"FAPT": A Mathematica package for QCD calculations

Viacheslav Khandramai

Gomel State Technical University

Belarus

In memory of Alexander Bakulev

Work on "FAPT" package in time of AB visit to Gomel (October, 2011)

This talk based on recent publication

A.P. Bakulev and V.L. Khandramai *Comp. Phys. Comm.* **184**, Iss. 1 (2013) 183-193.

Plan of talk:

- Theoretical framework: from standard PT to Analytic Perturbative Theory and its generalization – Fractional APT;
- APT/(F)APT Applications:

DIS SR Analysis;

Renorm-group Q^2 -evolution;

Adler D-function;

Package "FAPT": description of procedures and examples of usage.

ヘロト 不得 とくほう 不足り

Analytic Perturbative Theory, APT, [Shirkov, Solovtsov (1996,1997)]

Fractional Analytic Perturbative Theory, (F)APT, [Bakulev, Mikhailov, Stefanis (2005-2010)], [Bakulev, Karanikas, Stefanis (2007)]:

Analytic PT:

- Closed theoretical scheme without Landau singularities and additional parameters;
- RG-invariance, Q^2 -analyticity;
- Power PT set $\{\bar{\alpha}_{s}^{k}(Q^{2})\} \Rightarrow$ a non-power APT expansion set $\{\mathcal{A}_{k}(Q^{2}), \mathfrak{A}_{k}(s)\}$ with all $\mathcal{A}_{k}(Q^{2}), \mathfrak{A}_{k}(s)$ regular in the IR region.

$$\sum d_k lpha_{\mathrm{s}}^k
ightarrow \sum d_k \mathcal{A}_k$$

《曰》 《卽》 《臣》 《臣》 三臣

Introduction

The main goal is to simplify calculations in the framework of APT&(F)APT.

For this purpose we collect all relevant formulas which are necessary for the running of $\bar{A}_{\nu}[L], L = \ln(Q^2/\Lambda^2)$ and $\bar{\mathfrak{A}}_{\nu}[L_s], L_s = \ln(s/\Lambda^2)$ in the framework of APT and (F)APT.

Note,

• We provide here easy-to-use Mathematica system procedures collected in the package "FAPT" organized as

package "RunDec" [Chetyrkin, Kühn, Steinhauser (2000)]

• This task has been partially realized for both APT and its massive generalization [Nesterenko, Papavassiliou (2005)] as the Maple package "QCDMAPT" and as the Fortran package "QCDMAPT F" [Nesterenko, Simolo (2010)].

Theoretical Framework

2

Running coupling

Running coupling $\alpha_s(\mu^2) = (4\pi/b_0) a_s[L]$ with $L = \ln(\mu^2/\Lambda^2)$ obtained from RG equation

$$\frac{d a_s[L]}{d L} = -a_s^2 - c_1 a_s^3 - c_2 a_s^4 - c_1 a_s^3 - \dots, \quad c_k(n_f) \equiv \frac{b_k(n_f)}{b_0(n_f)^{k+1}},$$

Exact solutions of RGE known only at LO and NLO

$$a_{(1)}[L] = \frac{1}{L}$$
 (LO)

$$a_{(2)}[L; n_f] = \frac{-c_1^{-1}(n_f)}{1 + W_{-1}(z_W[L])} \quad \text{with} \quad z_W[L] = -c_1^{-1}(n_f) e^{-1 - L/c_1(n_f)} \quad (\mathsf{NLO})$$

The higher-loop solutions $a_{(\ell)}[L; n_f]$ can be expanded in powers of the two-loop one, $a_{(2)}[L; n_f]$, as has been suggested in [Kourashev, Magradze, (1999-2003)]:

$$a_{(\ell)}[L; n_f] = \sum_{n \ge 1} C_n^{(\ell)} \left(a_{(2)}[L; n_f] \right)^n.$$

・ロト ・四ト ・ヨト ・ヨト … ヨ

Heavy quark mass thresholds

$$\begin{split} \alpha_{s}^{\mathsf{glob};(\ell)}(Q^{2},\Lambda_{3}) &= \alpha_{s}^{(\ell)}\left[L(Q^{2});3\right]\theta\left(Q^{2} < M_{4}^{2}\right) \\ &+ \alpha_{s}^{(\ell)}\left[L(Q^{2}) + \lambda_{4}^{(\ell)}(\Lambda_{3});4\right]\theta\left(M_{4}^{2} \le Q^{2} < M_{5}^{2}\right) \\ &+ \alpha_{s}^{(\ell)}\left[L(Q^{2}) + \lambda_{5}^{(\ell)}(\Lambda_{3});5\right]\theta\left(M_{5}^{2} \le Q^{2} < M_{6}^{2}\right) \\ &+ \alpha_{s}^{(\ell)}\left[L(Q^{2}) + \lambda_{6}^{(\ell)}(\Lambda_{3});6\right]\theta\left(M_{6}^{2} \le Q^{2}\right) \end{split}$$

