quarks: Spin $3 / 2$ Rarita-Schwinger
Reduction: Color \rightarrow Spin, consequ.for Spin-Physics? $\Delta^{++}(3 / 2):(3 / 2,+1 / 2,-1 / 2)$?

Rotate into the intrinsic frame of submatrix S representing the embedded $s u(2)$
$\widehat{S}=\binom{S}{\bar{S}}=\left(\begin{array}{c|c}R(\alpha, \beta, \gamma) & 0 \\ \hline 0 & D^{(2)}(\alpha, \beta, \gamma) \\ \hline\end{array}\right)\binom{\operatorname{diag}\left(\phi_{1}, \phi_{2}, \phi_{3}\right)}{$\hline $\begin{gathered}\bar{S}\left(X_{i} \rightarrow x_{i}\right. \\ Y_{i} \rightarrow y_{i} \\ \left.W_{i} \rightarrow w_{i}\right)\end{gathered}}\left(R^{T}(\alpha, \beta, \gamma)\right)$
The magnetic potential $V_{\text {magn }}$ has the zero-energy valleys ("constant Abelian fields")

$$
B^{2}=0: \phi_{3} \text { and } y_{3} \text { arbitrary } \wedge \quad \text { all others zero }
$$

At the bottom of the valleys the string-interaction becomes diagonal

$$
\mathcal{H}_{\text {diag }}^{D}=\frac{1}{2} \widetilde{\psi}_{L}^{\left(1, \frac{1}{2}\right) \dagger}\left[\left(\phi_{3} \lambda_{3}+y_{3} \lambda_{8}\right) \otimes \sigma_{3}\right] \widetilde{\psi}_{L}^{\left(1, \frac{1}{2}\right)}-\frac{1}{2} \widetilde{\psi}_{R}^{\left(\frac{1}{2}, 1\right) \dagger}\left[\sigma_{3} \otimes\left(\phi_{3} \lambda_{3}+y_{3} \lambda_{8}\right)\right] \widetilde{\psi}_{R}^{\left(\frac{1}{2}, 1\right)}
$$

Faddeev-Popov operator for ymmetric gauge for SU(3)

$$
\gamma_{\hat{a} \hat{b}}=c_{\hat{a} \hat{c} i} D_{i}(S)_{\hat{c} \hat{b}}=c_{\hat{a} \hat{c} i}\left(\delta_{\hat{b} \hat{c}} \partial_{i}-c_{\hat{b} \hat{c} \hat{d}} \widehat{S}_{\hat{d} i}\right)=-c_{\hat{a} \hat{c} i} c_{\hat{b} \hat{c} \hat{d}} \widehat{S}_{\hat{d} i}+c_{\hat{a} \hat{b} i} \partial_{i}
$$

Explicit form of the intrinsic $\widetilde{\gamma}$,

$$
\left(\right)
$$

In contrast to the $S U(2)$ case, transition to the intrinsic system does not completely diagonalize γ.

In one spatial dimension the symmetric gauge for $\operatorname{SU}(3)$ reduces to

$$
A^{(1 d)}=\left(\begin{array}{ccc}
0 & 0 & A_{13} \\
0 & 0 & A_{23} \\
0 & 0 & A_{33} \\
0 & 0 & A_{43} \\
0 & 0 & A_{53} \\
0 & 0 & A_{63} \\
0 & 0 & A_{73} \\
0 & 0 & A_{83}
\end{array}\right) \quad \rightarrow \quad S^{(1 d)}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \phi_{3} \\
\hline 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & y_{3}
\end{array}\right)
$$

which consistently reduces the above equs. for S for given A_{3} to

$$
\phi_{3}^{2}+y_{3}^{2}=A_{a 3} A_{a 3} \wedge \phi_{3}^{2} y_{3}-3 y_{3}^{3}=d_{a b c} A_{a 3} A_{b 3} A_{c 3}
$$

with 6 solutions separated by zero-lines of the FP-determinant ("Gribov-horizons").
Exactly one solution exists in the "fundamental domain" $0<\phi_{3}<\infty \wedge \phi_{3} / \sqrt{3}<y_{3}<\infty$, and we can replace
$\int_{-\infty}^{+\infty} \prod_{a=1}^{8} d A_{a 3} \rightarrow \int_{0}^{\infty} d \phi_{3} \int_{\phi_{3} / \sqrt{3}}^{\infty} d y_{3} \phi_{3}^{2}\left(\phi_{3}^{2}-3 y_{3}^{2}\right)^{2} \propto \int_{0}^{\infty} r d r \int_{\pi / 6}^{\pi / 2} d \psi \cos ^{2}(3 \psi)$

