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Outline of the talk

Gribov ambiguity (1978) → Attempt of an exact resolution of
the Gauss-laws to have an QCD Hamiltonian at low energy
(a.o. Jackiw+Goldstone, Faddeev, T.D.Lee)

Unconstrained Hamiltonian of 2-color QCD

Derivative expansion

Spectrum: Role of fermions, Renormalisation

Extension to SU(3)

Aim: Alternative nonperturbative formulation of QCD



Constrained QCD

The QCD action

S[A,ψ, ψ] :=

∫
d4x

[
−1

4
FaµνF

aµν + ψ (iγµDµ −m)ψ

]

Faµν := ∂µA
a
ν − ∂νA

a
µ + gfabcA

b
µA

c
ν , a = 1, .., 8

Dµ := ∂µ − igAaµτa/2

is invariant under the SU(3) gauge transformations U [ω(x)] ≡ exp(iωaτa/2)

ψω(x) = U [ω(x)] ψ(x)

Aωaµ(x)τa/2 = U [ω(x)]

(
Aaµ(x)τa/2 +

i

g
∂µ

)
U−1[ω(x)]

chromoelectric : Eai ≡ Fai0 and chromomagnetic Bai ≡ 1
2
ǫijkF

a
jk

Πai = −Eai momenta can. conj. to the spatial Aai → canonical Hamiltonian

HC =

∫
d3x

[
1

2
E2
ai +

1

2
B2
ai(A)− gAai jia(ψ) + ψ (γi∂i +m)ψ

−gAa0 (Di(A)abEbi − ρa(ψ))

]

with the covariant derivative Di(A)ab ≡ δab∂i − gfabcAci



Constrained Quantisation

Exploit the time dependence of the gauge transformations to put

Aa0 = 0 , a = 1, .., 8 (Weyl gauge)

The dynamical vaiables Aai, −Eai, ψαr and ψ∗
αr are quantized in the Schrödinger

functional approach imposing the equal-time (anti-)CR, e.g. −Eai = −i∂/∂Aai.
The physical states Φ

HΦ =

∫
d3x

[
1

2
E2
ai +

1

2
B2
ai[A]−Aai jia(ψ) + ψ (γi∂i +m)ψ

]
Φ = EΦ ,

Ga(x)Φ = [Di(A)abEbi − ρa(ψ)] Φ = 0 , a = 1, .., 8 .

The Gauss law operators Ga are the generators of the residual time independent
gauge transformations, satisfying [Ga, H] = 0 and [Ga, Gb] = ifabcGc.

Angular momentum operators [Ji, H] = 0

Ji =

∫
d3x

[
−ǫijkAajEak +Σi(ψ) + orbital parts

]
, i = 1, 2, 3 ,

The matrix element of an operator O is given in the Cartesian form

〈Φ′|O|Φ〉 ∝
∫
dA dψ dψ Φ′∗(A,ψ, ψ)OΦ(A,ψ, ψ) .

For SU(3) Yang-Mills QM of spat.const.gluon fields: P. Weisz and V. Ziemann (1986)



Unconstrained Hamiltonian formulation of 2-color QCD

Point trafo to new set of adapted coordinates,
Aai, ψα → 3 gauge angles qj , the pos. definite symmetric 3× 3 matrix S, and new ψ′

β

Aai (q, S) = Oak (q)Ski −
1

2g
ǫabc

(
O (q) ∂iO

T (q)
)

bc
, ψα

(
q, ψ′) = Uαβ (q)ψ′

β

orthog. O(q) and unitary U (q) related via Oab(q) =
1
2
Tr
(
U−1(q)τaU(q)τb

)
.

Generalisation of the (unique) polar decomposition of A and corresponds to

χi(A) = ǫijkAjk = 0 (”symmetric gauge”).

