"FAPT": A Mathematica package for QCD calculations

Viacheslav Khandramai

Gomel State Technical University
Belarus

In memory of Alexander Bakulev

Work on 'FAPT"' package in time of $A B$ visit to Gomel (October, 2011)

This talk based on recent publication A.P. Bakulev and V.L. Khandramai Comp. Phys. Comm. 184, Iss. 1 (2013) 183-193.

Plan of talk:
(1) Theoretical framework: from standard PT to Analytic Perturbative Theory and its generalization - Fractional APT;
(2) APT/(F)APT Applications:

DIS SR Analysis;
Renorm-group Q^{2}-evolution;
Adler D-function;
(3) Package 'FAPT"': description of procedures and examples of usage.

Motivation

Analytic Perturbative Theory, APT, [Shirkov, Solovtsov $(1996,1997)]$
Fractional Analytic Perturbative Theory, (F)APT, [Bakulev, Mikhailov, Stefanis (2005-2010)], [Bakulev, Karanikas, Stefanis (2007)]:

Analytic PT:

- Closed theoretical scheme without Landau singularities and additional parameters;
- RG-invariance, Q^{2}-analyticity;
- Power PT set $\left\{\bar{\alpha}_{\mathrm{s}}^{k}\left(Q^{2}\right)\right\} \Rightarrow$ a non-power APT expansion set $\left\{\mathcal{A}_{k}\left(Q^{2}\right), \mathfrak{A}_{k}(s)\right\}$ with all $\mathcal{A}_{k}\left(Q^{2}\right), \mathfrak{A}_{k}(s)$ regular in the IR region.

$$
\sum d_{k} \alpha_{s}^{k} \rightarrow \sum d_{k} \mathcal{A}_{k}
$$

Introduction

The main goal is to simplify calculations in the framework of APT\&(F)APT.
For this purpose we collect all relevant formulas which are necessary for the running of $\overline{\mathcal{A}}_{\nu}[L], L=\ln \left(Q^{2} / \Lambda^{2}\right)$ and $\overline{\mathfrak{A}}_{\nu}\left[L_{s}\right], L_{s}=\ln \left(s / \Lambda^{2}\right)$ in the framework of APT and (F)APT.

Note,

- We provide here easy-to-use Mathematica system procedures collected in the package "FAPT" organized as
package "RunDec" [Chetyrkin, Kühn, Steinhauser (2000)]
- This task has been partially realized for both APT and its massive generalization [Nesterenko, Papavassiliou (2005)] as the Maple package "QCDMAPT" and as the Fortran package "QCDMAPT_F" [Nesterenko, Simolo (2010)].

Theoretical Framework

Running coupling

Running coupling $\alpha_{s}\left(\mu^{2}\right)=\left(4 \pi / b_{0}\right) a_{s}[L]$ with $L=\ln \left(\mu^{2} / \Lambda^{2}\right)$ obtained from RG equation

$$
\frac{d a_{s}[L]}{d L}=-a_{s}^{2}-c_{1} a_{s}^{3}-c_{2} a_{s}^{4}-c_{1} a_{s}^{3}-\ldots, \quad c_{k}\left(n_{f}\right) \equiv \frac{b_{k}\left(n_{f}\right)}{b_{0}\left(n_{f}\right)^{k+1}}
$$

Exact solutions of RGE known only at LO and NLO

$$
\begin{gather*}
a_{(1)}[L]=\frac{1}{L} \quad \text { (LO) } \\
a_{(2)}\left[L ; n_{f}\right]=\frac{-c_{1}^{-1}\left(n_{f}\right)}{1+W_{-1}\left(z_{W}[L]\right)} \quad \text { with } \quad z_{W}[L]=-c_{1}^{-1}\left(n_{f}\right) e^{-1-L / c_{1}\left(n_{f}\right)} \tag{NLO}
\end{gather*}
$$

The higher-loop solutions $a_{(\ell)}\left[L ; n_{f}\right]$ can be expanded in powers of the two-loop one, $a_{(2)}\left[L ; n_{f}\right]$, as has been suggested in [Kourashev, Magradze, (1999-2003)]:

$$
a_{(\ell)}\left[L ; n_{f}\right]=\sum_{n \geq 1} C_{n}^{(\ell)}\left(a_{(2)}\left[L ; n_{f}\right]\right)^{n}
$$

Heavy quark mass thresholds

$$
\begin{aligned}
\alpha_{\mathrm{s}}^{\text {glob } ;(\ell)}\left(Q^{2}, \Lambda_{3}\right) & =\alpha_{\mathrm{s}}^{(\ell)}\left[L\left(Q^{2}\right) ; 3\right] \theta\left(Q^{2}<M_{4}^{2}\right) \\
& +\alpha_{\mathrm{s}}^{(\ell)}\left[L\left(Q^{2}\right)+\lambda_{4}^{(\ell)}\left(\Lambda_{3}\right) ; 4\right] \theta\left(M_{4}^{2} \leq Q^{2}<M_{5}^{2}\right) \\
& +\alpha_{\mathrm{s}}^{(\ell)}\left[L\left(Q^{2}\right)+\lambda_{5}^{(\ell)}\left(\Lambda_{3}\right) ; 5\right] \theta\left(M_{5}^{2} \leq Q^{2}<M_{6}^{2}\right) \\
& +\alpha_{\mathrm{s}}^{(\ell)}\left[L\left(Q^{2}\right)+\lambda_{6}^{(\ell)}\left(\Lambda_{3}\right) ; 6\right] \theta\left(M_{6}^{2} \leq Q^{2}\right)
\end{aligned}
$$

