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Dirac branes as minimal h-ws, Cartan multiplets and R squared gravity

The Dirac action for p-branes in R1,D−1

S = Tp

∫
dp+1ξ

√
|g|. (1)

The induced metric on hyper-ws Σp+1 swept by brane world vector x(ξµ)

gµν := ∂µx∂νx,

The nonlinear wave EOM: �(p+1)x := ∇µ∇µx = 1√
|g|
∂µ(

√
|g|gµν∂νx).

The moving frame nA (x): nA (x)nB (x) = ηAB , (A = 0, 1, ..,D − 1).
The Cartan invariant differential forms ωA and ωA

B :

dx = ωA (dξ)nA , dnA = −ωA
B (dξ)nB . (2)

Projection of EOM on orts na(ξ) ⊥ to Σp+1 results in the minimality conds.

Sp(la) := gµνlaµν = 0, (a = p + 1, ..,D − p − 1) (3)

where lµνa is the second fundam. form of h-ws Σp+1

lµνa := na∂µνx ≡ na∇µ∂νx. (4)
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We use (ωA , ωA
B ) as new dynamical variables instead of the D-hedron (x,nA ).

The Maurer-Cartan eqs.

d ∧ ωA + ωA
B ∧ ωB = 0, (5)

d ∧ ωA
B + ωA

C ∧ ωC
B = 0 → FA

B = 0 (6)

are integrab. conds. of Eqs. (2). Hyper-ws Σp+1 spontaneously breaks Poincare
symmetry of R1,D−1: ISO(1,D − 1)→ ISO(1, p − 1) × SO(D − p − 1).
The frame nA splits into two subsets: nA = (ni ,na),
where ni , (i, k = 0, 1, ..., p) are tangent and na ⊥ to Σp+1.
The rest symmetry formed by tangent Lorentz rotations in Σp+1 and rotations in
the (D − p − 1)-dim. subspace ⊥ to Σp+1.
The Nambu-Goldstone bosons are effectively described by the Cartan multiplets
of the right gauge group SO(1,D − 1)

ωA
B (dξ) =

(
Ai

k (dξ) Wi
b (dξ)

Wa
k (dξ) Ba

b (dξ)

)
. (7)
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The diag. submatrices Aµi
k dξµ and Bµa

bdξµ form gauge fields in the fund. reps.
of SO(1, p) and SO(D − p − 1) subgroups. Wµi

bdξµ form a charged vector
multiplet in the bi-fund. rep. of SO(1, p)×SO(D − p − 1) with the covar. derivative

(DµWν)i
a = ∂µWνi

a + Aµi
k Wνk

a + Bµ
a

bWνi
b . (8)

The forms ωA for the global translations of R1,D−1 are δA
mdxm.

Forms referred to a moving frame on Σp+1 are projections of dx on nA (ξ)

ωA = dx(ξ)nA (ξ) ≡ dxmnm
A (ξ). (9)

PDE’s (9) represent N-G translation modes xm(ξ) through ωA
m(ξ) In view of

orhogonality na(ξ)dx(ξ) = 0 we have

ωa(dξ) = 0 → dx(ξ) = ωi(d)ni(ξ). (10)

Then ds2 = dx2 on Σp+1 takes the form

ds2 = ωiω
i = ωi

µωiνdξµdξν ≡ gµν(ξ)dξµdξν. (11)

This shows that ωi
λ(ξ) is the vielbein of Σp+1

gµν := ωi
µηikω

k
ν , ω

i
µω

µ
k = δi

k . (12)
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Solution of M-C Eqs. (5) yields the tetrade postulate

D ||
[µ
ωi
ν] ≡ ∂[µω

i
ν] + A[µ

i
kων]

k = 0, (13)

which expresses Aµ
i
k through ωi

µ together with the constraints

ωi
[µWν]ia = 0 → Wµi

a = −lµνaων
i , (14)

where laµν = laνµ is the second fundamental form of Σp+1. As a result, Aµ
i
k and its

strength Fµνi
k are expressed through Γρνλ and the Riemann tensor Rµν

γ
λ

A ik
µ = ωi

ρΓ
ρ
µλω

λk + ωi
λ∂µω

λk , (15)

Fµν
i
k = ωi

γRµν
γ
λω

λ
k . (16)

Then M-C Eqs. (6) are transformed into the Gauss-Ricci-Peterson-Codazzi eqs.

