Structure of the Low-Lying States in the Odd-Mass Nuclei with $Z \sim 100$

R.V.Jolos, L.A.Malov, N.Yu.Shirikova and A.V.Sushkov

JINR, Dubna, June 15-19

Introduction

In recent years an experimental program has been started aimed to extend the region where detailed spectroscopic information is available. In parallel, the theoretical efforts are necessary to extract from these data an information about the single particle levels lying near the Fermi surface and about an evolution of the single particle level scheme with Z and A. It is also important to extract from the data on the collective excitations the parameters of the residual forces which play the most important role at low excitation energies.

Basic concepts

- Nuclear mean field.
- Fluctuations of the nuclear mean field \rightarrow Phonons and Particle-vibration coupling.

We consider the calculations of the energies and the two-quasiparticle structure of the collective low-lying states as the important task for nuclei with $Z \sim 100$ since RPA type calculations for these nuclei are practically absent.

Selfconsistent mean feald or the Woods-Saxon potential

In recent years many calculations of the selfconsistent nuclear mean feeld have been performed using different choices of the Energy Density Functional. For this reason it is necessary to justify a possibility to use the Woods-Saxon form of the single-particle potential.
The experimentally investigated nuclei with $Z \sim 100$ are deformed. The deformation leads to a more uniform distribution of the single-particle states emerjing from the high-j and low-j spherical subshells. For this reason a density profile of a deformed nucleus is relatively flat inside nucleus. This resemble the use of the Woods-Saxon potential for these nuclei.

The quasiparticle phonon model

The Hamiltonian of the QPM [7] contains the mean fields for protons and neutrons, monopole pairing and the multipole-multipole interaction, both isoscalar and isovector, acting in the particle-hole and the particle-particle channels

$$
\begin{equation*}
H=H_{s p}+V_{\text {pair }}+V_{M}^{p h}+V_{M}^{p p} \tag{1}
\end{equation*}
$$

Here, $H_{s p}$ is a one-body Hamiltonian, $V_{\text {pair }}$ describes the monopole pairing, $V_{M}^{p h}$ and $V_{M}^{p p}$ are particle-hole separable multipole interaction and particle-particle multipole pairing interaction, respectively.

As the mean field term, we have taken the Woods-Saxon potential

$$
\begin{align*}
& V_{s p}(\vec{r})=V_{W S}(\vec{r})+V_{s o}(\vec{r}), \\
& V_{W S}(\vec{r})=-V_{0}(1+\exp [(r-R(\theta, \varphi)) / a])^{-1} \tag{2}\\
& V_{s o}(\vec{r})=-\kappa(\vec{p} \times \sigma) \nabla V_{W S}(\vec{r})
\end{align*}
$$

The quasiparticle phonon model

The Hamiltonian expressed in terms of the quasiparticle and phonon creation and annihilation operators has the form

$$
\begin{align*}
H= & \sum_{q} \varepsilon_{q} \alpha_{q}^{+} \alpha_{q}+\sum_{v} \hbar \omega_{v} Q_{v}^{+} Q_{v} \\
& +\sum_{q, q^{\prime}, v} f_{q q^{\prime}}^{(\nu)} \alpha_{q}^{+} \alpha_{q^{\prime}}\left(Q_{v}^{+}+Q_{v}\right) \tag{3}
\end{align*}
$$

Here the operator α_{q}^{+}is a quasiparticle creation operator with quantum number q, and v stands for the phonon quantum number $v=\lambda \mu i$, where $i=1,2, \ldots$ label RPA phonons with given multipolarity $\lambda \mu$ in accordance with the phonon excitation energy; i.e., the one-phonon state $Q_{\lambda \mu 1}^{+}|0\rangle_{R P A}$ has the lowest energy. The vector $|0\rangle_{R P A}$ is a phonon vacuum state.

The quasiparticle phonon model

This Hamiltonian is diagonalized in a configurational space which includes one-quasiparticle and onequasiparticle \otimes phonon states. Correspondingly, the wave function of the state of the odd-proton nucleus takes the form

$$
\begin{equation*}
\left|\Psi_{n}\right\rangle=\left(\sum_{q} C_{q}^{n} \alpha_{q}^{+}+\sum_{q v} D_{q v}^{n} \alpha_{q}^{+} Q_{v}^{+}\right)|0\rangle_{R P A} . \tag{4}
\end{equation*}
$$

We have taken into account the phonons with the quantum numbers $\lambda \mu=20,22,30,31,32$, and 44 and several values of i. The single-particle spectrum was taken from the bottom of the mean field potential up to +5 MeV .