Figure: Graphical comparison: Fixed- $n_{f} \alpha_{\mathrm{S}}^{\overline{(4)}}\left[Q^{2}, n_{f}\right]-$ Global $\alpha_{\mathrm{S}}^{\text {glob; }(4)}\left[Q^{2}\right]$

Problems

- Coupling singularities
- LO solution generates Landau pole singularity: $a_{s}[L]=1 / L$
- NLO solution generates square-root singularity: $a_{s}[L] \sim 1 / \sqrt{L+c_{1} \ln c_{1}}$
- PT power-series expansion of $D\left(Q^{2}, \mu^{2}=Q^{2}\right) \equiv D$ in the running coupling:
$D[L]=1+d_{1} a_{s}[L]+d_{2} a_{s}^{2}[L]+d_{3} a_{s}^{3}[L]+d_{4} a_{s}^{4}[L]+\ldots$,
are not everywhere well defined
- RG evolution: $B\left(Q^{2}\right)=\left[Z\left(Q^{2}\right) / Z\left(\mu^{2}\right)\right] B\left(\mu^{2}\right)$ reduces in 1-loop approximation to $\left.Z \sim a^{\nu}[L]\right|_{\nu=\nu_{0} \equiv \gamma_{0} /\left(2 b_{0}\right)}, \quad \nu$-fractional

Basics of APT

The analytic images of the strong coupling powers:

$$
\overline{\mathcal{A}}_{n}^{(\ell)}\left[L ; n_{f}\right]=\int_{0}^{\infty} \frac{\bar{\rho}_{\nu}^{(\ell)}\left(\sigma ; n_{f}\right)}{\sigma+Q^{2}} d \sigma, \quad \overline{\mathfrak{A}}_{n}^{(\ell)}\left[L_{s} ; n_{f}\right]=\int_{s}^{\infty} \frac{\bar{\rho}_{n}^{(\ell)}\left(\sigma ; n_{f}\right)}{\sigma} d \sigma
$$

define through spectral density

$$
\bar{\rho}_{n}^{(\ell)}\left[L ; n_{f}\right]=\frac{1}{\pi} \operatorname{Im}\left(\alpha_{s}^{(\ell)}\left[L-i \pi ; n_{f}\right]\right)^{n}=\frac{\sin \left[n \varphi_{(\ell)}\left[L ; n_{f}\right]\right]}{\pi\left(\beta_{f} R_{(\ell)}\left[L ; n_{f}\right]\right)^{n}} .
$$

One-loop:

$$
\bar{\rho}_{1}^{(1)}(\sigma)=\frac{4}{b_{0}} \operatorname{lm} \frac{1}{L_{\sigma}-i \pi}=\frac{4 \pi}{b_{0}} \frac{1}{L_{\sigma}^{2}+\pi^{2}} .
$$

$\mathcal{A}_{1}^{(1)}$ [Shirkov, Solovtsov (1996, 1997)] и $\mathfrak{A}_{1}^{(1)}$ [Jones, Solovtsov (1995); Jones, Solovtsov, Solovtsova (1995); Milton, Solovtsov (1996)]

$$
\begin{aligned}
\overline{\mathcal{A}}_{1}^{(1)}[L] & =\frac{4 \pi}{b_{0}}\left(\frac{1}{L}-\frac{1}{e^{L}-1}\right), \quad L=\ln \left(Q^{2} / \Lambda^{2}\right) ; \\
\overline{\mathfrak{A}}_{1}^{(1)}\left[L_{s}\right] & =\frac{4}{b_{0}} \arccos \left(\frac{L_{s}}{\sqrt{L_{s}^{2}+\pi^{2}}}\right), \quad L_{s}=\ln \left(s / \Lambda^{2}\right) .
\end{aligned}
$$

IR-behavior

In the IR-region

- Universal finite IR values: $\overline{\mathcal{A}}(0)=\overline{\mathfrak{A}}(0)=4 \pi / b_{0} \sim 1.4$;
- Loop stabilization at two-loop level.

This yields practical weak loop dependence of $\overline{\mathcal{A}}\left(Q^{2}\right), \overline{\mathfrak{A}}(s)$, and higher expansion functions:

Why we need (F)APT?