Rµν
γ
λ = l[µγa lν]λa , (17)

Hµνa
b := (∂[µBν] + [Bµ,Bν])a

b , Hµν
ab = l[µγa lν]γb , (18)

∇⊥[ρlµ]ν
a = 0. (19)

These eqs. and Eqs. (3) yield a complete set of data describing fundamental
branes in terms of the Cartan multiplets of the gauge group SO(D − p − 1).
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The SO(D − p − 1) and diff invariant action of p-branes sweeping a minimal
hyper ws Σmin

p+1 and consistent with Eqs. (17-19) is given by

SDir =
1
k 2

p

∫
dp+1ξ

√
|g| {−

1
4

Sp(HµνHνµ)

+
1
2
∇⊥µ lνρa∇

⊥{µlν}ρa − ∇⊥µ lµρa∇
⊥
ν lνρa + VDir (l)}. (20)

The diff invariant potential VDir (l) encoding self-interaction of the N-G multiplet laµν
in the gravitational background gµν(ξρ) is

VDir = −
1
2

Sp(la lb )Sp(la lb ) + Sp(la lb la lb ) − Sp(la la lb lb ) + cp, (21)

where cp is an integration constant.
To derive VDir we used the Bianchi identities

[∇⊥γ , ∇
⊥
ν ]lµρa = Rγν

µ
λlλρa + Rγν

ρ
λlµλa + Hγν

a
b lµρb (22)

for the metric and Y-M covariant derivative

∇⊥µ lνρa := ∂µlνρa − Γλµνlλρ
a − Γλµρlνλ

a + Bab
µ lνρb . (23)
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The Euler-Lagrange PDEs have a unique solution describing p-branes provided
that the Ricci-Codazzi eqs.(18-19) were chosen as the Cauchy initial data.

The latter turned out to be invariants of the evolution prescribed by SDir .

The Gauss eqs. (17) are treated as the evolution PDEs for gµν. They are
consistent with the used variational principle since they have selected VDir .

Then the EOM become equivalent to the identities

∇⊥µHab
µν = 0, ∇⊥µ∇⊥[µl

a
ν]ρ = 0 (24)

produced by the covariant differentiation of the Ricci-Codazzi eqs.
They can be equivalently written in the form of the generalized Maxwell-Y-M and
Newton eqs. in the gravit. field defined by Gauss eqs. (17)

∇⊥ν Hνµ
ab = jµab , jµab = Sp(l[a∇⊥µlb]), ∇⊥µ jµab = 0, (25)

∇⊥µ∇
⊥µlνρa =

1
2
∂VDir

∂lνρa
≡ (2lb la lb − la lb lb − lb lb la)νρ − lνρb Sp(lb la). (26)

We conclude that SDir (20) with the chosen potential VDir (21) reformulates the

Dirac p-brane dynamics it terms of the Cartan multiplets.
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The potential term VDir can be represented in the form

VDir = −
1
4

RµνγλRµνγλ −
1
2

RµνRµν +
1
4

HµνabHνµab + cp. (27)

Eq. (27) was derived using Eqs. (17-18) and (3). They yield the relaions

1
2

RµνγλRµνγλ = Sp(la lb )Sp(la lb ) − Sp(la lb la lb ), (28)

1
2

Hab
µν Hµν

ab = Sp(la lb la lb ) − Sp(la la lb lb ), Spla = 0. (29)

These relations were combined with the quadratic reps of the Ricci tensor Rµν

and the scalar curvature R of the minimal hyper w-s Σmin
p+1

Rµν = −(la la)µν, R = −Sp(la la). (30)

The potential (27) contains the curvature squared terms considered in f(R) gravity.
In the codimention 1, i.e. when D = p + 2, Bab

µ ≡ 0 since a = b = p + 1 and

A. A. Zheltukhin Brane mechanism of spontaneously generated gravity
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SDir (20) is reduced to the action

SD=p+2 = −
1
k 2

p

∫
dp+1ξ

√
|g|(

1
2
∇µlνρ∇µlνρ − ∇µlµρ∇νl

νρ +
1
2

(Sp(l2)2 − cp), (31)

where lλρ ≡ lλρ(p+1) = −l(p+1)
λρ and the metric covariant derivative ∇µ is

∇µlνρ := ∂µlνρ − Γλµνlλρ − Γλµρlνλ (32)

Eqs. (27-30) shows that VDir in SD=p+2 can be rewritten as

1
2

(Sp(l2))2 =
1
2

R2 → VDir = −
1
2

(Sp(l2))2 + cp = −
1
2

R2 + cp. (33)

Eqs. (25-26) are reduced to the eqs.