Preserving the CCR − > old canonical momenta in terms of the new variables

−Eai(q, S, p, P ) = Oak (q)
[
Pki + ǫkil

∗D−1
ls (S)

(
Ω−1
sj (q)pj + ρs(ψ

′) +Dn(S)smPmn
)]

⇒ GaΦ ≡ Oak(q)Ω
−1
ki (q)piΦ= 0 ⇔ δ

δqi
Φ = 0 (Abelianisation)

Ang. mom. op. Ji =

∫
d3x

[
−2ǫijkSmjPmk +Σi(ψ

′) + ρi(ψ
′) + orbital parts

]

→ S colorless spin 0,2 glueball field, ψ′ colorless reduced quark fields of spin 0,1
Reduction: Color → Spin (unusual spin-statistics relation specific to SU(2) !)



Physical quantum Hamiltonian of 2-color QCD in symmetric gauge

The correctly ordered physical quantum Hamiltonian (Christ and Lee 1980) in terms
of the physical variables Sik(x) and the can. conj. Pik(x) ≡ −iδ/δSik(x) reads

H(S, P ) =
1

2
J−1

∫
d3x Pai JPai +

1

2

∫
d3x

[
B2
ai(S)− Sai jia(ψ

′) + ψ
′
(γi∂i +m)ψ′

]

−J−1

∫
d3x

∫
d3y

{(
Di(S)maPim + ρa(ψ

′)
)
(x)J

〈x a|∗D−2(S)|y b〉
(
Dj(S)bnPnj + ρb(ψ

′)
)
(y)
}

with the FP operator

∗Dkl(S) ≡ ǫkmiDi(S)ml = ǫkli∂i − g(Skl − δkltrS)

and the Jacobian J ≡ det |∗D|
The matrix element of a physical operator O is given by

〈Ψ′|O|Ψ〉 ∝
∫

S pos.def.

∫

ψ
′
,ψ′

∏

x

[
dS(x)dψ

′
(x)dψ′(x)

]
JΨ′∗[S, ψ

′
, ψ′]OΨ[S, ψ

′
, ψ′]

The inverse of the FP operator and hence the physical Hamiltonian can be expanded
in the number of spatial derivatives ≡ expansion in λ = g−2/3



Coarse graining (1): Equivalence to an expansion in λ = g−2/3

Introduce UV cutoff a: infinite spatial lattice of granulas G(n, a) at x = an (n ∈ Z3)
and averaged variables

S(n) :=
1

a3

∫

G(n,a)
dx S(x)

and the discretised spatial derivatives.
Expansion of the Hamiltonian in λ = g−2/3

H =
g2/3

a


H0 + λ

∑

α

V(∂)
α + λ2



∑

β

V(∆)
β +

∑

γ

V(∂∂ 6=∆)
γ


+O(λ3)




The ”free” Hamiltonian

H0 =
∑

n

HQM
0 (n)

is the sum of the Hamiltonians of SU(2)-Yang-Mills quantum mechanics of constant
fields in each box. The interaction terms

V(∂),V(∆), ..

lead to interactions between the granulas.



Derivative Expansion (2): Zeroth order Hamiltonian

Intrinsic system S = RT (α, β, γ) diag(φ1, φ2, φ3)R(α, β, γ) with Jac.
∏
i<j(φi − φj)

Zeroth order Hamiltonian

H =
g2/3

V 1/3

[
HG +HD +HC

]
+

1

2
m

[(
ũ
(0)†
L ṽ

(0)
R +

3∑

i=1

ũ
(i)†
L ṽ

(i)
R

)
+ h.c.

]

HG :=
1

2

cyclic∑

ijk

(
− ∂2

∂φ2i
− 2

φ2i − φ2j

(
φi

∂

∂φi
− φj

∂

∂φj

)
+ (ξi − J̃Qi )2

φ2j + φ2k

(φ2j − φ2k)
2
+φ2jφ

2
k

)
,

HD :=
1

2
(φ1 + φ2 + φ3)

(
Ñ

(0)
L − Ñ

(0)
R

)
+

1

2

cyclic∑

ijk

(φi − (φj + φk))
(
Ñ

(i)
L − Ñ

(i)
R

)
,

HC :=

cyclic∑

ijk

ρ̃i(ξi − J̃Qi + ρ̃i)