In standard QCD PT we have not only power series

$$
F[L]=\sum_{m} f_{m} a_{s}^{m}[L]
$$

but also:

- RG-improvement to account for higher-orders \rightarrow

$$
Z[L]=\exp \left\{\int^{a_{s}[L]} \frac{\gamma(a)}{\beta(a)} d a\right\} \xrightarrow{1 \text {-loop }}\left[a_{s}[L]\right]^{\gamma_{0} /\left(2 \beta_{0}\right)}
$$

- Factorization $\rightarrow\left(a_{s}[L]\right)^{n} L^{m}$
- Two-loop case $\rightarrow\left(a_{s}\right)^{\nu} \ln \left(a_{s}\right)$

New functions:

- $\left(a_{s}\right)^{\nu}$ (done in 'FAPT'' package)
- $\left(a_{s}\right)^{\nu} \ln \left(a_{s}\right),\left(a_{s}\right)^{\nu} L^{m}$, (in preparation)

(F)APT: one-loop Euclidian $\overline{\mathcal{A}}_{\nu}[L]$

Euclidean coupling $\left(L=\ln \left(Q^{2} / \Lambda^{2}\right)\right)$:

$$
\overline{\mathcal{A}}_{\nu}[L]=\frac{4 \pi}{b_{0}}\left(\frac{1}{L^{\nu}}-\frac{F\left(e^{-L}, 1-\nu\right)}{\Gamma(\nu)}\right)
$$

Here $F(z, \nu)$ is reduced Lerch transcendent function (analytic function in ν).

Properties:

- $\overline{\mathcal{A}}_{0}[L]=1$;
- $\overline{\mathcal{A}}_{-m}[L]=L^{m}$ for $m \in \mathbb{N}$;
- $\overline{\mathcal{A}}_{m}[L]=(-1)^{m} \overline{\mathcal{A}}_{m}[-L]$ for $m \geq 2, m \in \mathbb{N}$;
- $\overline{\mathcal{A}}_{m}[\pm \infty]=0$ for $m \geq 2, m \in \mathbb{N}$;

(F)APT: one-loop Euclidian $\overline{\mathcal{A}}_{\nu}[L]$

(F)APT: one-loop Minkowskian $\overline{\mathfrak{A}}_{\nu}[L]$

Minkowskian coupling $\left(L=\ln \left(s / \Lambda^{2}\right)\right)$:

$$
\overline{\mathfrak{A}}_{\nu}[L]=\frac{4}{b_{0}} \frac{\sin \left[(\nu-1) \arccos \left(L / \sqrt{\pi^{2}+L^{2}}\right)\right]}{(\nu-1)\left(\pi^{2}+L^{2}\right)^{(\nu-1) / 2}}
$$

Here we need only elementary functions.

Properties:

- $\overline{\mathfrak{A}}_{0}[L]=1$;
- $\overline{\mathfrak{A}}_{-1}[L]=L ;$
- $\overline{\mathfrak{A}}_{-2}[L]=L^{2}-\frac{\pi^{2}}{3}, \quad \overline{\mathfrak{A}}_{-3}[L]=L\left(L^{2}-\pi^{2}\right), \ldots$;
- $\overline{\mathfrak{A}}_{m}[L]=(-1)^{m} \overline{\mathfrak{A}}_{m}[-L]$ for $m \geq 2, m \in \mathbb{N}$;
- $\overline{\mathfrak{A}}_{m}[\pm \infty]=0$ for $m \geq 2, m \in \mathbb{N}$

Theoretical Framework (F)APT
(F)APT: one-loop Minkowskian $\overline{\mathfrak{A}}_{\nu}[L]$

Non-power APT expansions

Instead of universal power-in- α_{s} expansion in APT one should use non-power functional expansions.

In Euclidian space Adler D-function

$$
\begin{gathered}
D_{\mathrm{PT}}\left(Q^{2}\right)=d_{0}+d_{1} \alpha_{\mathrm{S}}\left(Q^{2}\right)+d_{2} \alpha_{\mathrm{S}}^{2}\left(Q^{2}\right)+d_{3} \alpha_{\mathrm{s}}^{3}\left(Q^{2}\right)+d_{4} \alpha_{\mathrm{s}}^{4}\left(Q^{2}\right) \\
\mathcal{D}_{\mathrm{APT}}\left(Q^{2}\right)=d_{0}+d_{1} \overline{\mathcal{A}}_{1}\left(Q^{2}\right)+d_{2} \overline{\mathcal{A}}_{2}\left(Q^{2}\right)+d_{3} \overline{\mathcal{A}}_{3}\left(Q^{2}\right)+d_{4} \overline{\mathcal{A}}_{4}\left(Q^{2}\right)
\end{gathered}
$$

In Minkowskian space R-ratio

$$
\begin{gathered}
R_{\mathrm{PT}}(s)=r_{0}+r_{1} \alpha_{\mathrm{s}}(s)+r_{2} \alpha_{\mathrm{s}}^{2}(s)+r_{3} \alpha_{\mathrm{s}}^{3}(s)+r_{4} \alpha_{\mathrm{s}}^{4}(s) \\
\mathcal{R}_{\mathrm{APT}}(s)=d_{0}+d_{1} \overline{\mathfrak{A}}_{1}(s)+d_{2} \overline{\mathfrak{A}}_{2}(s)+d_{3} \overline{\mathfrak{A}}_{3}(s)+d_{4} \overline{\mathfrak{A}}_{4}(s)
\end{gathered}
$$

APT/(F)APT Applications

Loop stabilization

Perturbative power-correction of the polarized Bjorken Sum Rule (see [Khandramai et. al (PLB, 2012)])

$$
\Gamma_{1}^{p-n}\left(Q^{2}\right)=\frac{\left|g_{A}\right|}{6} C_{\mathrm{Bj}}, C_{\mathrm{Bj}}\left(Q^{2}\right) \equiv 1-\Delta_{\mathrm{Bj}}^{\mathrm{PT}}\left(Q^{2}\right),\left|g_{A}\right|=1.2701 \pm 0.0025
$$

