Atomic Bose-Einstein Condensates, with

optical lattices, Field-induced dipole
moments and spin-orbit coupling

Lauro Tomio

Centro de Ciéncias Naturais e Humanas, Universidade Federal do ABC
09210-170, Santo André, SP, Brasil
and
Instituto de Fisica Tedrica, Universidade Estadual Paulista UN€SP™
01140-070, Sao Paulo, SP, Brasil
tomio@ift.unesp.br

JINR - June 18, 2014, Dubna, Russia



Universidade Federal do ABC - Santo André, Sao Paulo, Brazil
www.ufabc.edu.br

emergmg as the main natlonal unlversny in the State of Séo Paqu.




UNIVERSIDADE FEDERAL DO ABC (UFABC)

@ Founded in 2006, UFABC is one of the youngest Brazilian
universities. Located in the industrial belt of Sdo Paulo - Brazil's
largest city - in an area known as ABC. It operates two campi,
both still partly under construction, but already established a
reputation for high-level interdisciplinary research and teaching.

@ The main campus is located in the city of Santo André. Besides
being in another municipality, it is easily accessible by the
metropolitan surface transportation (metro-train) of Sao Paulo.

@ A second campus is in the city of Sdo Bernardo.




INSTITUTO DE FiSICA TEORICA - UNESP

ICTP-SAIFR
www.ift.unesp.br - www.ictp-saifr.org

... inside the city of S.Paulo, in the metro terminal Barra-Funda.




INSTITUTO DE FiSICA TEORICA - UNESP

The Institute for Theoretical Physics (IFT), actually a unit of UNESP,
is a traditional research institution, founded in 1952. It develops
research activities in various areas of Theoretical Physics
(Mathematical Physics, Field Theory, Gravitation and Cosmology,
Nuclear Physics, Atomic Physics, Phenomenology of Elementary
Particles, Statistical Mechanics and Nonlinear Dynamics).

The ICTP South American Institute for Fundamental Research
(ICTP-SAIFR) is a new regional center for theoretical physics created
in a collaboration with the Abdus Salam International Centre for
Theoretical Physics (ICTP), the Sao Paulo State University (UNESP)
and the Sao Paulo Research Funding Agency (FAPESP).




@ Introduction

9 3D BEC with linear and nonlinear optical lattices

e Bright solitons in BEC with field-induced dipole moments
e Bright solitons: existence and stability

e Dynamics of bright solitons

e Spin-Orbit Coupling in Ultracold-atom systems

e General conclusions



Introduction

Outline

@ Introduction



Introduction

and universal aspects of few-body systems

@ Our investigations are mainly concerned with two aspects of
atomic systems:
— Stability and dynamics of Bose-Einstein condensates (BEC)
under different trap conditions.
— Universal aspects of quantum few-body systems, which can
emerge from such studies.
In the second case, a larger group is involved. | will mention the
leading ones, which can be contacted for those interested in our
pos-docs, visitors or graduate programs: Tobias Frederico (ITA,
Séo José dos Campos), Marcelo Yamashita (IFT-UNESP, Sao
Paulo), Antonio Delfino (UFF, Niteroi).

@ Few-body aspects can be studied in BEC systems, through the
effects due to non-linear terms, from the main two-body term to
higher order nonlinear terms, represented by three- and
four-body interactions.
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Introduction - BEC and soliton dynamics

First, within a full 3D approach, | present some results obtained on
the existence of matter-wave solitons when considering
cross-combined optical lattices (OL) in the three perpendicular
directions, with a nonlinear OL in one of the directions.

These results can also be useful in practical applications, opening the
possibility to manage stable 3D solitons through spatial modulations
of the scattering length in one of the optical lattice directions.
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Introduction - BEC and soliton dynamics

Next, we consider a bosonic gas of particles carrying collinear dipole
moments, induced by an external polarizing field with the strength
periodically modulated along the coordinate. In this case, one can
obtain an effective nonlocal nonlinear lattice in a condensate, where
bright solitons can be manifested. The existence, stability and
mobility of such solitons appearing in the condensate are investigated
by effective 1D model.