A comparison of the results of the selfconsistent calculations with the single-particle spectra obtained with Woods-Saxon potential demonstrate a good agreement for neutrons in nuclei with $\mathrm{Z} \sim 100$.
Woods-Saxon proton singleparticle scheme confirms an existance of the gap at $Z=96$ and 100. In addition the experimental results indicate on existance of the proton $1 / 2[521]$ and $7 / 2[514]$ near the Fermi level at $Z=103$ in agreement with Woods-Saxon scheme.

Protons

Protons

Analysis of the proton single-particle states extracted from the experimental data shows that the lowest states just above the gap at $\mathrm{Z}=96$ are $7 / 2[633$] and $3 / 2[521]$. The next three orbitals are 7/2[514], 1/2[521] and 9/2[624]. This is in a correspondence with the Woods-Saxon level scheme calculated at the beta $=0.26$.

Neutrons

Comparison of the neutron W-S single-particle scheme with the single-particle energies extracted from the experimental data shows that in both cases just above $\mathrm{N}=152$ the same closely lying single-particle levels, namely, 7/2[613], 1/2[620], 3/2[622] and
11/2[725] are located

Parameters of the Woods-Saxon potential used in the calculations.

A	isospin	V_{0}, MeV	r_{0}, fm	a, fm	κ, fm^{2}
243	n	46.0	1.26	0.72	0.430
243	p	62.0	1.24	0.65	0.370

$$
\beta_{2}=0.26 \quad \beta_{4}=0.06
$$

Residual forces

The factorized multipole-multipole forces used in our calculations are rather schematic. However, these forces have been tested in the known regions of the nuclide chart. As a result we know the values of the interaction constants determined for the rare earth and actinide regions. At the same time we know from the selfconsistent estimates of the interaction constants that they are smooth functions of the mass number. Therefore we can extrapolate the interaction constants from the known regions of Z and A to nuclei with $Z \sim 100$.

Residual forces

$$
\begin{array}{r}
V_{\text {pair }}=-\sum_{\tau=p, n} G_{\tau} \sum_{q, q^{\prime} \in \tau} a_{q+}^{+} a_{q-}^{+} a_{q^{\prime}-} a_{q^{\prime}+}, \\
V_{M}^{p h}=-\frac{1}{2} \sum_{\tau} \sum_{\lambda \mu \sigma}\left(\kappa_{0}^{\lambda \mu}+\rho(\tau) \kappa_{1}^{\lambda \mu}\right) M_{\lambda \mu \sigma}^{+}(\tau) M_{\lambda \mu \sigma}(\tau), \quad \rho(\tau)= \pm 1, \\
V_{M}^{p p}=-\frac{1}{2} \sum_{\tau} \sum_{\lambda \mu \sigma} G_{\tau}^{\lambda \mu} P_{\lambda \mu \sigma}^{+}(\tau) P_{\lambda \mu \sigma}(\tau), \\
M_{\lambda \mu \sigma}^{+}(\tau)=\sum_{q_{1}, q_{2}, \sigma_{1}, \sigma_{2} \in \tau}\left\langle q_{1} \sigma_{1}\right| R_{\lambda}(r) Y_{\lambda \mu \sigma}\left|q_{2} \sigma_{2}\right\rangle a_{q_{1} \sigma_{1}}^{+} a_{q_{2} \sigma_{2}}, \\
P_{\lambda \mu \sigma}^{+}(\tau)=\sum_{q_{1}, q_{2}, \sigma_{1}, \sigma_{2} \in \tau}\left\langle q_{1} \sigma_{1}\right| R_{\lambda}(r) Y_{\lambda \mu \sigma}\left|q_{2} \sigma_{2}\right\rangle a_{q_{1} \sigma_{1}}^{+} \sigma_{2} a_{q_{2}-\sigma_{2}}^{+}, \\
R_{\lambda}(r)=\frac{d}{d r} V_{W S}(r),
\end{array}
$$

Structure of some low-lying two- quasiparticle and collective octupole states in nuclei with $\mathrm{Z} \sim 100$

The structure of nuclei which have not been investigated yet or whose investigations are just started is interesting because we do not exclude a manifestation of the features which have not been observed in the well-investigated regions of the nuclide chart.