�lνρ = lνρSp(l2) ≡ R lνρ, Spl = 0, (34)

where � ≡ ∇µ∇µ is the D’Alembert-Beltrami operator for tensor fields on Σmin
p+1.

This correspondence between Dirac p-branes and R2 models does not generate
the Hilbert-Einsten gravity.
For 3-branes the H-E term is forbidden in view of the scale symmetry of R2 action
(31) with a cosmological constant c3 = 0.

Indeed, for p = 3 the coupling kp is dimensionless because [kp] = [Tp]
3−p

2(p+1) .
A. A. Zheltukhin Brane mechanism of spontaneously generated gravity
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Spontaneously generated gravity and non-minimal hyper-worldsheets

The dilatation symmetry of 3-brane action is realized by the transf-s:

ξ′µ = e−λξµ. g′µν(ξ
′) = gµν(ξ), l′µν(ξ

′) = eλlµν(ξ) (35)

This action is also invariant under global Weyl transf-s:

ξ′µ = ξµ, g′µν(ξ
′) = e2αgµν(ξ), l′µν(ξ

′) = eαlµν(ξ) (36)

These laws show that an abelian subgroup U+ of U(1) × U(1) formed by α = λ:

ξ′µ = e−λξµ, g′µν(ξ
′) = e2λgµν(ξ), l′µν(ξ

′) = e2λlµν(ξ) (37)

yields a diff trans-on of 3-brane h-ws. So, diff-s protect U+ symmetry.
The diff. invariant Spl creates a 1-dim. repres-n. of the Weyl and dilat. symm-s

Spl′(ξ′) = eλSpl(ξ), Spl′(ξ′) = e−αSpl(ξ) (38)

Then the condition Spl = 0 does not break the scale symmetry.
To create the H-E term this symmetry should be broken, e.g. as: Spl = constant .
Thus, we arrive at the idea of spontaneously generated gravity studied by Adler
and Zee which is explained by the example of 4-dim. scale-invariant action

A =

∫
d4x

√
|g| [

α

2
ϕ2R +

1
2
∇µϕ∇

µϕ − V(ϕ)] (39)

A. A. Zheltukhin Brane mechanism of spontaneously generated gravity
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including a scalar field ϕ and a dimensionless constant α.
V(ϕ, g) is assumed to have a deep minimum at ϕo = v which provides vev v for ϕ.
The expansion around the minimum generates the H-E term with the Newton
constant GN ≈

1
αv2 .

So, the scale symmetry of (39) is spontaneously broken that results in a 4-dim.
gravity in the low energy limit.
On the contrary, in the early universe, v as a function of the temperature, is
expected to vanish resulting in a scale-invariant R2 action. However, this model
prevents appearance of a cosmol. const. arising in such cases. Replacement of
ϕ by a scalar ψ̄ψ proposed by Adler does not improve the situation.
3-brane brane action (31) quadratic in curvarture includes a cosmol. const. cp . It
encodes an R2 action with zero vev for the field Spl

φ := Spl → < φ >0= 0. (40)

Thus, the restoration of the H-E term in brane action makes us search for a
deformation of VDir to a new potential U which has its extremal at loµν , 0:

Splo ≡< φ >0= µ, (41)

where the constant µ has the dimension [µ] = [L−1].
This generates a fundamental mass scale similarly to the Higgs effect in QFT.

A. A. Zheltukhin Brane mechanism of spontaneously generated gravity
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To find a deformed diff invariant quartic potential U we explore the action

S =
1
k 2

p

∫
dp+1ξ

√
|g|(

1
2
∇µlνρ∇{µlν}ρ − ∇µlµρ∇νl

νρ − U(l)) (42)

defined on a h-ws with codim 1, and obtain the following EOM

1
2
∇µ∇

[µl{ν]ρ} = −[∇µ,∇{ν]lµρ} −
∂U
∂lνρ

. (43)

The h-ws metric gµν(ξ) in (42) is treated as a background field since its evolution
is encoded by the embedding conditions, given by the Gauss’s Theorema
Egregium (17). For hypersurfaces Σp+1 of codim 1 it takes the form

Rµνγλ = −lµγ lνλ + lνγ lµλ. (44)