For two spatial dimensions, one can show that (putting $W_{1} \equiv X_{1}, W_{2} \equiv-X_{2}$)
$A^{(2 d)}=\left(\begin{array}{ccc}A_{11} & A_{12} & 0 \\ A_{21} & A_{22} & 0 \\ A_{31} & A_{32} & 0 \\ A_{41} & A_{42} & 0 \\ A_{51} & A_{52} & 0 \\ A_{61} & A_{62} & 0 \\ A_{71} & A_{72} & 0 \\ A_{81} & A_{82} & 0\end{array}\right) \rightarrow \widehat{S}_{\text {intr }}^{(2 d)}=\left(\begin{array}{ccc}\phi_{1} & 0 & 0 \\ 0 & \phi_{2} & 0 \\ 0 & 0 & 0 \\ \hline 0 & x_{3} & 0 \\ x_{3} & 0 & 0 \\ 2 x_{2} & 2 x_{1} & 0 \\ -\frac{\sqrt{3}}{2} y_{1}-\frac{1}{2} x_{1} & \frac{\sqrt{3}}{2} y_{2}+\frac{1}{2} x_{2} & 0 \\ -\frac{\sqrt{3}}{2} y_{1}+\frac{1}{2} x_{1} & -\frac{\sqrt{3}}{2} y_{2}+\frac{1}{2} x_{2} & 0\end{array}\right)$
consistently reduces the above equs. for S to a system of 7 equs. for 8 physical fields (incl. rot.-angle γ), which, adding as an 8th equ. $\left(d_{\hat{a} \hat{b} \hat{c}} \widehat{S}_{\hat{b} 1} \widehat{S}_{\hat{c} 2}\right)^{2}=\left(d_{a b c} A_{b 1} A_{c 2}\right)^{2}$, can be solved numerically for randomly generated $A^{(2 d)}$, again yielding solutions separated by horizons. Restricting to a fundamental domain
$\int_{-\infty}^{+\infty} \prod_{a, b=1}^{8} d A_{a 1} d A_{b 2} \rightarrow \int_{0<\phi_{1}<\phi_{2}<\infty}^{d \phi_{1} d \phi_{2}\left(\phi_{2}-\phi_{1}\right)} \int_{R_{1}\left(\phi_{1}, \phi_{2}\right)} d x_{1} d x_{2} d x_{3} \int_{R_{2}\left(x_{1}, x_{2}, x_{3}, \phi_{1}, \phi_{2}\right)} d y_{1} d y_{2} \mathcal{J}$
Due to the difficulty of the FP-determinant, I have, however, not yet succeeded in a satisfactory description of the regions R_{1} and R_{2}.

For 3 dimensions, I have found several solutions of the S-equations numerically for a randomly generated A, but to write the corresponding unconstrained integral over a fundamental domain is a difficult, but I think solvable, future task.

- Using a canonical transformation of the dynamical variables, which Abelianises the non-Abelian Gauss-law constraints to be implemented, a reformulation of QCD in terms of gauge invariant dynamical variables can be achieved.
- Using minimal embedding, the symmetric gauge $\epsilon_{i j k} A_{j k}=0$ for $S U(2)$ can be generalized to the corresponding $S U(3)$ symmetric gauge $c_{a b i} A_{b i}=0$.
- The exact implementation of the Gauss laws reduces the colored spin-1 gluons and spin- $1 / 2$ quarks to unconstrained colorless spin- 0 , spin- 1 , spin-2 and spin-3 glueball fields and colorless Rarita-Schwinger fields respectively.
- The obtained physical Hamiltonian admits a systematic strong-coupling expansion in powers of $\lambda=g^{-2 / 3}$, equivalent to an expansion in the number of spatial derivatives. The strong coupling expansion in $g^{-2 / 3}$ for large box volumes is similar to Lueschers weak coupling expansion in $g^{2 / 3}$ applicable for small boxes.
- The leading-order term \longrightarrow non-interacting hybrid-glueballs, low-lying masses can be calculated with high accuracy by solving the Schrödinger-equation of Dirac-Yang-Mills QM of spatially constant fields (at the moment only for the unphysical, but technically much simpler 2-color case).
- Higher-order terms in $\lambda \longrightarrow$ interactions between the hybrid-glueballs can be taken into account systematically, using perturbation theory in λ, and quite accurate results can in principle be obtained for the energy-momentum relation of glueballs. It allows for the study of the difficult questions of Lorentz invariance and coupling constant renormalisation in the IR.
- The conversion of color to spin in the reduction process might allow for interesting possible insights into low energy Spin-Physics.
- Gauge reduced approach is difficult (due to the complicated Jacobian), but possible and direct. It should be a useful alternative to lattice calculations.
- The investigation can be extended to flux-tubes (string-tension).

[^0]: ${ }^{1}$ to appear in PoS (Confinemnet X) (2013) 071, arXiv: 1303.3763 [hep-th]

 - H.-P. P., $S U(2)$ Yang-Mills quantum mechanics of spatially constant fields, Phys. Lett. B 648 (2007) 97-106.
 - H.-P. P., Expansion of the Yang-Mills Hamiltonian in spatial derivatives and glueball spectrum, Phys. Lett. B 685 (2010) 353-364.
 - H.-P. P., SU(2) Dirac-Yang-Mills quantum mechanics of spatially constant quark and gluon fields, Phys. Lett. B 700 (2011) 265-276.
 - H.-P. P., Unconstrained Hamiltonian formulation of low energy SU(3) Yang-Mills quantum theory, arXiv: 1205.2237v1 [hep-th] (2012).