Loop stabilization of IR behavior at two-loop level

Scale-dependence

$$
\begin{aligned}
& \quad \text { [Baikov, Chetyrkin, Kühn (2010)] } \\
C_{\mathrm{Bj}}\left(Q^{2}, x_{\mu}\right. & \left.=\mu^{2} / Q^{2}\right)=1-0.318 \alpha_{\mathrm{s}}-\left(0.363+0.228 \ln x_{\mu}\right) \alpha_{\mathrm{s}}^{2} \\
& -\left(0.652+0.649 \ln x_{\mu}+0.163 \ln ^{2} x_{\mu}\right) \alpha_{\mathrm{s}}^{3} \\
& -\left(1.804+1.798 \ln x_{\mu}+0.790 \ln ^{2} x_{\mu}+0.117 \ln ^{3} x_{\mu}\right) \alpha_{\mathrm{s}}^{4}
\end{aligned}
$$

Weak scale dependence of observables

Figure: The μ-scale ambiguities for the perturbative part of the BSR versus Q^{2} from [Khandramai et al. (2012)]

Convergence

Better loop convergence: the $3^{\text {rd }}$ and $4^{\text {th }}$ terms contribute less than 5% and 1% respectively. Again the 2 -loop ($\mathrm{N}^{2} \mathrm{LO}$) level is sufficient.

Figure: The relative contributions of separate terms in PT expansion for $\Delta_{\mathrm{Bj}}\left(Q^{2}\right)$, $\mathrm{N}_{i}\left(Q^{2}\right)=\delta_{i}\left(Q^{2}\right) / \Delta_{\mathrm{Bj}}\left(Q^{2}\right)$, as a function of Q^{2} from [Khandramai et. al (2012)]

DIS Sum Rules

See [Pasechnik et al. (PRD, 2010)]
The total expression for the perturbative part of $\Gamma_{1}^{p, n}\left(Q^{2}\right)$ including the higher twist contributions reads

$$
\Gamma_{1}^{p, n}\left(Q^{2}\right)=\frac{1}{12}\left[\left(\pm a_{3}+\frac{1}{3} a_{8}\right) E_{N S}\left(Q^{2}\right)+\frac{4}{3} a_{0} E_{S}\left(Q^{2}\right)\right]+\sum_{i=2}^{\infty} \frac{\mu_{2 i}^{p, n}}{Q^{2 i-2}}
$$

where E_{S} and $E_{N S}$ are the singlet and nonsinglet Wilson coefficients (for $n_{f}=3$):

$$
\begin{aligned}
E_{N S}\left(Q^{2}\right) & =1-\frac{\alpha_{s}}{\pi}-3.558\left(\frac{\alpha_{\mathrm{s}}}{\pi}\right)^{2}-20.215\left(\frac{\alpha_{\mathrm{s}}}{\pi}\right)^{3}-O\left(\alpha_{\mathrm{s}}^{4}\right) \\
E_{S}\left(Q^{2}\right) & =1-\frac{\alpha_{\mathrm{s}}}{\pi}-1.096\left(\frac{\alpha_{\mathrm{s}}}{\pi}\right)^{2}-O\left(\alpha_{\mathrm{s}}^{3}\right)
\end{aligned}
$$

In Γ_{1}^{p-n} the singlet and octet contributions are canceled out, giving rise to more fundamental Bjorken SR:

$$
\Gamma_{1}^{p-n}\left(Q^{2}\right)=\frac{g_{A}}{6} E_{N S}\left(Q^{2}\right)+\sum_{i=2}^{\infty} \frac{\mu_{2 i}^{p-n}\left(Q^{2}\right)}{Q^{2 i-2}}
$$

The triplet and octet axial charges $a_{3} \equiv g_{A}=1.267 \pm 0.004$ and $a_{8}=0.585 \pm 0.025$.

The RG evolution of the axial singlet charge $a_{0}\left(Q^{2}\right)$

$$
\begin{aligned}
a_{0}^{\mathrm{PT}}\left(Q^{2}\right) & =a_{0}^{\mathrm{PT}}\left(Q_{0}^{2}\right)\left\{1+\frac{\gamma_{2}}{(4 \pi)^{2} \beta_{0}}\left[\alpha_{s}\left(Q^{2}\right)-\alpha_{\mathrm{s}}\left(Q_{0}^{2}\right)\right]\right\}, \\
a_{0}^{\mathrm{APT}}\left(Q^{2}\right) & =a_{0}^{\mathrm{APT}}\left(Q_{0}^{2}\right)\left\{1+\frac{\gamma_{2}}{(4 \pi)^{2} \beta_{0}}\left[\mathcal{A}_{1}\left(Q^{2}\right)-\mathcal{A}_{1}\left(Q_{0}^{2}\right)\right]\right\}, \quad \gamma_{2}=16 n_{f} .
\end{aligned}
$$

The evolution from $1 \mathrm{GeV}^{2}$ to $\Lambda_{Q C D}$ in the APT increases the absolute value of a_{0} by about 10 \%.