(φj + φk)2
,

and the total spin Ji = Rij(χ) ξj , [Ji, H] = 0

in terms of the intrinsic spin ξi satisfying [Ji, ξj ] = 0 and [ξi, ξj ] = −iǫijkξk
magn.pot. B2 = φ22φ

2
3 + φ23φ

2
1 + φ21φ

2
2 has 0-valleys ”φ1=φ2= 0, φ3 arbitrary”

The matrix elements become

〈Φ1|O|Φ2〉=
∫
dα sinβdβdγ

∫

0<φ1<φ2<φ3

dφ1dφ2dφ3 (φ21−φ22)(φ22−φ23)(φ23−φ21)
∫
dψ

′
dψ′Φ∗

1OΦ2 .



〈φi〉 and 〈Bi〉 ≡ 〈gφjφk〉 expectation values for 0+and 2+
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0
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  [

g-1
/3
]

Energy [g2/3]

< 3>
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0
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 [g
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3 ]
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〈φ3〉 is raising with increasing excitation, whereas 〈φ1〉 and 〈φ2〉 are practically
constant. 〈B3〉 is practically constant with increasing excitation, whereas 〈B1〉 and
〈B2〉 are raising.



0+ energy spectrum for the pure-gluon and the quark-gluon cases

0

2

4

6

8

    0+
G             0+

QG(2L2R)   0
+

QG(3L1R/1L3R)  0
+

QG(4L/4R)

En
er

gy
 [g

2/
3 / V

1/
3 ]

The energies of the quark-gluon ground state and the sigma-antisigma excitation are
lower than that of the lowest pure-gluon state !

Vacuum: 4.11 (pure− glueball) ↔ 3.22 (5.63,−2.43, 0.02) (quark− glueball)



Results

1st and 2nd order pert. theory in λ = g−2/3 give the result (for the (+) b.c.)

E+
vac = N g2/3

a

[
4.1167 + 29.894λ2 +O(λ3)

]
,

for the energy of the interacting glueball vacuum, and

E
(0)+
1 (k)− E+

vac=
[
2.270 + 13.511λ2 +O(λ3)

] g2/3
a

+ 0.488
a

g2/3
k2 +O((a2k2)2) ,

for the energy spectrum of the interacting spin-0 glueball.

Lorentz invariance : E =
√
M2 + k2 ≃M + 1

2M
k2 → c̃(i) = 1/[2µi]

−→ Consider J = L+ S states:



Glueball mass and coupling constant renormalisation in the IR

Consider the physical mass

M =
g
2/3
0

a

[
µ+ cg

−4/3
0

]

Demanding its independence of box size a, one obtains

γ(g0) ≡ a
d

da
g0(a) =

3

2
g0
µ+ cg

−4/3
0

µ− cg
−4/3
0

vanishes for g0 = 0 (pert. fixed point) or g
4/3
0 = −c/µ (IR fixed point, if c < 0)

My (incomplete) result c
(0)
1 /µ

(0)
1 = 5.95(1.34) suggests, that no IR fixed points exist.

for c > 0 : g
2/3
0 (Ma) =

Ma

2µ
+

√(
Ma

2µ

)2

− c

µ
, a > ac := 2

√
cµ/M

critical coupling g20 |c = 14.52 (1.55) and

for M ∼ 1.6 GeV : ac ∼ 1.4 fm (0.9 fm) .



Symmetric gauge for SU(3)

Use idea of minimal embedding of su(2) in su(3) by Kihlberg + Marnelius (1982)

τ1 := λ7 =




0 0 0
0 0 −i
0 i 0


 τ2 := −λ5 =




0 0 i
0 0 0
−i 0 0


 τ3 := λ2 =




0 −i 0
i 0 0
0 0 0




τ4 := λ6 =




0 0 0
0 0 1
0 1 0


 τ5 := λ4 =




0 0 1
0 0 0
1 0 0


 τ6 := λ1 =




0 1 0
1 0 0
0 0 0




τ7 := λ3 =




1 0 0
0 −1 0
0 0 0


 τ8 := λ8 =

1√
3




1 0 0
0 1 0
0 0 −2




The corresponding non-trivial non-vanishing structure constants [ τa
2
, τb

2
] = icabc

τc
2
,

have at least one index ∈ {1, 2, 3}

”symmetric gauge” for SU(3) : χa(A) =
8∑

b=1

3∑

i=1

cabiAbi = 0 , a = 1, ..., 8



Symmetric gauge for SU(3): Unconstrained representation

Carrying out the coordinate transformation (generalized polar decomposition)