Figure: Graphical comparison: Fixed- $n_f \alpha_s^{\bar{(4)}}[Q^2, n_f]$ – Global $\alpha_s^{glob;(4)}[Q^2]$

▲ 同 → → ● →

< ∃→

Problems

- Coupling singularities
 - LO solution generates Landau pole singularity: $a_s[L] = 1/L$
 - NLO solution generates square-root singularity: $a_s[L] \sim 1/\sqrt{L + c_1 ln c_1}$
- PT power-series expansion of $D(Q^2, \mu^2 = Q^2) \equiv D$ in the running coupling: $D[L] = 1 + d_1 a_s[L] + d_2 a_s^2[L] + d_3 a_s^3[L] + d_4 a_s^4[L] + \dots,$

are not everywhere well defined

• **RG** evolution: $B(Q^2) = [Z(Q^2)/Z(\mu^2)] B(\mu^2)$ reduces in 1-loop approximation to $Z \sim a^{\nu}[L]\Big|_{\nu=\nu_0 \equiv \gamma_0/(2b_0)}$, ν -fractional

◆□▶ ◆課▶ ★注≯ ★注≯ … 注: ののの

Basics of APT

The analytic images of the strong coupling powers:

$$\bar{\mathcal{A}}_{n}^{(\ell)}[L;n_{f}] = \int_{0}^{\infty} \frac{\bar{\rho}_{\nu}^{(\ell)}(\sigma;n_{f})}{\sigma+Q^{2}} \, d\sigma \,, \quad \bar{\mathfrak{A}}_{n}^{(\ell)}[L_{s};n_{f}] = \int_{s}^{\infty} \frac{\bar{\rho}_{n}^{(\ell)}(\sigma;n_{f})}{\sigma} \, d\sigma$$

define through spectral density

$$\bar{\rho}_n^{(\ell)}[L;n_f] = \frac{1}{\pi} \operatorname{Im} \left(\alpha_{\mathsf{s}}^{(\ell)} \left[L - i\pi; n_f \right] \right)^n = \frac{\sin[n \, \varphi_{(\ell)}[L;n_f]]}{\pi \left(\beta_f \, R_{(\ell)}[L;n_f] \right)^n} \,.$$

One-loop:

$$ar{
ho}_1^{(1)}(\sigma) = rac{4}{b_0} \, {\sf Im} \, rac{1}{L_\sigma - i\pi} = rac{4\pi}{b_0} rac{1}{L_\sigma^2 + \pi^2} \, .$$

 $\mathcal{A}_1^{(1)}$ [Shirkov, Solovtsov (1996, 1997)] κ $\mathfrak{A}_1^{(1)}$ [Jones, Solovtsov (1995); Jones, Solovtsov, Solovtsova (1995); Milton, Solovtsov (1996)]

$$\begin{split} \bar{\mathcal{A}}_{1}^{(1)}[L] &= \frac{4\pi}{b_{0}} \left(\frac{1}{L} - \frac{1}{e^{L} - 1} \right) , \quad L = \ln \left(Q^{2} / \Lambda^{2} \right) ; \\ \bar{\mathfrak{A}}_{1}^{(1)}[L_{s}] &= \frac{4}{b_{0}} \arccos \left(\frac{L_{s}}{\sqrt{L_{s}^{2} + \pi^{2}}} \right) , \quad L_{s} = \ln \left(s / \Lambda^{2} \right) . \end{split}$$

Viacheslav Khandramai (Gomel State Techni["]FAPT": A Mathematica package for QCD ca

IR-behavior

In the IR-region

- Universal finite IR values: $\bar{\mathcal{A}}(0) = \bar{\mathfrak{A}}(0) = 4\pi/b_0 \sim 1.4;$
- Loop stabilization at two-loop level.

This yields practical weak loop dependence of $\bar{\mathcal{A}}(Q^2)$, $\bar{\mathfrak{A}}(s)$, and higher expansion functions:

(F)APT

Why we need (F)APT?