The interest of such theoretical studies relies on recent experimental
investigations on Bose-Einstein condensation (BEC) in gases made
of atoms carrying permanent magnetic moments, such as chromium,
dysprosium, and erbium.

The long-range and anisotropic character of the dipole-dipole
interactions leads to new physical phenomena, which are not
expected in BEC with contact interactions.

Finally, | will report some recent investigations on a condensate with
spin-orbit coupling.
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3D BEC with linear and nonlinear optical lattices

3D BEC with linear and nonlinear optical lattices

Let us consider a cross-combined linear and nonlinear OLs, with no
harmonic trap. In this case, we can have

.ou > 5
—== -W-rT
ey Veu—Wu—T|ulcu
where
V = V(x,2z)=excos(2x) + £, cos(22),
= T(y)=x+~ycos(Ay),

denote the linear and nonlinear OLs, respectively,

parametrized by e, ,, x, v and .




3D BEC with linear and nonlinear optical lattices

We consider variational and full numerical approach.
The variational ansatz, with parameters A, a, b and c, is given by

U(x,y, z) = Ae~(@¢+bri+cz)/2
Given p as the chemical potential, we look for solutions of the form

U(vaa Z, t) = U(X,y7Z) eXp(—l,U,t)

3D Solitons with quasi-2D OLs

First, we consider a quasi-2D OLs, were ¢, = 0 (no constraint in the z
direction) and ex = . Sample results are given in the following, for the
chemical potential . in terms of the number of atoms N, for attractive 2-body
interactions (x = 1). No stable 3D solitons are predicted to exist, in the
attractive case, according to the Vakhitov-Kolokolov (VK) criterion for stability
du/dN < 0.




3D BEC with linear and nonlinear optical lattices

3D Solitons with quasi-2D OLs

In the right panel we have compared one of the VA curve (for ex = 3) with the
corresponding one obtained from numerical simulations of the GP equation,
showing a good quantitative agreement between numerical and analytical
results. PDE simulations also confirm the prediction of the VK criterion about
the instability of 3D solitons in this case.
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3D BEC with linear and nonlinear optical lattices

Next, we have shown that one can stabilize solitons, even in the repulsive
case, by adding a linear OL in the z—direction. We considere = ex =&, = 3
in the next figure. VA are given by solid lines and PDE by dotted lines. In both
cases we observe branches for which stable 3D solitons are possible. In the
left, x = 1, varying the NOL strength v = 3.0, 2.5, 2.0, 1.5, 1.0, 0.7, 0.5 (left
to right). A PDE result is shown for v = 0.5. In the right panel, v = 0.5, with
several repulsive mean nonlinearity: x = 0.0, -0.1, -0.2, -0.25, -0.3 (left to
right). The PDE result is for x = — 0.2 (other parameters are the same).

Il
6
N

For more details, see Abdullaev et al. JPB, 45, 115302 (2012).
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Bright solitons in BEC with field-induced dipole moments

BEC with field-induced dipole moments

We consider a condensate elongated along axis x, with dipole
moments of polarizable molecules or atoms induced by an external
field directed along x too. The local strength of the polarizing field
varies along x, which gives rise to an effective nonlocal nonlinear
lattice in the condensate.

One can use an effectively 1D GPE, with the DDI term derived from
the underlying 3D GPE. The necessary spatially modulated dc
electric and/or magnetic field can be imposed by ferroelectric or
ferromagnetic lattices.

In our approach, we have considered local dipole moment induced by
a polarizing electric field. (One could also consider magnetic dipole
moments induced by a solenoid.)