Aak

(
q1, .., q8, Ŝ

)
= Oaâ (q) Ŝâk − 1

2g
cabc

(
O (q) ∂kO

T(q)
)

bc
,

ψα
(
q1, .., q8, ψ

RS
)
= Uαβ̂ (q)ψRS

β̂

Ŝâk ≡
( Sik
SAk

)
=




Sik pos. def.

W0 X3−W3 X2+W2

X3+W3 W0 X1−W1

X2−W2 X1+W1 W0

−
√
3
2
Y1− 1

2
W1

√
3
2
Y2− 1

2
W2 W3

−
√
3
2
W1− 1

2
Y1

√
3
2
W2− 1

2
Y2 Y3




, câb̂kŜb̂k = 0

exists and unique : ŜâiŜâj = AaiAaj (6) dâb̂ĉŜâiŜb̂j Ŝĉk = dabcAaiAbjAck (10)

reduced gluons (glueballs): Spin 0,1,2,3 reduced quarks: Spin 3/2 Rarita-Schwinger

Reduction: Color → Spin, consequ.for Spin-Physics? ∆++(3/2) : (3/2,+1/2,−1/2)?



Symmetric gauge for SU(3): Intrinsic system

Rotate into the intrinsic frame of submatrix S representing the embedded su(2)

Ŝ =




S

S




=




R(α, β, γ) 0

0 D(2)(α, β, γ)







diag(φ1, φ2, φ3)

S(Xi → xi
Yi → yi
Wi → wi)





RT (α, β, γ)




The magnetic potential Vmagn has the zero-energy valleys ( ”constant Abelian fields”)

B2 = 0 : φ3 and y3 arbitrary ∧ all others zero

At the bottom of the valleys the string-interaction becomes diagonal

HD
diag =

1

2
ψ̃
(1, 1

2
)†

L [(φ3λ3 + y3λ8)⊗ σ3] ψ̃
(1, 1

2
)

L − 1

2
ψ̃
( 1

2
,1)†

R [σ3 ⊗ (φ3λ3 + y3λ8)] ψ̃
( 1

2
,1)

R



Symmetric gauge for SU(3): Faddeev-Popov operator

Faddeev-Popov operator for ymmetric gauge for SU(3)

γâb̂ = câĉiDi(S)ĉb̂ = câĉi

(
δb̂ĉ∂i − cb̂ĉd̂Ŝd̂i

)
= −câĉicb̂ĉd̂Ŝd̂i + câb̂i∂i

Explicit form of the intrinsic γ̃,




φ2 + φ3 0 0
0 φ3 + φ1 0
0 0 φ1 + φ2

−2S
T(

−
3

2
v, w

)

−2S
(

−
3

2
v, w

)

4φ1 + φ2 + φ3 0 0 0 0
0 φ1 + 4φ2 + φ3 0 0 0
0 0 φ1 + φ2 + 4φ3 0 0

0 0 0 φ1 + φ2 + 4φ3 −

√

3(φ1 − φ2)

0 0 0 −

√

3(φ1 − φ2) 3(φ1 + φ2)




In contrast to the SU(2) case, transition to the intrinsic system does not completely
diagonalize γ.