$K^{\pi}=8^{-}$states

Experiment

Eur. Phys, J. A 33, 327-331 (2007)
DOI 10.1140/epja/i2007-10469-3

The European
PHYSICAL JOURNAL A

Identification of a K isomer in ${ }^{252} \mathrm{No}$
B. Sulignano ${ }^{1}$, S. Heinz ${ }^{1}$, F.P. Heßberger ${ }^{1, \mathrm{a}}$, S. Hofmann ${ }^{1,2}$, D. Ackermann ${ }^{1}$, S. Antalic ${ }^{3}$, B. Kindler ${ }^{1}$, I. Kojouharov ${ }^{1}$, P. Kuusiniemi ${ }^{4}$, B. Lommel ${ }^{1}$, R. Mann ${ }^{1}$, K. Nishio ${ }^{5}$, A.G. Popeko ${ }^{6}$, S. Saro ${ }^{3}$, B. Streicher ${ }^{3}$, M. Venhart ${ }^{3}$, and A.V. Yeremin ${ }^{6}$

Experiment

Experiment

$$
\mathbf{K}^{\pi=(14+)}
$$

\checkmark assignment is tentative, but the isomer is firmly placed above the 8 - one
S.K. Tandel et al., Phys. Rev. Lett. 97 (2006)
R.D. Herzberg et al., Nature 442 (2006)

Experiment

$K^{\pi}=8^{-}$states

Nucleus	$E\left(K^{\pi}=8^{-}\right)$		$K^{\pi}=8^{-}$	$E\left(K^{\pi}=8^{-}\right)$
	exp, keV	2qp, keV	Structure	$\kappa=0.021$
${ }^{246} \mathrm{Cm}$	1179	1200	$\mathrm{nn} \mathrm{7/2[624]} \otimes 9 / 2[734]$	1174
${ }^{248} \mathrm{Cf}$	-	1100	$\mathrm{nn} \mathrm{7/2[624]} \mathrm{\otimes 9/2[734]}$	1082
${ }^{250} \mathrm{Fm}$	1195	1200	$\mathrm{nn} \mathrm{7/2[624]} \mathrm{\otimes 9/2[734]}$	1174
${ }^{252} \mathrm{No}$	1254	1300	$\mathrm{nn} \mathrm{7/2[624]} \mathrm{\otimes 9/2[734]}$	1244
-		1336	$\mathrm{pp} \mathrm{7/2[514]} \mathrm{\otimes 9/2[624]}$	
${ }^{254} \mathrm{Rf}$	-	1081	$\mathrm{nn} \mathrm{7/2[624]} \otimes 9 / 2[734]$	1060
${ }^{248} \mathrm{Cm}$	-	1300	$\mathrm{nn} 7 / 2[613] \otimes 9 / 2[734]$	1300
${ }^{250} \mathrm{Cf}$	-	1392	$\mathrm{nn} \mathrm{7/2[613]} \mathrm{\otimes 9/2[734]}$	1392
${ }^{252} \mathrm{Fm}$	-	1304	$\mathrm{nn} \mathrm{7/2[613]} \mathrm{\otimes 9/2[734]}$	1304
${ }^{254} \mathrm{No}$	1293	1300	$\mathrm{pp} 7 / 2[514] \otimes 9 / 2[624]$	1249
-		1400	$\mathrm{nn} \mathrm{7/2[613]} \mathrm{\otimes 9/2[734]}$	
${ }^{256} \mathrm{Rf}$	-	1394	$\mathrm{nn} \mathrm{7/2[613]} \mathrm{\otimes 9/2[734]}$	1393

$K^{\pi}=8^{-}$states

Nucleus	$E\left(K^{\pi}=8^{-}\right)$		$K^{\pi}=8^{-}$ Structure	$\begin{gathered} E\left(K^{\pi}=8^{-}\right) \\ \kappa=0.021 \end{gathered}$
	exp, keV	2qp, keV		
${ }^{252} \mathrm{Cf}$	-	1521	nn 7/2[613] $\otimes 9 / 2[734]$	1521
${ }^{254} \mathrm{Fm}$	-	1489	nn 7/2[613] $\otimes 9 / 2[734]$	1489
${ }^{258} \mathrm{Rf}$	-	1557	pp 7/2[514] \otimes 9/2[734]	1507
${ }^{260} \mathrm{Rf}$	-	1508	pp 7/2[514] \otimes 9/2[624]	1459

$K^{\pi}=8^{-}$states

In the majority of cases, the lowest 8^{-}states are the neutron two-quasiparticle states. Exceptions are the cases of 254 No and 260Rf where the lowest 8- states are the proton twoquasiparticle states. However, in the cases of 252No and 258Rf, the proton two-quasiparticle states are located very near to the neutron two- quasiparticle states. The $\mathrm{N}=152$ gap in the neutron s.p. spectrum shifts the neutron two- quasiparticle states to higher energies in 254 No and 260Rf and favours low energy proton two- quasiparticle states.