Figure: Evolution of $a_{0}\left(Q^{2}\right)$ normalized at $Q_{0}^{2}=1 \mathrm{GeV}^{2}$ in APT and PT.

The RG evolution of the axial singlet charge $a_{0}\left(Q^{2}\right)$

Note, the Q^{2}-evolution of $\mu_{4}^{p}\left(Q^{2}\right)$ leads to close fit results within error bars. Therefore considered only of $a_{0}\left(Q^{2}\right)$

Table: Combined fit results of the proton $\Gamma_{1}^{p}\left(Q^{2}\right)$ data (elastic contribution excluded). APT fit results a_{0} and $\mu_{4,6,8}^{A P T}$ (at the scale $Q_{0}^{2}=1 \mathrm{GeV}^{2}$) are given without and with taking into account the RG Q^{2} evolution of $a_{0}\left(Q^{2}\right)$.

Method	$Q_{\min }^{2} \mathrm{GeV}^{2}$	a_{0}	μ_{4} / M^{2}	μ_{6} / M^{4}	μ_{8} / M^{6}
	0.47	$0.35(4)$	$-0.054(4)$	0	0
NNLO APT	0.17	$0.39(3)$	$-0.069(4)$	$0.0081(8)$	0
no evolution	0.10	$0.43(3)$	$-0.078(4)$	$0.0132(9)$	$-0.0007(5)$
	0.47	$0.33(4)$	$-0.051(4)$	0	0
NNLO APT	0.17	$0.31(3)$	$-0.059(4)$	$0.0098(8)$	0
with evolution	0.10	$0.32(4)$	$-0.065(4)$	$0.0146(9)$	$-0.0006(5)$

The fit results become more stable with respect to $Q_{\min }$ variations

Obtained values are very close to the corresponding COMPASS [Alexakhin et al. (2007)] and HERMES [Airapetian et al. (2007)] results 0.35 ± 0.06.

The RG evolution of the higher-twist $\mu_{4}^{p-n}\left(Q^{2}\right)$

$$
\begin{aligned}
& \mu_{4, \mathrm{PT}}^{p-n}\left(Q^{2}\right)=\mu_{4, \mathrm{PT}}^{p-n}\left(Q_{0}^{2}\right)\left[\frac{\alpha_{s}\left(Q^{2}\right)}{\alpha_{\mathrm{s}}\left(Q_{0}^{2}\right)}\right]^{\nu}, \\
& \mu_{4, \mathrm{APT}}^{p-n}\left(Q^{2}\right)=\mu_{4, \mathrm{APT}}^{p-n}\left(Q_{0}^{2}\right) \frac{\mathcal{A}_{\nu}^{(1)}\left(Q^{2}\right)}{\mathcal{A}_{\nu}^{(1)}\left(Q_{0}^{2}\right)}, \quad \nu=\frac{\gamma_{0}}{8 \pi \beta_{0}}, \quad \gamma_{0}=\frac{16}{3} C_{F}, \quad C_{F}=\frac{4}{3} .
\end{aligned}
$$

The evolution from $1 \mathrm{GeV}^{2}$ to $\Lambda_{Q C D}$ in the APT increases the absolute value of μ_{4}^{p-n} by about 20 \%.

Figure: Evolution of $\mu_{4}^{p-n}\left(Q^{2}\right)$ normalized at $Q_{0}^{2}=1 \mathrm{GeV}^{2}$ in APT and PT.

The RG evolution of the higher-twist $\mu_{4}^{p-n}\left(Q^{2}\right)$

Table: Combined fit results of the Γ_{1}^{p-n} data. APT fit results $\mu_{4,6,8}^{A P T}$ (at the scale $Q_{0}^{2}=1 \mathrm{GeV}^{2}$) are given without and with taking into account the RG Q^{2}-evolution of μ_{4}^{p-n}.

Method	$Q_{\min }^{2} \mathrm{GeV}^{2}$	μ_{4} / M^{2}	μ_{6} / M^{4}	μ_{8} / M^{6}
	0.47	$-0.055(3)$	0	0
NNLO APT	0.17	$-0.062(4)$	$0.008(2)$	0
no evolution	0.10	$-0.068(4)$	$0.010(3)$	$-0.0007(3)$
	0.47	$-0.051(3)$	0	0
NNLO APT	0.17	$-0.056(4)$	$0.0087(4)$	0
with evolution	0.10	$-0.058(4)$	$0.0114(6)$	$-0.0005(8)$

Account of this evolution, which is most important at low Q^{2}, improves the stability of the extracted parameters whose Q^{2} dependence diminishes

The M_{4} and M_{8} moments evolution
[Bakulev, Ayala (In preparation)]

Figure: The M_{4} (solid curves) and M_{8} (dashed curves) moments evolution normilized at the scale $Q_{0}^{2}=4 \mathrm{GeV}^{2}$ in the APT (blue curves) and PT (red curves).

