Description of $e^+e^- \rightarrow \pi^+\pi^-(\pi')$ processes in the extended NJL model

M. K. Volkov, D. G. Kostunin

BLTP JINR, Dubna, Russia

March 16, 2012

D. KOSTUNIN (JINR)

 $e^+e^- \rightarrow \pi^+\pi^-(\pi')$ in the NJL model

March 16, 2012

1 / 21

- Motivation to study $e^+e^- o \pi^+\pi^-(\pi')$
- Remind the Nambu-Jona-Lasinio model
- NJL model with radially excited mesons
- Process $e^+e^- \rightarrow \pi^+\pi^-$
- Process $e^+e^-
 ightarrow \pi\pi'$
- τ decays
- Conclusions

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Studies of e^+e^- annihilation into $\pi\pi(\pi')$ at colliding electron-positron beams provide interesting information about meson interactions at low energies [CMD-2: R.R. Akhmetshin et al., Phys. Lett. B 2003]
- The same interactions can be also found in the tau lepton decay $\tau \to \pi \pi \nu_{\tau}$ studied at number of experiments [CLEO, ALEPH, Belle, BaBar]
- It can serve as a test of models for the pion transition form factor

イロト イポト イヨト イヨト

MOTIVATION

- A. B. Arbuzov, E. A. Kuraev and M. K. Volkov, "Processes $e^+e^- \rightarrow \pi^0(\pi^{0'})\gamma$ in the NJL model," European Physics Journal. A **26**, 3337 (2011)
- A. B. Arbuzov, E. A. Kuraev and M. K. Volkov, "Production of $\omega \pi^0$ pair in electron-positron annihilation," Phys. Rev. C **83**, 048201 (2011)
- A. I. Ahmadov, E. A. Kuraev and M. K. Volkov, "Generalized polarizability of neutral pions of the process e⁻e⁺ → π⁰π⁰γ in NJL model," Int. J. Mod. Phys. A 26, 3337 (2011)
- A. B. Arbuzov and M. K. Volkov "Two-photon decays and photoproduction on electrons of $\eta(550)$, $\eta'(958)$, $\eta(1295)$ and $\eta(1475)$ mesons, Phys. Rev. C **84**, 058201 (2011)"
- A. I. Ahmadov, E. A. Kuraev and M. K. Volkov, "Production of $\pi^0 \rho^0$ pair in electron-positron annihilation in the Nambu-Jona-Lasinio model," arXiv:1111.2124 (accepted to PEPAN letters).

4 / 21

(D) (A) (A) (A) (A)

For the ground meson states we use the standard NJL Lagrangian:

$$\Delta \mathcal{L}_{1} = \bar{q} \left[i\hat{\partial} - m + eQ\hat{A} + ig_{\pi}\gamma_{5}\tau_{3}\pi^{0} + \frac{g_{\rho}}{2}\gamma_{\mu} \left(I\omega_{\mu} + \tau_{3}\rho_{\mu}^{0} \right) \right] q$$

$$Q = diag(2/3, -1/3),$$
 $I = diag(1, 1),$ $m = diag(m_u, m_d)$
 $m_u = 280 \text{ MeV}$ $g_\pi = m_u/f_\pi,$ $f_\pi = 93 \text{ MeV},$ $g_\rho \approx 6.14$ $(g_\rho^2/(4\pi) \approx 3)$

[M.K. Volkov, Phys. Part. Nucl. 1986]

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

EXTENDED NJL MODEL

For the first radially exited meson states we can use the extended NJL:

$$\begin{split} \Delta \mathcal{L}_{2} &= \bar{q} \bigg\{ i \hat{\partial} - m + e Q A \\ &+ \bigg[g_{\pi_{1}} \frac{\sin(\alpha + \alpha_{0})}{\sin(2\alpha_{0})} + g_{\pi_{2}} f(k^{\perp 2}) \frac{\sin(\alpha - \alpha_{0})}{\sin(2\alpha_{0})} \bigg] \tau^{3} \gamma_{5} \pi(p) \\ &- \bigg[g_{\pi_{1}} \frac{\cos(\alpha + \alpha_{0})}{\cos(2\alpha_{0})} + g_{\pi_{2}} f(k^{\perp 2}) \frac{\cos(\alpha - \alpha_{0})}{\cos(2\alpha_{0})} \bigg] \tau^{3} \gamma_{5} \pi'(p) \\ &+ \bigg[g_{\rho_{1}} \frac{\sin(\beta + \beta_{0})}{\sin(2\beta_{0})} + g_{\rho_{2}} f(k^{\perp 2}) \frac{\sin(\beta - \beta_{0})}{\sin(2\beta_{0})} \bigg] \omega, \rho_{\mu}(p) \\ &- \bigg[g_{\rho_{1}} \frac{\cos(\beta + \beta_{0})}{\sin(2\beta_{0})} + g_{\rho_{2}} f(k^{\perp 2}) \frac{\cos(\beta - \beta_{0})}{\sin(2\beta_{0})} \bigg] \tau^{3} \rho_{\mu}^{0'}(p) \bigg\} q \end{split}$$

M.K. Volkov & C. Weiss, PRD 1997;
M.K. Volkov, Yad. Fiz. 1997;
M.K. Volkov, D. Ebert and M. Nagy, IJMPA 1998;
A.B. Arbuzov, E.A. Kuraev and M.K. Volkov, Yad. Fiz. 2011

6 / 21

EXTENDED NJL MODEL

$$g_{\pi_1} = g_{\pi}, \qquad g_{\rho_1} = g_{\rho}$$

$$g_{\pi_2} = \left[4l_2^{f^2}\right]^{-1/2}, \qquad g_{\rho_2} = \left[\frac{2}{3}l_2^{f^2}\right]^{-1/2} = \sqrt{6}g_{\pi_2}$$

$$l_m^{f^n} = -iN_c \int \frac{\mathrm{d}^4k}{(2\pi)^4} \frac{(f(k^{\perp^2}))^n}{(m^2 - k^2)^m}, \quad n = 1, 2, \quad m = 1, 2$$

The form factor is taken in a simple polynomial form:

$$\begin{split} f(k^{\perp 2}) &= (1 - d|k^{\perp 2}|) \Theta(\Lambda^2 - |k^{\perp 2}|), \\ k^{\perp} &= k - \frac{(kp)p}{p^2}, \qquad d = 1.78 \,\, \mathrm{GeV}^{-2}, \end{split}$$

k and p are the quark and meson momenta, $\Lambda = 1.03$ GeV

EXTENDED NJL MODEL

Angles $\alpha_0 = 59.06^\circ$, $\alpha = 59.38^\circ$, $\beta_0 = 61.53^\circ$ and $\beta = 76.78^\circ$ describe mixing of the ground and excited states for pions and vector mesons.

 $\gamma \rightarrow \rho'$ transition:

$$C_{\gamma\rho'}\frac{e}{g_{\rho}}(g^{\nu\nu'}q^2-q^{\nu}q^{\nu'})$$

$$C_{\gamma\rho'} = \frac{\sin(\beta + \beta_0)}{\sin(2\beta_0)} + \Gamma \frac{\sin(\beta - \beta_0)}{\sin(2\beta_0)}$$

$$\Gamma = \frac{l_2^f}{\sqrt{l_2 l_2^{f^2}}} \approx 0.47$$

Amplitudes

The amplitude of $e^+e^- \rightarrow \pi^+\pi^-$ takes the form $T = \frac{4\pi\alpha}{s} f_{a_1}(s) \left(B_{\rho\gamma} + B_{\omega} + B_{\rho'}\right) \bar{e} \gamma_{\mu} e(p^{\mu}_{\pi^+} - p^{\mu}_{\pi^-})\pi^+\pi^-,$ $s = (p_{e^+} + p_{e^-})^2$

where $B_{\rho\gamma}$ is the contribution of photon and $\rho(770)$ meson, B_{ω} is the contribution of $\omega(780)$ meson and $B_{\rho'}$ is the contribution of $\rho'(1450)$ meson.