In standard QCD PT we have not only power series

$$F[L] = \sum_{m} f_m \, a_s^m[L],$$

but also:

• RG-improvement to account for higher-orders \rightarrow

$$Z[L] = \exp\left\{\int^{a_{s}[L]} \frac{\gamma(a)}{\beta(a)} \, da\right\} \stackrel{\text{1-loop}}{\longrightarrow} [a_{s}[L]]^{\gamma_{0}/(2\beta_{0})}$$

- Factorization $\rightarrow (a_s[L])^n L^m$
- Two-loop case $\rightarrow (a_s)^{\nu} \ln(a_s)$

New functions:

• $(a_s)^{\nu}$ (done in 'FAPT' package)

•
$$(a_s)^{\nu} \ln(a_s), (a_s)^{\nu} L^m$$
, (in preparation)

э

・ロン ・四マ ・ヨマ ・ヨマ

(F)APT: one-loop Euclidian $\bar{A}_{\nu}[L]$

Euclidean coupling $(L = \ln(Q^2/\Lambda^2))$:

$$\bar{\mathcal{A}}_{\nu}[\mathcal{L}] = \frac{4\pi}{b_0} \left(\frac{1}{L^{\nu}} - \frac{F(e^{-\mathcal{L}}, 1-\nu)}{\Gamma(\nu)} \right)$$

Here $F(z, \nu)$ is reduced Lerch transcendent function (analytic function in ν).

Properties:

- $\bar{A}_0[L] = 1;$
- $\bar{\mathcal{A}}_{-m}[L] = L^m$ for $m \in \mathbb{N}$;
- $\bar{\mathcal{A}}_m[\mathcal{L}] = (-1)^m \bar{\mathcal{A}}_m[-\mathcal{L}]$ for $m \ge 2$, $m \in \mathbb{N}$;
- $\bar{\mathcal{A}}_m[\pm\infty] = 0$ for $m \ge 2, \ m \in \mathbb{N};$

・ロト ・回ト ・ヨト ・ヨト

(F)APT

(F)APT: one-loop Euclidian $\bar{A}_{\nu}[L]$

2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

(F)APT: one-loop Minkowskian $\bar{\mathfrak{A}}_{\nu}[L]$

Minkowskian coupling $(L = \ln(s/\Lambda^2))$:

$$\bar{\mathfrak{A}}_{\nu}[L] = \frac{4}{b_0} \frac{\sin\left[(\nu - 1) \arccos\left(L/\sqrt{\pi^2 + L^2}\right)\right]}{(\nu - 1) \left(\pi^2 + L^2\right)^{(\nu - 1)/2}}$$

Here we need only elementary functions.

Properties:

- $\overline{\mathfrak{A}}_0[L] = 1;$
- $\overline{\mathfrak{A}}_{-1}[L] = L;$

•
$$\bar{\mathfrak{A}}_{-2}[L] = L^2 - \frac{\pi^2}{3}, \quad \bar{\mathfrak{A}}_{-3}[L] = L(L^2 - \pi^2), \dots;$$

•
$$\bar{\mathfrak{A}}_m[L] = (-1)^m \bar{\mathfrak{A}}_m[-L]$$
 for $m \ge 2$, $m \in \mathbb{N};$

•
$$ar{\mathfrak{A}}_m[\pm\infty]=0$$
 for $m\geq 2\,,\,\,m\in\mathbb{N}$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Theoretical Framework (

(F)APT

(F)APT: one-loop Minkowskian $\bar{\mathfrak{A}}_{\nu}[L]$

2

・ロト ・日下・ ・日下・ ・日下

Non-power APT expansions

Instead of universal power-in- $\alpha_{\rm s}$ expansion in APT one should use non-power functional expansions.

In Euclidian space Adler D-function

$$D_{\mathsf{PT}}(Q^2) = d_0 + d_1 \, \alpha_{\rm s}(Q^2) + d_2 \, \alpha_{\rm s}^2(Q^2) + d_3 \, \alpha_{\rm s}^3(Q^2) + d_4 \, \alpha_{\rm s}^4(Q^2)$$

$$\mathcal{D}_{\text{APT}}(Q^2) = d_0 + d_1 \, \bar{\mathcal{A}}_1(Q^2) + d_2 \, \bar{\mathcal{A}}_2(Q^2) + d_3 \, \bar{\mathcal{A}}_3(Q^2) + d_4 \, \bar{\mathcal{A}}_4(Q^2)$$