Adler D-function analysis

$$
\begin{gathered}
\Pi_{\mu \nu}\left(q^{2}\right)=i \int e^{i q x}\langle | T\left\{J_{\mu}(x) J_{\nu}(0)\right\}|0\rangle d^{4} x, \quad \Pi_{\mu \nu}\left(q^{2}\right)=\left(q_{\mu} q_{\nu}-g_{\mu \nu} q^{2}\right) \Pi\left(Q^{2}\right) . \\
D\left(Q^{2}\right)=-Q^{2} \frac{d \Pi\left(-Q^{2}\right)}{d Q^{2}}=Q^{2} \int_{0}^{\infty} d s \frac{R(s)}{\left(s+Q^{2}\right)^{2}}, \quad R(s)=\operatorname{Im} \Pi(s) / \pi
\end{gathered}
$$

The OPE-representation for the D-function

$$
\begin{aligned}
D_{\mathrm{OPE}}\left(Q^{2}\right) & =D_{\mathrm{PT}}\left(Q^{2}\right)+D_{\mathrm{NP}}\left(Q^{2}\right) \\
& \rightarrow 1+0.318 \alpha_{\mathrm{s}}+0.166 \alpha_{\mathrm{s}}^{2}+0.205 \alpha_{\mathrm{s}}^{3}+0.504 \alpha_{\mathrm{s}}^{4}+\frac{\mathrm{A}}{Q^{4}}+\cdots
\end{aligned}
$$

A simple model for the function $R_{V}(s)$ (see [Peris, Perrottet, de Rafael (1998), Dorokhov (2004)])

$$
\begin{aligned}
& R_{V}^{\mathrm{had}}(s)=\frac{2 \pi}{g_{V}^{2}} m_{V}^{2} \delta\left(s-m_{V}^{2}\right)+\left(1+\frac{\alpha_{s}^{(0)}}{\pi}\right) \theta\left(s-s_{0}\right) \\
& D_{V}^{\mathrm{had}}\left(Q^{2}\right)=\frac{2 \pi}{g_{V}^{2}} \frac{Q^{2} m_{V}^{2}}{\left(Q^{2}+m_{V}^{2}\right)^{2}}+\left(1+\frac{\alpha_{s}^{(0)}}{\pi}\right) \frac{Q^{2}}{Q^{2}+s_{0}}
\end{aligned}
$$

which reproduces well the "experimental" curve $D_{V}^{\exp }\left(Q^{2}\right)$ with the parameters: $m_{V}=770 \mathrm{MeV}, g_{V}^{-2} \simeq 2.1, \alpha_{s}^{(0)} \simeq 0.4$, and $s_{0} \simeq 1.77 \mathrm{GeV}^{2}$.

Adler D-function analysis

Table: Fit results of the Adler D-function data based on hadron model.

Method	Order	$Q_{\min }^{2}, \mathrm{GeV}^{2}$	$\mathrm{~A}, \mathrm{GeV}^{4}$	$\chi_{\text {do.f }}^{2}$
PT	LO	0.2	-0.020	0.711
	NLO	0.3	-0.061	0.626
	$\mathrm{~N}^{2} \mathrm{LO}$	0.4	-0.114	0.343
	$\mathrm{~N}^{3} \mathrm{LO}$	0.5	-0.196	0.538
	LO	0.2	-0.018	0.508
APT	NLO	0.2	-0.019	0.896
	$\mathrm{~N}^{2} \mathrm{LO}$	0.2	-0.019	0.912
	$\mathrm{~N}^{3} \mathrm{LO}$	0.2	-0.019	0.905

- Standard PT provides: the results strongly changes from order to order;
- APT gives stable values of non-perturbative $\mathcal{O}\left(1 / Q^{4}\right)$-correction and allow to describe data up to $Q_{\min }=0.2 \mathrm{GeV}^{2}$.

Adler D-function analysis

Package "FAPT"

"FAPT" package review

Title of program: FAPT
Available from:
http://theor.jinr.ru/~ ${ }^{\sim}$ bakulev/fapt.mat/FAPT.m
http://theor.jinr.ru/~ ${ }^{\text {bakulev/fapt.mat/FAPT_Interp.m }}$
Computer for which the program is designed and others on which it is operable: Any work-station or PC where Mathematica is running.
Operating system or monitor under which the program has been tested: Windows XP, Mathematica (versions 5,7,8).
"FAPT"' package contains:
(1) $\bar{\alpha}_{\mathrm{s}}^{(\ell)}\left[L, n_{f}\right], \bar{\alpha}_{\mathrm{s}}^{(\ell) ; \text { glob }}$
(2) $\bar{\rho}^{(\ell)}\left[L_{\sigma}, n_{f}, \nu\right], \rho^{(\ell) ; \text { glob }}\left[L_{\sigma}, \nu, \Lambda_{n_{\boldsymbol{f}}=3}\right]$
(3) $\overline{\mathcal{A}}_{\nu}^{(\ell)}\left[L, n_{f}\right], \mathcal{A}_{\nu}^{(\ell) ; \text { glob }}\left[L, \nu, \Lambda_{n_{f}=3}\right]$
(1) $\overline{\mathfrak{A}}_{\nu}^{(\ell)}\left[L, n_{f}\right], \mathcal{A}_{\nu}^{(\ell) ; \text { glob }}\left[L, \nu, \Lambda_{n_{\boldsymbol{f}}=3}\right]$

Numerical parameters

- The pole masses of heavy quarks and Z-boson, collected in the set NumDefFAPT (all mass variables and parameters are measured in GeV s):

$$
\begin{array}{llll}
\text { MQ4 : } & M_{c}=1.65 \mathrm{GeV}, & \text { MQ5 : } & M_{b}=4.75 \mathrm{GeV} ; \\
\text { MQ6 : } & M_{t}=172.5 \mathrm{GeV}, & \text { MZboson : } & M_{Z}=91.19 \mathrm{GeV} .
\end{array}
$$

*The package RunDec is using the set NumDef with slightly different values of these parameters ($M_{c}=1.6 \mathrm{GeV}, M_{b}=4.7 \mathrm{GeV}, M_{t}=175 \mathrm{GeV}, M_{z}=91.18 \mathrm{GeV}$).

