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Outline

• Massive star: pre-collapse stage
• Processes involving neutrino during collapse
• Nuclear structure inputs:

• Spin-isospin resonances
• Temperature effects

• Theoretical approaches:
• Large Scale Shell Model (LSSM) calculations
• Thermo Field Dynamics⇒ Thermal QRPA (TQRPA)

• Calculation results:
• Inelastic neutrino scattering (INNS) off a hot nucleus
• Neutrino pair emission by a hot nucleus

• Conclusions
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electron
distribution

(Z,A)

(Z-1,A)
µe

e− + A(Z,N)→ A(Z − 1, N + 1) + νe

• At the end of its life a massive star (M ≥ 10M⊙)
has the structure similar to that of an onion.

• Just before the core-collapse all reactions mediated
by the electromagnetic and strong interactions (but
not weak interaction!) are in Nuclear Statistical
Equilibrium.

• Electrons form a degenerate gas (keep a pressure
due to the Pauli principle).

• Until Mcore < MCh = 1.44(2Ye)
2M⊙, the gravitation

is balanced by the pressure of the degenerate
relativistic gas of electrons (Ye is the number of
electrons per one baryon in the star).

• The equilibrium is unstable since
1. The silicon burning increases the iron core of

the star.
2. The electron captures by protons and nuclei (at

ρ & 109g/cm3) decrease the pressure of the
degenerate electronic gas.

• When the iron core mass Mcore exceeds MCh it
collapses during ∼ 1 s.
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• Electron capture on nuclei is the main neutrino source
during collapse.

• For Eν < 20 MeV the Gamow-Teller transitions
(GT0 : ∆Jπ = 1+, σt0 operator) dominate
neutral-current neutrino-nucleus reactions.

• Reactions involving neutrinos in collapsing star
• νe + (A,Z)

←→ νe + (A,Z) – neutrino trapping
• (A,Z)∗ + νe

←→ (A,Z)∗ + ν′e – neutrino thermalizing
• νe + e∓

←→ νe + e∓ (inelastic process) – neutrino thermalizing
• (A,Z)∗ → (A,Z) + νe + ν̄e

• At densities ρ . 1011g/cm3 the low-energy neutrinos can
leave the star unhindered carrying away energy. This is a
very efficient cooling mechanism which keeps the entropy
of the matter low. As a consequence heavy nuclei survive
during the collapse.

• At densities ρ ≈ 4 · 1011g/cm3 neutrinos start to get trapped
in the core due to elastic scattering on nuclei (diffusion).

• At densities ρ & 1012 g/cm3 neutrino inelastic scattering off
electrons (mainly) and nuclei become important. Neutrino
thermalization takes place.

Neutral-current β-decay

ν

ν̄

A, Z

GT0

Neutrino inelastic scattering

A, Z

ν ν ′

GT0
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To calculate the ν-A cross sections one needs to know the nuclear response to σt0 operator or, in
other words, the distributions of the GT0 strength over a nuclear spectrum. The position and
structure of the corresponding GT0 resonance is most important.

 

M1 strength distribution in 52Cr.
Shell-model - upper panels; Experiment – bottom panel. Spin response⇒ GT0
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For temperatures T = 1.0÷ 2.0 MeV the mean excitation energy for iron-group nuclei is
〈E〉 = 10÷ 30 MeV.

Experimental information as well as theoretical predictions on nuclear resonance characteristics in
highly excited nuclei are poor. Only giant E1 resonance in hot heavy nuclei was explored
experimentally. Most of calculations for GT resonances were done in the thermal RPA approach
and Shell-Model Monte Carlo (SMMC) method.

 

Experimental data on the width of giant E1 resonance as a function of temperature T in 120Sn
collected from different experiments.
The green dashed line: the width at T = 0. Continuous pink line: theory (the thermal shape
fluctuation model)

Conclusions: the centroid is shifted downward, the width increases.
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Large Scale Shell Model (LSSM) (K. Langanke, G. Martínez-Pinedo et al.)
Calculations were performed for s−d and p−f nuclei with A . 65.
The spin-isospin strength distributions in low-lying part of nuclear spectra are well
described. Thermal effects are taken into account by state-by-state evaluation of
the reaction rate and summing over Boltzmann-weighted, individually determined
strengths for the various nuclear states. Moreover, some additional simplifications
were introduced as well (e.g. Axel-Brink hypothesis).

Calculation of inelastic neutrino-nucleus cross section

σνA(Eν , T ) = σ
d
νA(Eν , T ) + σ

up
νA(Eν , T )

σ
d
νA(Eν , T ) =

G2
F

πW

∑
Ei<Ef

(Eν + Ei − Ef )
2|〈f |σt0|i〉|2 exp(−

Ei

T
)

σ
up
νA(Eν , T ) =

G2
F

πW

∑
Ei>Ef

(Eν + Ei − Ef )
2|〈f |σt0|i〉|2 exp(−

Ei

T
).

W =
∑
i exp(−Ei/T ).

If, in accordance with Axel-Brink hypothesis, one assumes
〈f |σt0|i〉 = 〈f |σt0|g.s.〉 then the value of σdνA(Eν) is independent of T .