Bright solitons in BEC with field-induced dipole moments

From 3D to 1D GPE

The GPE for the 3D mean-field wave function W(r, t) is given by

oV [

m
2

L gwlvPw 4 [ [ 1w Won(r - r’)dSr'] v,

[wf3® + dx)EE) + Wi (P + 2 W+

where d(x) = v&(x) is the local dipole moment, induced by external field
&(x), which is directed and modulated along x, - is the molecular or atomic
polarizability, gsp = 4wh?as/m. Further, the DDI kernel is given by

o d)d(x) [, 3(x—x)?
el = S oy [1 r—r/z}

and the wave function is normalized to the number of atoms,

N = / |w(r, t)]? &®r.




Bright solitons in BEC with field-induced dipole moments

From 3D to 1D GPE
The field-induced dipole moment is essential in the range of

d-&~ B,

where B is the rotational constant, determined by to the equilibrium
internuclear distance r and reduced mass m; of the polarizable molecule:
B = r?/(2m;,r?). Typical values of the parameters are:

d ~ 1 Debye, B ~ hx 10 GHz, which yields an estimate for the necessary
electric-field strength, £ ~ 10* V-em™".

Such fields are accessible to experiments with BEC in atomic gases [see
Appendix B of Lahaye et al, Rep. Prog. Phys. 72 126401(2009)].

Thus, the spatial variation of the polarizing dc electric field,

E(x) = &of(x),

leads to the respective spatial modulation of the DDI, with d(x) = dof(x).
This induces the mentioned effective nonlocal nonlinear lattice in the GPE.




Bright solitons in BEC with field-induced dipole moments

From 3D to 1D GPE

For the quasi-1D case, we follow Sinha and Santos [Phys. Rev. Lett. 99
140406 (2007)]. If the ground state in the transverse plane, (y, z), is imposed
by the trapping potential, the 3D wave function may be factorized as

W(r ) = v(x, 1) (Vrar) " exp (—p%/24 ),

with p? = y? + 2%, and @5 = i/ mw_ . Substituting into the 3D expression and
integrating over (y, z), the effective 1D DDI is derived with kernel

202 [2|x] 2x2 x|
Wipp = = |22 — il = f
o= 5 [ - (1 5) o () = ()]

Let us go to dimensionless variables:

=T

t « 10
X —aix, t_)zv w(xvt)_> 3/2 ¢(X t) a:ﬁv g= S/gzd

where ay = md?®/k? is the charactenstlc DDI length




Bright solitons in BEC with field-induced dipole moments

From 3D to 1D GPE

With ¢ = ¢(x, t) and ¢’ = ¢(X', ), the reduced 1D equation is:

2
gdr) - ‘%% + X + BR(X)é + glo2e

+oo
- ¢/ X6/ PR(x — X' )dx'.
The effective 1D kernel is

R(x) = 01?0 [(1 + 2x2) exp (XZ) erfe(|x]) — %m .

(o = +1 for the attractive DDI, and o = —1/2 for the repulsive DDI between
dipoles oriented perpendicular to x).

Actually, this rather complex kernel R(x) can be replaced by

100

Tr\/(7rX2—|—1)37

(See Cuevas et al [Phys. Rev. A 79 053608 (2009)]).

R(x) =




Bright solitons in BEC with field-induced dipole moments

From 3D to 1D GPE

The DDI can be represented by a pseudopotential which includes a
contact-interaction term. Then, the spatially modulated d(x) may induce a
position-depending part of the contact interactions too.

However, in the present setting, the regularization scale a, eliminates the
singular part of the DDI at scales |x| < a.. Therefore, we restrict ourselves to
the consideration of the pure nonlinear nonlocal lattice.

We assume that the dynamics of the system in the perpendicular directions is
completely frozen, i.e., the transverse trapping frequency, w, , is much larger
then the longitudinal one, w1 > wy,.

On the other hand, if w, is not too large, interesting transverse effects may
occur, which is beyond the scope of our work.




Bright solitons in BEC with field-induced dipole moments

From 3D to 1D GPE

In the equation for the potential we can identify the usual harmonic-trap
potential, «x?, the nonlinear term g|¢|2¢, and an effective DDI potential,
composed of linear and a nonlinear terms:

+o0
VPG 6f%) = 100 [ 500 — [ 10016 BRGx = x)a
where the modulation function is
f(x) = fo + f cos(kx).