- Collection in the set setbetaFAPT the following rules of substitutions $b_{i} \rightarrow b_{i}\left(n_{f}\right)$

$$
\mathrm{b} 0: b_{0} \rightarrow 11-\frac{2}{3} n_{f}, \quad \mathrm{~b} 1, \quad \mathrm{~b} 2, \quad \mathrm{~b} 3 .
$$

*Here we follow the same substitution strategy as in RunDec, but our b_{i} differ from $b_{i}^{\text {RunDec }}$ by factors $4^{i+1}: b_{i}=4^{i+1} b_{i}^{\text {RunDec }}$.

α_{S} calculations

The QCD scales $\Lambda \ell\left[\Lambda, n_{f}\right]$:
$\backslash[$ CapitalLambda $] \ell[\Lambda, k]=\Lambda \ell\left[\Lambda, n_{f}=k\right]=\Lambda_{k}^{(\ell)}(\Lambda),(\ell=1 \div 4,3 P ; k=4 \div 6)$,

The threshold logarithms - as $\lambda \ell 4[\Lambda], \lambda \ell 5[\Lambda]$, and $\lambda \ell 6[\Lambda]:$

$$
\backslash[\text { Lambda }] \ell k[\Lambda]=\lambda \ell k[\Lambda]=\ln \left(\Lambda^{2} / \Lambda \ell[\Lambda, k]^{2}\right), \quad(\ell=1 \div 4,3 P ; k=4 \div 6)
$$

The running QCD couplings with fixed $n_{f}-$ as $\alpha \operatorname{Bar} \ell\left[Q^{2}, n_{f}, \Lambda\right]$:
$\backslash[$ Alpha $] \operatorname{Bar} \ell\left[Q^{2}, n_{f}, \Lambda\right]=\alpha \operatorname{Bar} \ell\left[Q^{2}, n_{f}, \Lambda\right]=\alpha_{\mathrm{s}}^{(\ell)}\left[\ln \left(Q^{2} / \Lambda^{2}\right) ; n_{f}\right],(\ell=1 \div 4,3 \mathrm{P})$,

The global running QCD couplings $\alpha \operatorname{Glob} \ell\left[Q^{2}, \Lambda\right]$, :
$\backslash[$ Alpha $] \operatorname{Glob} \ell\left[Q^{2}, \Lambda\right]=\alpha \operatorname{Glob} \ell\left[Q^{2}, \Lambda\right]=\alpha_{\mathrm{s}}^{\text {glob; }(\ell)}\left(Q^{2}, \Lambda\right),(\ell=1 \div 4,3 \mathrm{P})$,

Example 1

We assume that the two-loop QCD scale Λ_{3} is fixed at the value $\Lambda_{3}=0.387 \mathrm{GeV}$. We want to evaluate the corresponding values of the coupling $\alpha_{\mathrm{s}}^{\text {glob; }(\ell)}\left(Q^{2}, \Lambda\right)$ at the scale $Q=M_{5}$.

Possible Mathematica realization of this task

```
In[1]:= SetDirectory[NotebookDirectory[]];
<< FAPT.m
In[2]:= L23=0.387;
In[3]:= Mb=MQ5/.NumDefFAPT
Out[3]= 4.75
In[4]:= \[Alpha] Glob2[Mb^2,L23]
Out[4]= 0.218894
```


ρ_{ν} calculations

$\operatorname{RhoBar} \ell\left[L, n_{f}, \nu\right]$ returns ℓ-loop spectral density $\bar{\rho}_{\nu}^{(\ell)}(\ell=1,2,3,3 \mathrm{P}, 4)$ of fractional-power ν at $L=\ln \left(Q^{2} / \Lambda^{2}\right)$ and at fixed number of active quark flavors n_{f} :
$\operatorname{RhoBar} \ell[L, k, \nu]=\bar{\rho}_{\nu}^{(\ell)}\left[L ; n_{f}=k\right], \quad(\ell=1 \div 4,3 \mathrm{P} ; k=3 \div 6)$

RhoGlob $\ell\left[L, \nu, \Lambda_{3}\right]$ returns the global ℓ-loop spectral density $\bar{\rho}_{\nu}^{(\ell) ; \text { glob }}\left[L ; \Lambda_{3}\right]$ ($\ell=1,2,3,3 \mathrm{P}, 4)$ of fractional-power ν at $L=\ln \left(Q^{2} / \Lambda_{3}^{2}\right)$, cf. and with Λ_{3} being the QCD $n_{f}=3$-scale:

RhoGlob $\ell\left[L, \nu, \Lambda_{3}\right]=\bar{\rho}_{\nu}^{(\ell) \text {;glob }}\left[L ; \Lambda_{3}\right], \quad(\ell=1 \div 4,3 \mathrm{P})$

$\overline{\mathcal{A}}_{\nu}$ and $\overline{\mathfrak{A}}_{\nu}$ calculations

AcalBar $\ell\left[L, n_{f}, \nu\right]$ returns ℓ-loop $(\ell=1,2,3,3 \mathrm{P}, 4)$ analytic image of fractional-power ν coupling $\overline{\mathcal{A}}_{\nu}^{(\ell)}\left[L ; n_{f}\right]$ in Euclidean domain,

AcalBar $\ell[L, k, \nu]=\overline{\mathcal{A}}_{\nu}^{(\ell)}\left[L ; n_{f}=k\right], \quad(\ell=1 \div 4,3 P ; k=3 \div 6)$

AcalGlob $\ell\left[L, \nu, \Lambda_{3}\right]$ returns ℓ-loop analytic image of fractional-power ν coupling $\mathcal{A}_{\nu}^{(\ell) ; \text { glob }}\left[L, \Lambda_{3}\right]$ in Euclidean domain
AcalGlob $\ell\left[L, \nu, \Lambda_{3}\right]=\mathcal{A}_{\nu}^{(\ell) ; \text { glob }}\left[L, \Lambda_{3}\right], \quad(\ell=1 \div 4,3 \mathrm{P})$

UcalBar $\ell\left[L, n_{f}, \nu\right]$ returns ℓ-loop $(\ell=1,2,3,3 \mathrm{P}, 4)$ analytic image of fractional-power ν coupling $\overline{\mathfrak{A}}_{\nu}^{(\ell)}\left[L, n_{f}\right]$ in Minkowski domain
UcalBar $\ell[L, k, \nu]=\overline{\mathfrak{A}}_{\nu}^{(\ell)}\left[L ; n_{f}=k\right], \quad(\ell=1 \div 4,3 \mathrm{P} ; k=3 \div 6)$

UcalGlob $\ell\left[L, \nu, \Lambda_{3}\right]$ returns ℓ-loop analytic image of fractional-power ν coupling $\mathfrak{A}_{\nu}^{(\ell) ; g l o b}\left[L, \Lambda_{3}\right]$ in Minkowski domain

UcalGlob $\ell\left[L, \nu, \Lambda_{3}\right]=\mathfrak{A}_{\nu}^{(\ell): \text { glob }}\left[L, \Lambda_{3}\right], \quad(\ell=1 \div 4,3 \mathrm{P})$

Example 2

Creation of a two-dimensional plot of $\mathcal{A}_{\nu}^{(2) ; \text { glob }}$ [L, L23APT] and $\mathfrak{A}_{\nu}^{(2) ; \text { glob }}$ [L, L23APT] for $L \in[-3,11]$ with indication of the needed time:

```
In[5]:= Plot[AcalGlob2[L,1,L23APT],{L, - 3,11}]// Timing
Out[5]= {19.843, Graphics
(see in the left panel of Fig. below)}
In[6]:= Plot[UcalGlob2[L,1,L23APT],{L, - 3,11}]// Timing
Out[6]= {14.656, Graphics
(see in the right panel of Fig. below)}
```


Interpolation

To obtain the results much faster one can use module 'FFAPT_Interp" which consists of procedures AcalGlob $\ell i\left[L, \nu, \Lambda_{3}\right]$ and UcalGlob $\ell i\left[L, \nu, \Lambda_{3}\right]$, which are based on interpolation using the basis of the precalculated data.

Figure: Relative error of the interpolation procedure for $\mathcal{A}_{\nu=1.1}^{\text {glob }}$ (left panel) and $\mathfrak{A}_{\nu=1.1}^{\text {glob }}$ (right panel), calculated at various loop orders with $\Lambda_{3}=0.36 \mathrm{GeV}$ for $N=11$ number of points.

Summary

APT provides natural way for coupling and related quantities with

- Universal (loop \& scheme independent) IR limit;
- Weak loop dependence;
- Practical scheme independence.
(F)APT provides effective tool to apply APT approach for renormgroup improved perturbative amplitudes.

This approaches are used in many applications, for example:

- Higgs boson decay [Bakulev, Mikhailov, Stefanis (2007)];
- calculation of binding energies and masses of quarkonia [Ayala, Cvetič (2013)];
- analysis of the structure function $F_{2}(x)$ behavior at small values of x [Kotikov, Krivokhizhin, Shaikhatdenov (2012)];
- resummation approach [Bakulev, Potapova (2011)].

I collect in "FAPT" package all the procedures in APT and (F)APT which are needed to compute analytic images of the standard QCD coupling powers up to 4-loops of renormalization group running and to use it for both schemes: with fixed number of active flavours $n_{f}, \mathcal{A}_{\nu}\left(Q^{2} ; n_{f}\right), \mathfrak{A}_{\nu}\left(s ; n_{f}\right)$, and the global one with taking into account all heavy-quark thresholds, $\mathcal{A}_{\nu}^{\text {glob }}\left(Q^{2}\right), \mathfrak{A}_{\nu}^{\text {glob }}(s)$ based on the system "Mathematica".

Thanks for your attention!