イロト イポト イヨト イヨト

10 / 21

$\pi - a_1$ TRANSITIONS

For description $\gamma \pi \pi$ and $\rho \pi \pi$ vertexes we can use amplitude for $\rho \to \pi \pi$ with $\pi - a_1$ transitions.

$$egin{split} g_{
ho}\left(Z+(1-Z)+(f_{a_1}(
ho^2)-1)
ight)
ho_{\mu}^{-}(
ho_{\pi^+}^{\mu}-
ho_{\pi^-}^{\mu})\pi^+\pi^-\,, \ f_{a_1}(
ho^2)&=1+\left(rac{
ho^2-m_{\pi}^2}{(g_{
ho}F_{\pi})^2}
ight)\left(1-rac{1}{Z}
ight)\,, \end{split}$$

where $Z = (1 - 6m_u^2/m_{a_1}^2)^{-1}$ is additional renormalizing factor after accounting of $\pi - a_1$ transitions.

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$\rho(770)$ MESON CONTRIBUTION

Transition $\gamma - \rho$ takes the form

$$\frac{e}{g_{\rho}}\left(g^{\nu\nu'}q^2-q^{\nu}q^{\nu'}\right).$$

The $\gamma - \omega$ transition differs from the above just by factor 1/3. Thus, contribution of γ and ρ (770) reads

$$B_{
ho\gamma}=1+rac{s}{m_
ho^2-s-i\sqrt{s}\Gamma_
ho(s)}=rac{1-i\sqrt{s}\Gamma_
ho(s)/m_
ho^2}{m_
ho^2-s-i\sqrt{s}\Gamma_
ho(s)}m_
ho^2\,.$$

This expression coincides with VMD model.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

ω MESON CONTRIBUTION

We can describe $\omega\pi\pi$ vertex using the amplitude for $\omega \to \pi\pi$ decay

$$C(m_
ho^2)\omega_\mu(p_{\pi^+}^\mu-p_{\pi^-}^\mu)\pi^+\pi^-\,,$$

where $C(s) = C_1(s) + C_2(s)$.

 C_1 describes amplitude $\omega \rightarrow \rho \rightarrow \pi \pi$ through the quark loop with accounting of difference between quark masses ($m_d - m_u \approx 3.66$ MeV)

$$C_{1}(s) = \frac{8(\pi \alpha_{\rho})^{3/2} m_{\omega}^{2}}{3(m_{\omega}^{2} - s - i\sqrt{s}\Gamma_{\rho}(s))} \frac{3}{(4\pi)^{2}} \log\left(\frac{m_{d}}{m_{u}}\right)^{2}$$

 C_2 describes amplitude $\omega \rightarrow \gamma \rightarrow \rho \rightarrow \pi \pi$.

$$C_2(s) = -\sqrt{\frac{\pi}{\alpha_{\rho}}} \frac{2\alpha s}{3(m_{\omega}^2 - s - i\sqrt{s}\Gamma_{\rho}(s))} \,.$$

Thus, ω contribution reads

$$B_{\omega} = \frac{C(s)}{3g_{\rho}} \frac{s}{m_{\omega}^2 - s - i\sqrt{s}\Gamma_{\omega}(s)}$$

D. KOSTUNIN (JINR)

 $e^+e^- \rightarrow \pi^+\pi^-(\pi')$ in the NJL model

Far from the resonance the width should be modified. Our crude approximation:

$$\Gamma_{\rho'}(s) = \begin{cases} \Gamma_{\rho' \to 2\pi}, & \sqrt{s} \leq 2M_{\pi}, \\ \Gamma_{\rho' \to 2\pi} + \Gamma_{\rho' \to \omega\pi} \frac{\sqrt{s} - 2M_{\pi}}{M_{\omega} - M_{\pi}}, & 2M_{\pi} < \sqrt{s} \leq M_{\omega} + M_{\pi} \\ \Gamma_{\rho' \to 2\pi} + \Gamma_{\rho' \to \omega\pi} + (\Gamma_{\rho'} - \Gamma_{\rho' \to 2\pi} - \Gamma_{\rho' \to \omega\pi}) \frac{\sqrt{s} - M_{\omega} - M_{\pi}}{M_{\rho'} - M_{\omega} - M_{\pi}}, \\ & M_{\omega} + M_{\pi} < \sqrt{s} \leq M_{\rho'}, \\ \Gamma_{\rho'}, & M_{\rho'} < \sqrt{s} \end{cases}$$