The parameters are fy, f;, and k = 2wa, /A = 2x/A. 8 can vary from 1 to 10,
under typical physical conditions, with the constant part fixed as f, = 1.




Bright solitons in BEC with field-induced dipole moments

From 3D to 1D GPE

So, the Hamiltonian is
+00 1

1 +o0 +o0
- 5/ cwum%/’ o F(X')| ¢/ PR(x — x').

J —00 —00

2

0
O+ 21o1* + axlof? + BR(X)I6P

ox

It also contains the additional linear potential, 3f2(x), which is
induced by the interaction of the locally-induced dipole moment with
the polarizing field.
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Bright solitons: existence

Bright soliton solutions

The existence of bright-soliton solutions can be investigated by
solving the eigenvalue problem, with ¢ = |¢|e~1#!:

2
S 20x?
We consider full numerical solutions of this equation, as well as

corresponding variational approaches (VA), for two characteristic
cases:a=0,8#A0and a =3 = 0.

+ax?o + glole + Va (x: 167)¢ = ug.

Variational approach

In the corresponding Lagrangean formalism We assume the following
Gaussian ansatz with center set at x = (:

(x<)2>_

2a°

(1)

¢ = Aexp (—




Bright solitons: existence

Variational approach

The corresponding averaged Lagrangian L is given by
Lo
N — Tz
gN + N
2V2ra 2n&

where N = \/7Aa, iy = n— B [ + (1/2)f7], and

2
-8 (21‘1 e /4 cos(k¢) + %e’azkz cos(2k§))

F(a7 C’ f07 fl)?

+o00o
F(a ¢ fo,f) = // dydxf(x)f(y)e =/ R(x — y)el—0/aF




Bright solitons: existence

a=0,8#0

The VA solutions are compared with their numerical counterparts in
the next two figures, forg=a=0,f =1,ff =0.5,and A =0.5

(k = 47).

The numerical solutions were obtained by a relaxation technique [See
Brtka et al. Phys. Lett. A 359 339 (2006)].

The effect of 3 is illustrated by plots of chemical potential i versus the
number of atoms, N, in the left panel. As shown, VA provides good
agreement with the numerical results. The corresponding profiles are
compared in the right panel, for x = 0 and 8 = 6. In the right panel,
we also show the oscillatory function, 2(x), by the dashed line.
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o =

(solid lines), and from VA

Left panel: p vs N, from full numerical solutions

(dashed lines). Other parameters are a = g

0.5 and

1, h =
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0.5 k = 4m).
Right panel: the numerical solution (the solid line)

A=

for the profile of the wave

function, centered in x = 0, is compared with VA results (dotted curve), for

6 and p = 0. In this panel, we also plot 2(x) by dashed line.
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Bright solitons: existence

The VA produces more accurate results for large 5 because, in this
case, the contribution of the linear lattice grows, and it is known that
the Gaussian ansatz, that we use here, works well with linear lattice
potentials [see Kartashov et al. Rev. Mod. Phys. 83 247(2011)].
Further, the steady increase of u with 3 is also explained by the fact
that the linear potential is multiplied by /.




Bright solitons: ex
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— E (numer)
= W(VA, L=n)
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Figure: The chemical potential (VA and full numerical) and total energy (full
numerical), are shown for A = « (i.e., k = 2 ). Other parameters are
a=9g=0,0=1,f=1,f =0.5and g = 6. We indicate three regions (1, 2
and 3) for the numerical solutions, following the variation of u (11, pe and ugs),
to identify the corresponding profiles shown in the next two panels.
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Figure: Profiles corresponding to regions identified in the previous figure.
The modulation function, fz(x), is also shown by the black-dashed line in the
left panel. The numerical results for the corresponding effective DDI potential
are shown in the right panel for three different values of the chemical

potential.