In Minkowskian space R-ratio

$$R_{\rm PT}(s) = r_0 + r_1 \alpha_{\rm s}(s) + r_2 \alpha_{\rm s}^2(s) + r_3 \alpha_{\rm s}^3(s) + r_4 \alpha_{\rm s}^4(s)$$

$$\mathcal{R}_{\mathsf{APT}}(s) = d_0 + d_1 \overline{\mathfrak{A}}_1(s) + d_2 \overline{\mathfrak{A}}_2(s) + d_3 \overline{\mathfrak{A}}_3(s) + d_4 \overline{\mathfrak{A}}_4(s)$$

イロト 不得 トイヨト イヨト

APT/(F)APT Applications

2

・ロト ・四ト ・ヨト ・ヨト

Loop stabilization

Perturbative power-correction of the polarized Bjorken Sum Rule (see [Khandramai *et. al* (PLB, 2012)])

$$\Gamma_1^{p-n}(Q^2) = rac{|g_{\mathcal{A}}|}{6} C_{
m Bj} \,, C_{
m Bj}(Q^2) \equiv 1 - \Delta_{
m Bj}^{
m PT}(Q^2) \,, \; |g_{\mathcal{A}}| = 1.2701 \pm 0.0025$$

Loop stabilization of IR behavior at two-loop level

Scale-dependence

$$[\text{Baikov, Chetyrkin, Kühn (2010)} \\ C_{\text{Bj}}(Q^2, x_{\mu} = \mu^2/Q^2) = 1 - 0.318\alpha_{\text{s}} - (0.363 + 0.228 \ln x_{\mu})\alpha_{\text{s}}^2 \\ - (0.652 + 0.649 \ln x_{\mu} + 0.163 \ln^2 x_{\mu})\alpha_{\text{s}}^3 \\ - (1.804 + 1.798 \ln x_{\mu} + 0.790 \ln^2 x_{\mu} + 0.117 \ln^3 x_{\mu})\alpha_{\text{s}}^4$$

Weak scale dependence of observables

Figure: The μ -scale ambiguities for the perturbative part of the BSR versus Q^2 from [Khandramai *et al.* (2012)]

Viacheslav Khandramai (Gomel State Techni["]FAPT": A Mathematica package for QCD ca

Convergence

Better loop convergence: the 3rd and 4th terms contribute less than 5% and 1% respectively. Again the 2-loop (N^2LO) level is sufficient.

Figure: The relative contributions of separate terms in PT expansion for $\Delta_{\rm Bi}(Q^2)$, $N_i(Q^2) = \delta_i(Q^2)/\Delta_{Bi}(Q^2)$, as a function of Q^2 from [Khandramai *et. al* (2012)]

イロト イポト イヨト イヨト

DIS Sum Rules

See [Pasechnik et al. (PRD,2010)]

The total expression for the perturbative part of $\Gamma_1^{p,n}(Q^2)$ including the higher twist contributions reads

$$\Gamma_1^{p,n}(Q^2) = \frac{1}{12} \left[\left(\pm a_3 + \frac{1}{3} a_8 \right) E_{NS}(Q^2) + \frac{4}{3} a_0 E_S(Q^2) \right] + \sum_{i=2}^{\infty} \frac{\mu_{2i}^{p,n}}{Q^{2i-2}},$$

where E_S and E_{NS} are the singlet and nonsinglet Wilson coefficients (for $n_f = 3$):

$$\begin{split} E_{NS}(Q^2) &= 1 - \frac{\alpha_s}{\pi} - 3.558 \left(\frac{\alpha_s}{\pi}\right)^2 - 20.215 \left(\frac{\alpha_s}{\pi}\right)^3 - O(\alpha_s^4) \,, \\ E_S(Q^2) &= 1 - \frac{\alpha_s}{\pi} - 1.096 \left(\frac{\alpha_s}{\pi}\right)^2 - O(\alpha_s^3) \,. \end{split}$$

In $\Gamma_1^{p^{-n}}$ the singlet and octet contributions are canceled out, giving rise to more fundamental Bjorken SR:

$$\Gamma_1^{p-n}(Q^2) = \frac{g_A}{6} E_{NS}(Q^2) + \sum_{i=2}^{\infty} \frac{\mu_{2i}^{p-n}(Q^2)}{Q^{2i-2}}.$$

The triplet and octet axial charges $a_3 \equiv g_A = 1.267 \pm 0.004$ and $a_8 = 0.585 \pm 0.025$.