The Gauss eqn. (44) combined with the Bianchi identities

[∇µ, ∇ν]lγρ = Rµν
γ
λlλρ + Rµν

ρ
λlγλ. (45)

permits to write the commutator in the r.h.s. of (43) as

−
1
2

[∇µ, ∇{ν]lρ}µ = (l2)νρSpl − lνρSp(l2), (46)

where Sp(l2) := lµρl
ρ
νgµν. Then EOM (43) is transformed to the PDE

A. A. Zheltukhin Brane mechanism of spontaneously generated gravity



Outline
Spontaneously broken symmetries and diff. geometry of hyper-worldsheets

Dirac branes as minimal h-ws, Cartan multiplets and R squared gravity
Spontaneously generated gravity and non-minimal hyper-worldsheets

New models of R squared gravity from p-branes
Summary

1
4
∇µ∇

[µl{ν]ρ} = (l2)νρSpl − lνρSp(l2) −
1
2
∂U
∂lνρ

. (47)

A general homogenious quartic polynomial invariant under diffeomorphisms is

U =
2
3

SplSp(l3) −
1
2

(Sp(l2)2 + b2Sp(l2)(Spl)2 + b4(Spl)4 + b ′4Sp(l4). (48)

It contains arbitrary dimensionless parameters b2, b4, b ′4, and its l-derivative is

1
2
∂U
∂lνρ

= Spl(l2)νρ − [Sp(l2) − b2(Spl)2]lνρ + 2b ′4(l3)νρ (49)

+[
1
3

Sp(l3) + b2Sp(l2)Spl + 2b4(Spl)3)]
∂Spl
∂lνρ

.

For simplicity we choose an extension of VDir with b2 = b4 = b ′4 = 0:

U → V :=
2
3

SplSp(l3) −
1
2

(Sp(l2)2 + cp . (50)

Then EOM (47) reduces to the eqn.
1
2
∇µ∇

[µl{ν]ρ} = −
2
3

Sp(l3)
∂Spl
∂lνρ

. (51)

A. A. Zheltukhin Brane mechanism of spontaneously generated gravity
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Eq. (51) is the Euler-Lagrange eqn. given by S (42) with V(l) substituted for U(l)

S =
1
k 2

p

∫
dp+1ξ

√
|g|(

1
2
∇µlνρ∇{µlν}ρ − ∇µlµρ∇νl

νρ (52)

−
2
3

SplSp(l3) +
1
2

Sp(l2)Sp(l2) − cp).

Extremals lνρo are defined by Eq. (49) with zero b. They are roots of the eqn.

(l2o )νρSplo − lνρo Sp(l2o ) = 0 (53)

which can equivalently be represented as

lνoα(lαρo Splo − gαρSp(l2o )) = 0. (54)

Supposing that the matrice lνoα is non-degenerate we obtain solution of (54):

loµν =
Splo

p + 1
gµν, det lµoν , 0, (55)

where lµoν ≡ gµγ loγν. Eq. (55) generates the recurrent relations:

(lno )µν = (
Splo

p + 1
)ngµν, → Sp(lno ) = (p + 1)(

Splo
p + 1

)n. (56)

A. A. Zheltukhin Brane mechanism of spontaneously generated gravity
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We find that extremal (55) breaks neither the Weyl nor the dilatation symmetries.

However, we have not yet taken into account that extremals must obey the P-C
embedding conds. (19) encoding the brane sector of sol-s of (47).

For h-ws of codim 1 the P-C eqs. are given by

∇[µlν]ρ = 0 −→ ∇ρlρν = ∇νSp l ≡ ∂νSpl. (57)

The substitution of extremal solution (55) in the second of Eqs. (57) gives

∇ρloρν = ∂νSplo →
1

p + 1
∂νSplo = ∂νSplo → Splo = µ, (58)

where µ is a constant. So, we obtain the desired extremal (41)

loµν =
µ

p + 1
gµν → Splo ≡< φ >0= µ. (59)

A. A. Zheltukhin Brane mechanism of spontaneously generated gravity
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It is evident that this extremal gives a particular solution of EOM (51), because it
vanishes its l-h and r-h sides

1
2
∇µ∇

[µl{ν]ρ}o = −
2
3

Sp(3)
∂Spl
∂lνρ
|Spl=µ = 0. (60)

The Gauss map (44) of the Riemannian tensor of the vacuum h-ws Σo
p+1

Roµνγλ = −loµγ loνλ + loνγ loµλ. (61)

yields its explicit expression

Roµνγλ = −(
µ

p + 1
)2(gµγgνλ − gνγgµλ). (62)

It shows that the h-ws Σo
p+1 has the negative constant curvature Ro = gµνRoµν

Roµν = −
p

(p + 1)2
µ2gµν, Ro = −

p
p + 1

µ2. (63)