Bright solitons: existence

a =0, 8 # 0 - repulsive DDI

For the perpendicular orientation of the dipoles (repulsive DDI, o = —1/2)
(while other parameters are the same as in previous figures, we demonstrate,
by means of numerical results for different values of y, that the wave-function
profiles are delocalized, i.e., they do not build bright solitons.

5

TRILE
LbLES

Figure: (Color online) Solution profiles for c = —1/2, with other parameters
the same as shown in previous two figures (in particular, A = 7 and 5 = 6).




a=p=0

Following the case with g = 0, we present p. vs N (left panels), compared
with VA for 5 = 0, in the absence of the linear trap (o« = 0). We consider
different values of f;, with A = 1 (left top) and 0.5 (left bottom). According to
the Vakhitov-Kolokolov (VK) criterion for stability, du/ON < 0, this assumption
is well verified by our numerical results, for the whole range of parameters
that we have analyzed. Simulations of the corresponding temporal evolution
(not shown) validate the VK criterion.

We note that VA results cannot follow the results to the full extension, besides
the fact that present very good agreement for large negative p.

As seen in the left top panel, for A = 1 the VA correctly predicts the stability
and converges to numerical results for . < —1.5 at all values of f;. In the
case of A = 0.5 (the left bottom panel), the VA results are equally accurate at
u < —6. On the other hand, in the case of 1 = 2.0 and A = 0.5, the VA
results represent a set of two solutions, one being nearly insensitive to
variations of f;.




u=-6

f=11=2A=05

Figure: Parameters indicated inside the frames, for the case of
B=a=9g=0,fh=1,andA=10r0.5




«a = 8 = 0 (Pure nonlocal nonlinear lattice), with g > 0

By fixing « = 0 and 8 = 0, we have analyzed the model with repulsive
contact interactions (g > 0). The corresponding term in the formalism tends
to expand the wave function, on the contrary to the attractive nonlocal
nonlinear interaction. In next panels, for the given parameters, with u = —2,
we show stationary solutions for different magnitudes of g (left panel). As g
increases, the wave function indeed gets broader and the number of atoms
trapped in the soliton increases. Beyond a critical value, g = 3.45, no
solution can be found. In the right panel, we consider different values of f;
(keeping the other parameters as in the left panel), to verify how the behavior
of critical value g and the corresponding values of N. It is observed that N
decreases as f; and g. increase.

This dependence can be explained considering the broad soliton case, when
the nonlocal term can be approximated as the local one with an effective
nonlinearity coefficient, ~eir = 2(x) fjfj dyR(y) and the bright solitons

should exist, provided that g > f? f_*;f dyR(y). This arguments explain the
growth of g. with the increase of f;.




Bright solitons: existence

a = B = 0 (Pure nonlocal nonlinear lattice), with g > 0

100

T
—— g-345N=52.0
g=3N=18.0
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f . h

0 . . .

-10 -5 0 5 10 0.0 05 1.0 15 2.0
f,

Figure: The left panel: wave-function profiles with fixed p = —2 and a few
values of g. The parameters are indicated inside the frame (o, =1, fi = 0.5
and A = 0.5). These results for fi = 0.5 define critical maximum values

gc = 3.45 and N, = 52, above which no bright soliton were found. In the right
panel, by varying the modulation amplitude f;, with other parameters as in the
left panel), we display a curve corresponding to the critical values of N and g.
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Dynamics of bright solitons

The mobility of solitons and collisons are shown by considering full
numerical solutions for the 1D GPE, exploring a parameter region to
obtain stable bright-soliton solutions.

Next figure with two panels, we show the soliton propagation by
considering, in the dimensionless units, a time interval from 0 to 20,
with velocity set to 1. In the left panel, we have ;= —1 and N =~ 1.02;
and, in the right panel, ©n = —10 and N ~ 4.86, with profiles
separated by time intervals Af = 2. In the latter case, the soliton
ends up getting trapped at a fixed position. In both the cases, we
havea=8=g=0,andfhb=1,f =05, A=0.5.