The RG evolution of the axial singlet charge $a_0(Q^2)$

$$\begin{aligned} a_0^{\mathsf{PT}}(Q^2) &= a_0^{\mathsf{PT}}(Q_0^2) \left\{ 1 + \frac{\gamma_2}{(4\pi)^2 \beta_0} [\alpha_{\rm s}(Q^2) - \alpha_{\rm s}(Q_0^2)] \right\}, \\ a_0^{\mathsf{APT}}(Q^2) &= a_0^{\mathsf{APT}}(Q_0^2) \left\{ 1 + \frac{\gamma_2}{(4\pi)^2 \beta_0} [\mathcal{A}_1(Q^2) - \mathcal{A}_1(Q_0^2)] \right\}, \quad \gamma_2 = 16n_f. \end{aligned}$$

The evolution from 1 GeV² to Λ_{QCD} in the APT increases the absolute value of a_0 by about 10 %.

Figure: Evolution of $a_0(Q^2)$ normalized at $Q_0^2 = 1$ GeV² in APT and PT.

The RG evolution of the axial singlet charge $a_0(Q^2)$

Note, the Q^2 -evolution of $\mu_4^p(Q^2)$ leads to close fit results within error bars. Therefore considered only of $a_0(Q^2)$

Table: Combined fit results of the proton $\Gamma_1^p(Q^2)$ data (elastic contribution excluded). APT fit results a_0 and $\mu_{4,6,8}^{APT}$ (at the scale $Q_0^2 = 1 \text{ GeV}^2$) are given without and with taking into account the RG Q^2 evolution of $a_0(Q^2)$.

Method	Q^2_{min} GeV ²	a ₀	μ_4/M^2	μ_6/M^4	μ_8/M^6
	0.47	0.35(4)	-0.054(4)	0	0
NNLO APT	0.17	0.39(3)	-0.069(4)	0.0081(8)	0
no evolution	0.10	0.43(3)	-0.078(4)	0.0132(9)	-0.0007(5)
	0.47	0.33(4)	-0.051(4)	0	0
NNLO APT	0.17	0.31(3)	-0.059(4)	0.0098(8)	0
with evolution	0.10	0.32(4)	-0.065(4)	0.0146(9)	-0.0006(5)

The fit results become more stable with respect to Q_{min} variations

Obtained values are very close to the corresponding COMPASS [Alexakhin *et al.* (2007)] and HERMES [Airapetian *et al.* (2007)] results 0.35 ± 0.06 .

The RG evolution of the higher-twist $\mu_4^{p-n}(Q^2)$

$$\mu_{4,\text{PT}}^{p-n}(Q^2) = \mu_{4,\text{PT}}^{p-n}(Q_0^2) \left[\frac{\alpha_s(Q^2)}{\alpha_s(Q_0^2)} \right]^{\nu},$$

$$\mu_{4,\text{APT}}^{p-n}(Q^2) = \mu_{4,\text{APT}}^{p-n}(Q_0^2) \frac{\mathcal{A}_{\nu}^{(1)}(Q^2)}{\mathcal{A}_{\nu}^{(1)}(Q_0^2)}, \quad \nu = \frac{\gamma_0}{8\pi\beta_0}, \quad \gamma_0 = \frac{16}{3}C_F, \quad C_F = \frac{4}{3}.$$

The evolution from 1 GeV² to Λ_{QCD} in the APT increases the absolute value of μ_4^{p-n} by about 20 %.

Figure: Evolution of $\mu_4^{p-n}(Q^2)$ normalized at $Q_0^2 = 1$ GeV² in APT and PT.

The RG evolution of the higher-twist $\mu_4^{p-n}(Q^2)$

Table: Combined fit results of the Γ_1^{p-n} data. APT fit results $\mu_{4,6,8}^{APT}$ (at the scale $Q_0^2 = 1 \text{ GeV}^2$) are given without and with taking into account the RG Q^2 -evolution of μ_4^{p-n} .

Method	Q^2_{min} GeV ²	μ_4/M^2	μ_{6}/M^{4}	μ_{8}/M^{6}
	0.47	-0.055(3)	0	0
NNLO APT	0.17	-0.062(4)	0.008(2)	0
no evolution	0.10	-0.068(4)	0.010(3)	-0.0007(3)
	0.47	-0.051(3)	0	0
NNLO APT	0.17	-0.056(4)	0.0087(4)	0
with evolution	0.10	-0.058(4)	0.0114(6)	-0.0005(8)

Account of this evolution, which is most important at low Q^2 , improves the stability of the extracted parameters whose Q^2 dependence diminishes

・ コット 今日 マート 今日 マート

The M_4 and M_8 moments evolution

Figure: The M_4 (solid curves) and M_8 (dashed curves) moments evolution normilized at the scale $Q_0^2 = 4 \text{ GeV}^2$ in the APT (blue curves) and PT (red curves).