Limitations of LSSM:
• The approach cannot be used for massive neutron-rich nuclei with A > 65.
• The Axel-Brink hypothesis is used to calculate σdνA(Eν).
• First-forbidden transitions cannot be calculated directly (additional

simplifications are introduced).
• Detailed balance principle is violated S(T,−E) 6= S(T, E) exp

(
−E

T

)

Back resonances

g.s.

E1

En

Axel-Brink hypothesis

B(GT0)

E

g.s.
E1

En
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Basics of Thermo Field Dynamics
• Thermal vacuum |0(T )〉 :

〈0(T )|A|0(T )〉 =
∑
i

e−Ei/T

W
〈i|A|i〉 = 〈〈A〉〉

• Thermal Hamiltonian
H = H(a†, a)− H̃(ã†, ã), H|0(T )〉 = 0.

• Thermal state condition:
A|0(T )〉 = exp

(
− H

2T

)
Ã†|0(T )〉

p

n

γ

Thermal quasiparticle RPA
• The QPM Hamiltonian: H = HWS +HBCS +Hph;

• Thermal quasiparticles: HWS+BCS ≈
∑
j εj(β

†
jβj − β̃

†
j β̃j);

• Thermal phonons: H ≈
∑
k ωk(Q†kQk − Q̃

†
kQ̃k).

Finite temperature strength distributions
• |0(T )〉 → Q†

k|0(T )〉 – excitation process, |0(T )〉 → Q̃†
k|0(T )〉 – de-excitation

process;

• Transition strengths Φk = |〈Qk|σt0|0(T )〉|2 and Φ̃k = |〈Q̃k|σt0|0(T )〉|2 obey the
detailed balance principle Φ̃k = exp

(
−ωk/T

)
Φk.
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QRPA (T = 0)
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GT0 strength distributions in 56Fe at different temperatures:
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T = 0.86 MeV (1 GK) corresponds to the condition of a presupernova
model for a 15M⊙ star; T = 1.29 MeV (1.5 GK) - relates to neutrino
trapping, T = 1.72 MeV (2 GK) - to neutrino thermalization.
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GT0 strength distributions in 82Ge at different temperatures:
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T = 0.86 MeV (1 GK) corresponds to the condition of a presupernova
model for a 15M⊙ star; T = 1.29 MeV (1.5 GK) relates to neutrino
trapping, T = 1.72 MeV (2 GK)– to neutrino thermalization.
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σνA(Eν , T ) = σdνA(Eν , T ) + σupνA(Eν , T )

=
G2
F

π

{∑
k

(Eν − ωk)2Φk +
∑
k

(Eν + ωk)2Φ̃k

}

• Φk = |〈Qk|σt0|0(T )〉|2 and E′ν = Eν − ωk for down-scattering;

• Φ̃k = |〈Q̃k|σt0|0(T )〉|2 and E′ν = Eν + ωk for up-scattering.
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The down-scattering σdνA(Eν , T ) (left panel) and the up-scattering
σupνA(Eν , T ) (right panel) parts of the INNS cross section for 54Fe at
different T .
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Comparison of the TFD-QRPA cross-sections for ν + 56Fe→ ν′ + 56Fe
with those obtained within the LSSM calculations (K. Langanke,
G. Martínez-Pinedo et al, Nucl. Phys. A 747 (2005) 87).
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ν

ν̄

A, Z

Ei

Ef

Decay probability:

λif = 3
G2
F g

2
A

60π2~7c6
(Ei − Ef )5B(GT0)if

= 3λ0(Ei − Ef )5B(GT0)if , λ0 ≈ 1.72 s−1 MeV−5

Total decay rate: Λ =
∑
if λif gi, where gi ∼ exp(−Ei/T ).

Partial decay rates within the TQRPA approach

Λk = 3λ0ω
5
kΦ̃k where Φ̃k = |〈0(T )|σt0|Q̃†k〉|2, ωk = Eν + Eν̄ .

Total decay rate:
Λ =

∑
k

Λk.

Energy emission rate:
P =

∑
k
ωkΛk.
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Relative contribution to νν̄-decay rate of different ranges of hot
nuclear spectrum. Calculations are performed within the TQRPA
approach for 56Fe and 82Ge
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• The novel approach to study thermal effects on neutrino-nucleus
reactions in supernova environment was presented. The
approach is based on QRPA extended to finite temperatures
within Thermo Field Dynamics formalism.

• In contrast to the LSSM calculations our method does not rely on
the Brink hypothesis and it can be applied to massive
neutron-rich nuclei. Moreover, the corresponding calculations are
much less time consuming.

• Our calculations confirm results based on the LSSM calculations
(by K. Langanke, G. Martínez-Pinedo et al.) about the thermal
enhancement of the low-energy neutrino-nucleus cross sections.

• To improve the predictive power of the approach we are working
to combine our TFD-based method with self-consistent QRPA
calculations based on more realistic effective interactions (e.g.
the Skyrme ones).
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Credits: J. Wambach, V. Ponomarev.
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