14 / 21

$\rho'(1450)$ Meson contribution

The vertex $\rho'\pi\pi$ is proportional to

$$C_{\rho'\pi\pi} = -\left(\frac{\cos(\beta+\beta_0)}{\sin(2\beta_0)}g_{\rho_1} + \frac{\cos(\beta-\beta_0)}{\sin(2\beta_0)}\frac{l_2^f}{l_2}g_{\rho_2}\right)$$

Thus, contribution of $\rho'(1450)$ takes the form

$$B_{
ho'}=rac{\mathcal{C}_{\gamma
ho'}\mathcal{C}_{
ho'\pi\pi}}{g_{
ho}}rac{s}{m_{
ho'}^2-s-i\sqrt{s}\Gamma_{
ho'}(s)}$$

For total cross-section we get

$$\sigma(s) = \frac{\alpha^2 \pi}{12s} f_{a_1}^2(s) (1 - 4m_{\pi}^2/s)^{3/2} |B_{\rho\gamma} + B_{\omega} + B_{\rho'}|^2$$

D. KOSTUNIN (JINR)

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Cross-section $e^+e^- \rightarrow \pi^+\pi^-$

CROSS-SECTION $e^+e^- \rightarrow \pi\pi'$

The main contribution to $e^+e^- \rightarrow \pi\pi'$ is given by $\rho'(1450)$.

$$\sigma(s) = rac{lpha^2 \pi}{12 s} (1 - 4 m_\pi^2/s)^{3/2} \left| B_{
ho\gamma}^{\pi\pi'} + B_{
ho'}^{\pi\pi'}
ight|^2 \, ,$$

where

$$B_{\rho\gamma}^{\pi\pi'} = \frac{C_{\rho\pi\pi'}}{g_{\rho}} \left(1 + \frac{s}{m_{\rho}^2 - s - im_{\rho}\Gamma_{\rho}} \right) = \frac{C_{\rho\pi\pi'}}{g_{\rho}} \frac{1 - i\Gamma_{\rho}/m_{\rho}}{m_{\rho}^2 - s - im_{\rho}\Gamma_{\rho}} m_{\rho}^2$$

and

$$B_{\rho'}^{\pi\pi'} = \frac{C_{\gamma\rho'}C_{\rho'\pi\pi'}}{g_{\rho}}\frac{s}{m_{\rho'}^2 - s - im_{\rho'}\Gamma_{\rho'}}$$

 $C_{
ho\pi\pi'}$ and $C_{
ho'\pi\pi'}$ was defined similary $C_{
ho'\pi\pi}$.

D. KOSTUNIN (JINR)

 $e^+e^- \rightarrow \pi^+\pi^-(\pi')$ in the NJL model

CROSS-SECTION $e^+e^- \rightarrow \pi\pi'$

au DECAYS

Using the same Feynman amplitudes we can get values for decays $\tau \rightarrow \pi\pi(\pi')\nu$ $\mathcal{B}(\tau \rightarrow \pi\pi\nu) = 24.86 \text{ \% (PDG } 25.51 \pm 0.09 \text{ \%)} [arXiv:1202.0506]$ $\beta \approx C_{W\rho'}C_{\rho'\pi\pi}/g_{\rho} = -0.092$ $\mathcal{B}(\tau \rightarrow \pi\pi'\nu) = 0.26 \text{ \% (PDG ?)}$

- Processes $e^+e^-
 ightarrow \pi\pi(\pi')$ were considered in framework of NJL
- A satisfactory agreement with experimental data is observed
- A qualitative agreement with fitted parameters is obtained
- No any additional parameter was introduced

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

20 / 21

Thanks for your attention

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A