Resume: the Weyl and scale invariant 3-brane action (52) with the potential

V3 =
2
3

SplSp(l3) −
1
2

(Sp(l2)2, c3 = 0 (64)

has the classical vacuum solution breaking the above rigid symmetries.
A. A. Zheltukhin Brane mechanism of spontaneously generated gravity



Outline
Spontaneously broken symmetries and diff. geometry of hyper-worldsheets

Dirac branes as minimal h-ws, Cartan multiplets and R squared gravity
Spontaneously generated gravity and non-minimal hyper-worldsheets

New models of R squared gravity from p-branes
Summary

Models of R squared gravity from p-branes

To discuss gravity models encoded by p-branes we use the compact notations

φ := Spl, θn := Sp(ln), (n = 2, 3, 4) (65)

in which the iscussed potential takes the form

Vp =
2
3
φθ3 −

1
2

(θ2)2 − cp . (66)

The Gauss map (44) permits to express curvature invariants through
homogenious polynomials constructe from traces of the tensor lµν

1
2

RµνγλRµνγλ = −θ4 + (θ2)2, (67)

Rµν = (l2)µν − φlµν → RµνRµν = θ4 − 2φθ3 + θ2φ
2,

R = θ2 − φ
2 → R2 = (θ2)2 − 2θ2φ

2 + φ4.

The additional relation

Rµνlµνφ = φθ3 − θ2φ
2 (68)

represents the first term in V as

φθ3 = Rµνlµνφ + (R + φ2)φ2. (69)
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The latter expression combined with the reps: (θ2)2 = (R + φ2)2 for the second
term in Vp yields the R2 gravity interaction lagrangian

− Vp =
1
2

R2 +
1
3

Rφ2 −
2
3

Rνλlλνφ −
1
6
φ4 + cp . (70)

For p = 3, c3 = 0 Eq. (70) gives the Weyl and scale invariant lagrangian realizing
the Adler-Zee mechanism of spontaneously induced gravity due to the presence
of the critical point < φ >0= µ.
The model (70) generalizes the known models describing inflation and reheating
in the presence of scalar field ϕ similar to the Brans-Dicke one.
The latter scalar is changed by the massless tensor field lµν, and its trace φ ≡ Spl
has non-zero vev < Spl >0= µ.
So, implementation of the massless tensor perturbations lµν, associated with
brane matter, supplies new tensor-tensor models of R2 gravity which can be used
for analyzing the current experiments. Note that scale-invariant models fit the
experimental data from Planck (see P. A. R. A. et.al (Planck Collaboration),
Planck 2015 results. XX. Constraint on inflation”’. arXiv: 1502.02114 [astro-ph].)
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There is alternative way to express the first term in V as

2
3
φθ3 = −

1
3

(
1
2

RµνγλRµνγλ + RµνRµν) +
1
3

((θ2)2 + θ2φ
2). (71)

This reps yields the following R2 gravity lagrangian accompanied with scalar φ

Vp = −
1
6

LGB − RµνRµν +
1
6
φ4 − cp , (72)

where LGB is the Gauss-Bonnet term in (p + 1)-dim. space-time associated with
the h-ws Σp+1

LGB := RµνγλRµνγλ − 4RµνRµν + R2 (73)

which is known topological invariant for p = 3, but is a dynamical term for p > 3.
Thus, for p = 3, c3 = 0 expression (72) gives the Weyl and scale invariant
lagrangian of R2 gravity

− V3 = RµνRµν −
1
6
φ4, (74)

where the tensor field lµν is presented by only its invariant trace φ ≡ lµνgµν.
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Summary

1. The tensor dynamical variables gµν and lµν, originating from the Gauss-Cartan
geometric approach to embedded hypersurfaces, are used to reformulate
p-brane description. This reveals the geometric structure of their non-linearities.

2. It is shown that the interaction potential of the hyper-ws multiplet lµν encodes
scale-invariant models of R squared gravity.
This potential has the extremal loµν = µ

p+1 gµν spontaneously breaking the Weyl
and scale global symmetries.

3. On this extremal the trace Spl ≡ gµνlµν has the vev Splo = µ.
The extremal h-ws has the constant curvature Ro = − p

p+1µ
2.

4. These resuts yield brane realization of the Adler-Zee mechanism of
spontaneously generated gravity arising from breaking of the scale symmetry.
This proposes new tensor-tensor models of R2 gravity alternative to the
well-known scalar-tensor models.

THANK YOU FOR YOUR ATTENTION!
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