Adler *D*-function analysis

$$\Pi_{\mu\nu}(q^2) = i \int e^{iqx} \langle |T\{J_{\mu}(x)J_{\nu}(0)\}|0\rangle d^4x, \quad \Pi_{\mu\nu}(q^2) = (q_{\mu}q_{\nu} - g_{\mu\nu}q^2) \Pi(Q^2).$$
$$D(Q^2) = -Q^2 \frac{d\Pi(-Q^2)}{dQ^2} = Q^2 \int_0^\infty ds \frac{R(s)}{(s+Q^2)^2}, \quad R(s) = \operatorname{Im} \Pi(s)/\pi.$$

The OPE-representation for the D-function

$$\begin{array}{lll} D_{\rm OPE}(Q^2) & = & D_{\rm PT}(Q^2) + D_{\rm NP}(Q^2) \\ & \rightarrow & 1 + 0.318\alpha_{\rm s} + 0.166\alpha_{\rm s}^2 + 0.205\alpha_{\rm s}^3 + 0.504\alpha_{\rm s}^4 + \frac{{\sf A}}{Q^4} + \cdots \end{array}$$

A simple model for the function $R_V(s)$ (see [Peris, Perrottet, de Rafael (1998), Dorokhov (2004)])

$$\begin{aligned} R_V^{\text{had}}(s) &= \frac{2\pi}{g_V^2} \, m_V^2 \, \delta(s - m_V^2) + \left(1 + \frac{\alpha_s^{(0)}}{\pi}\right) \theta(s - s_0) \,, \\ D_V^{\text{had}}(Q^2) &= \frac{2\pi}{g_V^2} \, \frac{Q^2 \, m_V^2}{(Q^2 + m_V^2)^2} + \left(1 + \frac{\alpha_s^{(0)}}{\pi}\right) \frac{Q^2}{Q^2 + s_0} \,, \end{aligned}$$

which reproduces well the "experimental" curve $D_V^{\exp}(Q^2)$ with the parameters: $m_V = 770$ MeV, $g_V^{-2} \simeq 2.1$, $\alpha_s^{(0)} \simeq 0.4$, and $s_0 \simeq 1.77$ GeV²

Adler D-function analysis

Method	Order	Q_{min}^2 , GeV ²	A, GeV ⁴	$\chi^2_{d.o.f}$
	LO	0.2	-0.020	0.711
PT	NLO	0.3	-0.061	0.626
	N ² LO	0.4	-0.114	0.343
	N ³ LO	0.5	-0.196	0.538
	LO	0.2	-0.018	0.508
APT	NLO	0.2	-0.019	0.896
	N ² LO	0.2	-0.019	0.912
	N ³ LO	0.2	-0.019	0.905

Table: Fit results of the Adler *D*-function data based on hadron model.

- Standard PT provides: the results strongly changes from order to order;
- APT gives stable values of non-perturbative $O(1/Q^4)$ -correction and allow to describe data up to $Q_{min} = 0.2 \text{ GeV}^2$.

Adler D-function analysis

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Package ''FAPT''

2

< 口 > < 四 > < 三 > < 三 > 、

"'FAPT'' package review

Title of program: FAPT

Available from:

```
http://theor.jinr.ru/~bakulev/fapt.mat/FAPT.m
http://theor.jinr.ru/~bakulev/fapt.mat/FAPT_Interp.m
```

Computer for which the program is designed and others on which it is operable: Any work-station or PC where Mathematica is running.

Operating system or monitor under which the program has been tested: Windows XP, Mathematica (versions 5,7,8).

"'FAPT'' package contains:

 $\begin{aligned} & \bar{\alpha}_{s}^{(\ell)}[L, n_{f}], \ \bar{\alpha}_{s}^{(\ell); \text{glob}} \\ & \bar{\rho}^{(\ell)}[L_{\sigma}, n_{f}, \nu], \ \rho^{(\ell); \text{glob}}[L_{\sigma}, \nu, \Lambda_{n_{f}=3}] \\ & \bar{\mathcal{A}}_{\nu}^{(\ell)}[L, n_{f}], \ \mathcal{A}_{\nu}^{(\ell); \text{glob}}[L, \nu, \Lambda_{n_{f}=3}] \\ & \bar{\mathfrak{A}}_{\nu}^{(\ell)}[L, n_{f}], \ \mathcal{A}_{\nu}^{(\ell); \text{glob}}[L, \nu, \Lambda_{n_{f}=3}] \end{aligned}$