Symmetric gauge for SU(3): 1 spatial dimension

In one spatial dimension the symmetric gauge for SU(3) reduces to

A(1d) =




0 0 A13

0 0 A23

0 0 A33

0 0 A43

0 0 A53

0 0 A63

0 0 A73

0 0 A83




→ S(1d) =




0 0 0
0 0 0
0 0 φ3
0 0 0
0 0 0
0 0 0
0 0 0
0 0 y3




which consistently reduces the above equs. for S for given A3 to

φ23 + y23 = Aa3Aa3 ∧ φ23 y3 − 3 y33 = dabcAa3Ab3Ac3

with 6 solutions separated by zero-lines of the FP-determinant (”Gribov-horizons”).
Exactly one solution exists in the ”fundamental domain”
0 < φ3 <∞ ∧ φ3/

√
3 < y3 <∞, and we can replace

∫ +∞

−∞

8∏

a=1

dAa3 →
∫ ∞

0
dφ3

∫ ∞

φ3/
√
3
dy3 φ

2
3

(
φ23 − 3y23

)2 ∝
∫ ∞

0
rdr

∫ π/2

π/6
dψ cos2(3ψ)



Symmetric gauge for SU(3): 2 spatial dimensions

For two spatial dimensions, one can show that (putting W1 ≡ X1,W2 ≡ −X2)

A(2d)=




A11 A12 0
A21 A22 0
A31 A32 0
A41 A42 0
A51 A52 0
A61 A62 0
A71 A72 0
A81 A82 0




→ Ŝ
(2d)
intr =




φ1 0 0
0 φ2 0
0 0 0
0 x3 0
x3 0 0
2x2 2x1 0

−
√
3
2
y1 − 1

2
x1

√
3
2
y2 + 1

2
x2 0

−
√
3
2
y1 + 1

2
x1 −

√
3
2
y2 + 1

2
x2 0




consistently reduces the above equs. for S to a system of 7 equs. for 8 physical fields
(incl. rot.-angle γ), which, adding as an 8th equ. (dâb̂ĉŜb̂1Ŝĉ2)

2 = (dabcAb1Ac2)
2,

can be solved numerically for randomly generated A(2d), again yielding solutions
separated by horizons. Restricting to a fundamental domain

∫ +∞

−∞

8∏

a,b=1

dAa1dAb2 →
∫

0<φ1<φ2<∞
dφ1dφ2(φ2 − φ1)

∫

R1(φ1,φ2)
dx1dx2dx3

∫

R2(x1,x2,x3,φ1,φ2)
dy1dy2 J

Due to the difficulty of the FP-determinant, I have, however, not yet succeeded in a
satisfactory description of the regions R1 and R2.

For 3 dimensions, I have found several solutions of the S-equations numerically for a
randomly generated A, but to write the corresponding unconstrained integral over a
fundamental domain is a difficult, but I think solvable, future task.



Conclusions

Using a canonical transformation of the dynamical variables, which Abelianises
the non-Abelian Gauss-law constraints to be implemented, a reformulation of
QCD in terms of gauge invariant dynamical variables can be achieved.

Using minimal embedding, the symmetric gauge ǫijkAjk = 0 for SU(2) can be
generalized to the corresponding SU(3) symmetric gauge cabiAbi = 0.

The exact implementation of the Gauss laws reduces the colored spin-1 gluons
and spin-1/2 quarks to unconstrained colorless spin-0, spin-1, spin-2 and spin-3
glueball fields and colorless Rarita-Schwinger fields respectively.

The obtained physical Hamiltonian admits a systematic strong-coupling expansion
in powers of λ = g−2/3, equivalent to an expansion in the number of spatial
derivatives. The strong coupling expansion in g−2/3 for large box volumes is
similar to Lueschers weak coupling expansion in g2/3 applicable for small boxes.

The leading-order term −→ non-interacting hybrid-glueballs,
low-lying masses can be calculated with high accuracy by solving the
Schrödinger-equation of Dirac-Yang-Mills QM of spatially constant fields (at the
moment only for the unphysical, but technically much simpler 2-color case).

Higher-order terms in λ −→ interactions between the hybrid-glueballs
can be taken into account systematically, using perturbation theory in λ, and
quite accurate results can in principle be obtained for the energy-momentum
relation of glueballs. It allows for the study of the difficult questions of Lorentz
invariance and coupling constant renormalisation in the IR.

The conversion of color to spin in the reduction process might allow for
interesting possible insights into low energy Spin-Physics.

Gauge reduced approach is difficult (due to the complicated Jacobian), but
possible and direct. It should be a useful alternative to lattice calculations.

The investigation can be extended to flux-tubes (string-tension).
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