Dynamics of bright solitons
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Figure: Left panel: time intervals At = 10 (the velocity is 1), with = —1
and N =~ 1.02. Right panel: . = —10, N =~ 4.86, with intervals At = 2. In
both cases, fy =1, i = 0.5 and A = 0.5 (with a = 5 = 0).




Two solitons interacting

Figure: With y = —10, N ~ 4.86, we show the interaction of two solitons in
four panels at different moments of time, with At = 0.1 (the average velocity
is zero). In all the cases, the parameters are fp =1, i =0.5and A = 0.5

(aL =2, \ = 1). The phase difference between the solitons is zero, and they
attract each other. One can see a transition from a bound state to a breather.




Density plot - two solitons interacting

Next, we show the corresponding density plot.
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For the same parameters, we observe almost no interaction when the
phase between them is .
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Work in progress: Spin-Orbit Coupling in ultracold-atom
systems

Motivated by some recent experiments with ultracold-atoms, we are
considering GPE with spin-orbit coupling.

Spin-orbit coupling links a particle’s velocity to its quantum-mechanical spin,
and is essential in numerous condensed matter phenomena. As pointed out
by Galitski and Spielman [Nature 494, 49(2013)], for ultracold atomic
systems, the engineered material parameters are tunable and a variety of
synthetic spin-orbit couplings can be engineered by using laser fields.

As also shown by Jiminez-garcia et al [PRL 114, 125301 (2015)], in ultra cold
BEC system, we have an opportunity to investigate and control spin-orbit
coupling using amplitude-modulated Raman coupling.




Work in progress: Spin-Orbit Coupling

Let us follow a model with periodic variation in space of the two-body
scattering length, which can be given by

ou 1 6%u 2 2 _ ou
ov 1 6%v 2 2 . Ov

where u = u(x, t), v = v(x, t), with g(x) being a periodic function in space,
g(x + L) = g(x), with period L. One particular choice for g(x), which we
consider is given by

9(x) = go + g1 cos(kx).
In the following we will fix k to 7/2, as this corresponds to adjust our length
scale to the lattice parameter such that L = 4.




Spin-Orbit Coupling

The physical model is a Bose-Einstein condensate (BEC) with spin-orbit (SO)
coupling and variable in space atomic scattering length.

Two limits we consider:

1) Large spin-orbit coupling «, leading the system to the massive Thirring
model with periodic non-linearity.

2) Small spin-orbit coupling « - two component BEC with periodic scattering
length.

(@ —
After some manipulation, the system can be written as a single equation, for
¢ = o1t

1 82¢ * 2iax

¢+282+ ¢+29(X)I¢|¢1K¢e =0, (2)

which is still a coupled equation for the real and imaginary parts of ¢.
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Figure: Chemical potential 1 as a function of the number of particles N, by
considering the Eq. (2) with go =0, g1 =1, « = 1 and k = 7/2, for a few
values of the coupling parameter K.
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General conclusions

First, we report some results on the existence of solitons in the case of
cross-combined linear and nonlinear optical lattices, within a full
three-dymensional model. As shown, we can obtain families of 3D solitons,
which can be stable for both attractive and repulsive interactions.

These results can be useful in practical applications, opening the possibility
to manage stable 3D solitons through spatial modulations of the scattering
length in one of the optical lattice directions.

Next, we report investigations within a reduced 1D model, where we study
the parameter conditions for the existence of bright solitons considering
induced dipole-dipole interactions. The results were verified by comparison
with numerical solutions of the respective one-dimensional GPE. The stability
of the soliton families exactly obeys by the VK criterion. The dynamics of
solitons and interactions between them, including merger into breathers,
were also investigated. It was also found that the dynamical version of the VA
provides for a good prediction for frequencies of small oscillations of
perturbed solitons.

Finally, it was also presented preliminar results on spin-orbit coupling in BEC.
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