・ロト ・四ト ・ヨト ・ヨト … ヨ

Numerical parameters

The pole masses of heavy quarks and Z-boson, collected in the set NumDefFAPT (all
mass variables and parameters are measured in GeVs):

*The package RunDec is using the set NumDef with slightly different values of these parameters ($M_c = 1.6$ GeV, $M_b = 4.7$ GeV, $M_t = 175$ GeV, $M_Z = 91.18$ GeV).

• Collection in the set setbetaFAPT the following rules of substitutions $b_i \rightarrow b_i(n_f)$

$$b0: b_0 \rightarrow 11 - \frac{2}{3} n_f$$
, b1, b2, b3.

*Here we follow the same substitution strategy as in RunDec, but our b_i differ from b_i^{RunDec} by factors 4^{i+1} : $b_i = 4^{i+1} b_i^{RunDec}$.

◆□▶ ◆□▶ ◆ヨ≯ ◆ヨ≯ ニヨー わえの

$\alpha_{\rm s}$ calculations

The QCD scales $\Lambda \ell[\Lambda, n_f]$:

The threshold logarithms — as $\lambda \ell 4[\Lambda]$, $\lambda \ell 5[\Lambda]$, and $\lambda \ell 6[\Lambda]$:

The running QCD couplings with fixed n_f — as $\alpha \text{Bar}\ell[Q^2, n_f, \Lambda]$:

The global running QCD couplings $\alpha \text{Glob}\ell[Q^2, \Lambda]$, :

$$\label{eq:lapha} \mbox{[Alpha]} \mbox{Glob} \ell[Q^2,\Lambda] = \alpha \mbox{Glob} \ell[Q^2,\Lambda] = \alpha_{\rm s}^{\mbox{glob};(\ell)}(Q^2,\Lambda) \,, \, (\ell=1\div 4, 3{\sf P}) \,,$$

・ロト ・回ト ・ヨト ・ヨト

Example 1

We assume that the two-loop QCD scale Λ_3 is fixed at the value $\Lambda_3 = 0.387$ GeV. We want to evaluate the corresponding values of the coupling $\alpha_s^{glob;(\ell)}(Q^2, \Lambda)$ at the scale $Q = M_5$.

Possible Mathematica realization of this task

```
In [1]:= SetDirectory [NotebookDirectory []];
<< FAPT.m
In [2]:= L23=0.387;
In [3]:= Mb=MQ5/.NumDefFAPT
Out[3]= 4.75
In [4]:= \[Alpha]Glob2[Mb^2,L23]
Out[4]= 0.218894
```

・ロト ・四ト ・ヨト ・ヨト … ヨ

ρ_{ν} calculations

RhoBar $\ell[L, n_f, \nu]$ returns ℓ -loop spectral density $\bar{p}_{\nu}^{(\ell)}$ ($\ell = 1, 2, 3, 3P, 4$) of fractional-power ν at $L = \ln(Q^2/\Lambda^2)$ and at fixed number of active quark flavors n_f : RhoBar $\ell[L, k, \nu] = \bar{p}_{\nu}^{(\ell)}[L; n_f = k]$, ($\ell = 1 \div 4, 3P$; $k = 3 \div 6$)

RhoGlob $\ell[L, \nu, \Lambda_3]$ returns the global ℓ -loop spectral density $\bar{\rho}_{\nu}^{(\ell);\text{glob}}[L; \Lambda_3]$ ($\ell = 1, 2, 3, 3P, 4$) of fractional-power ν at $L = \ln(Q^2/\Lambda_3^2)$, cf. and with Λ_3 being the QCD $n_f = 3$ -scale:

 $\texttt{RhoGlob}\ell[L,\nu,\Lambda_3] = \bar{\rho}_{\nu}^{(\ell);\texttt{glob}}[L;\Lambda_3], \quad (\ell = 1 \div 4, 3\mathsf{P})$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

$\bar{\mathcal{A}}_{\nu}$ and $\bar{\mathfrak{A}}_{\nu}$ calculations

AcalBar $\ell[L, n_f, \nu]$ returns ℓ -loop ($\ell = 1, 2, 3, 3P, 4$) analytic image of fractional-power ν coupling $\bar{\mathcal{A}}_{\nu}^{(\ell)}[L; n_f]$ in Euclidean domain,

 $\texttt{AcalBar}\ell[L,k,\nu] = \bar{\mathcal{A}}_{\nu}^{(\ell)}[L;n_f=k]\,,\quad (\ell=1\div 4,3\mathsf{P}\,;\;k=3\div 6)$

AcalGlob $\ell[L, \nu, \Lambda_3]$ returns ℓ -loop analytic image of fractional-power ν coupling $\mathcal{A}_{\nu}^{(\ell);glob}[L, \Lambda_3]$ in Euclidean domain

 $\texttt{AcalGlob}\ell[\textit{L},\nu,\Lambda_3] = \mathcal{A}_{\nu}^{(\ell);\texttt{glob}}[\textit{L},\Lambda_3]\,, \quad (\ell=1\div 4,3\mathsf{P})$

UcalBar $\ell[L, n_f, \nu]$ returns ℓ -loop ($\ell = 1, 2, 3, 3P, 4$) analytic image of fractional-power ν coupling $\bar{\mathfrak{A}}_{\nu}^{(\ell)}[L, n_f]$ in Minkowski domain

 $\texttt{UcalBar}\ell[L,k,\nu] = \bar{\mathfrak{A}}_{\nu}^{(\ell)}[L;n_f=k], \quad (\ell=1\div 4,3\mathsf{P};\ k=3\div 6)$

UcalGlob $\ell[L, \nu, \Lambda_3]$ returns ℓ -loop analytic image of fractional-power ν coupling $\mathfrak{A}_{\nu}^{(\ell);glob}[L, \Lambda_3]$ in Minkowski domain

 $\texttt{UcalGlob}\ell[L,\nu,\Lambda_3] = \mathfrak{A}_{\nu}^{(\ell);\textit{glob}}[L,\Lambda_3]\,, \quad (\ell=1\div 4,3\mathsf{P})$

Example 2

Creation of a two-dimensional plot of $\mathcal{A}_{\nu}^{(2);\text{glob}}[L, L23APT]$ and $\mathfrak{A}_{\nu}^{(2);\text{glob}}[L, L23APT]$ for $L \in [-3, 11]$ with indication of the needed time:

```
In [5]:= Plot [AcalGlob2 [L,1,L23APT], {L,-3,11}]//Timing
Out[5]= {19.843, Graphics
(see in the left panel of Fig. below)}
In [6]:= Plot [UcalGlob2 [L,1,L23APT], {L,-3,11}]//Timing
Out[6]= {14.656, Graphics
(see in the right panel of Fig. below)}
```


Viacheslav Khandramai (Gomel State Techni["]FAPT": A Mathematica package for QCD ca

Interpolation

To obtain the results much faster one can use module "FAPT_Interp" which consists of procedures AcalGlob $\ell i[L, \nu, \Lambda_3]$ and UcalGlob $\ell i[L, \nu, \Lambda_3]$, which are based on interpolation using the basis of the precalculated data.

Figure: Relative error of the interpolation procedure for $\mathcal{A}_{\nu=1,1}^{glob}$ (left panel) and $\mathfrak{A}_{\nu=1,1}^{glob}$ (right panel), calculated at various loop orders with $\Lambda_{\mathbf{3}} = 0.36$ GeV for N = 11 number of points.

A (1) > A (1) > A

Summary

APT provides natural way for coupling and related quantities with

- Universal (loop & scheme independent) IR limit;
- Weak loop dependence;
- Practical scheme independence.

(F)APT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.

This approaches are used in many applications, for example:

- Higgs boson decay [Bakulev, Mikhailov, Stefanis (2007)];
- calculation of binding energies and masses of quarkonia [Ayala, Cvetič (2013)];
- analysis of the structure function $F_2(x)$ behavior at small values of x [Kotikov, Krivokhizhin, Shaikhatdenov (2012)];
- resummation approach [Bakulev, Potapova (2011)].

I collect in "FAPT" package all the procedures in APT and (F)APT which are needed to compute analytic images of the standard QCD coupling powers up to 4-loops of renormalization group running and to use it for both schemes: with fixed number of active flavours n_f , $A_{\nu}(Q^2; n_f), \mathfrak{A}_{\nu}(s; n_f)$, and the global one with taking into account all heavy-quark thresholds, $A_{\nu}^{glob}(Q^2), \mathfrak{A}_{\nu}^{glob}(s)$ based on the system "Mathematica".

Thanks for your attention!

э

< 日 > < 同 > < 三 > < 三 > < 三 > <