Hexadecupole excitations with $K^{\pi}=3^{+}$

Nucleus	$E\left(K^{\pi}=3^{+}\right)$		Structure (in \%)	
	exp, keV	cal, keV		
${ }^{246} \mathrm{Cm}$	-	1422	nn 7/2[624] $\otimes 1 / 2[631]$	21
			nn 7/2[624] $\otimes 1 / 2[620]$	18
			nn 7/2[613] $\otimes 1 / 2[620]$	13
${ }^{248} \mathrm{Cf}$	-	1622	nn 7/2[624] $\otimes 1 / 2[620]$	53
			nn 7/2[624] $\otimes 1 / 2[631]$	20
${ }^{250} \mathrm{Fm}$	-	1604	nn 7/2[624] $\otimes 1 / 2[620]$	24
			nn 7/2[624] $\otimes 1 / 2[631]$	22
			pp 5/2[512] $\otimes 1 / 2[521]$	14
			nn 7/2[613] $\otimes 1 / 2[620]$	11
${ }^{252}$ No	-	1094	pp 7/2[514] $\otimes 1 / 2[521]$	75
			pp 5/2[512] $\otimes 1 / 2[521]$	5
${ }^{254} \mathrm{Rf}$	-	1072	pp 7/2[514] $\otimes 1 / 2[521]$	41
			pp 5/2[512] $\otimes 1 / 2[521]$	32

$K^{\pi}=3^{+}$states

Nucleus	$E\left(K^{\pi}=3^{+}\right)$		Structure (in \%)	
	exp, keV	cal, keV		
${ }^{248} \mathrm{Cm}$	-	1431	nn 7/2[613] $\otimes 1 / 2[620]$	57
			nn 7/2[624] $\otimes 1 / 2[620]$	20
${ }^{250} \mathrm{Cf}$	-	1424	nn 7/2[613] $\otimes 1 / 2[620]$	57
			nn 7/2[624] $\otimes 1 / 2[620]$	20
${ }^{252} \mathrm{Fm}$	-	1430	nn 7/2[613] $\otimes 1 / 2[620]$	51
			nn 7/2[624] $\otimes 1 / 2[620]$	14
			pp 7/2[514] $\otimes 1 / 2[521]$	7
${ }^{254}$ No	988	992	nn 7/2[613] $\otimes 1 / 2[620]$	7
			pp 7/2[514] $\otimes 1 / 2[521]$	71
			pp 5/2[512] $\otimes 1 / 2[521]$	6
${ }^{256} \mathrm{Rf}$	-	968	nn 7/2[613] $\otimes 1 / 2[620]$	13
			pp 7/2[514] $\otimes 1 / 2[521]$	37
			pp 5/2[512] $\otimes 1 / 2[521]$	29

$K^{\pi}=3^{+}$states

Nucleus	$E\left(K^{\pi}=3^{+}\right)$		Structure (in \%)	
	exp, keV	cal, keV		
${ }^{252} \mathrm{Cf}$	970	911	nn 7/2[613] $\otimes 1 / 2[620]$	84
${ }^{254} \mathrm{Fm}$	-	845	nn 7/2[613] $\otimes 1 / 2[620]$	83
			nn 9/2[615] $\otimes 3 / 2[622]$	3
${ }^{258} \mathrm{Rf}$	-	751	nn 7/2[613] $\otimes 1 / 2[620]$	56
			pp 7/2[514] $\otimes 1 / 2[521]$	16
			pp 5/2[512] $\otimes 1 / 2[521]$	7
${ }^{260} \mathrm{Rf}$	-	672	nn 7/2[613] $\otimes 1 / 2[620]$	35
			nn 11/2[615] $\otimes 5 / 2[622]$	15
			pp 7/2[514] $\otimes 1 / 2[521]$	19

$K^{\pi}=3^{+}$states

Collective states

- Especially interesting are the low-lying nuclear collective excitations which tell us about the softness of a nucleus with respect to some collective modes. There is already experimental information on some of these states. Study of the collective states gives an information about residual forces acting among nucleons.
- The low-lying octupole states play an important role in the structure of the well deformed axially symmetric nuclei. The interesting examples can be found among the rare earth nuclei and the actinides. The appearance of the low-lying octupole excitations can be related to the alphaclustering of nuclei.

Octupole vibrations $K^{\pi}=0^{-}, 1^{-}, 2^{-}$states

Nucleus	$E\left(K^{\pi}=2^{-}\right)$		$E\left(K^{\pi}=1^{-}\right)$		$E\left(K^{\pi}=0^{-}\right)$	
	exp	cal	exp	cal	exp	cal
${ }^{244} \mathrm{Cm}_{148}$	-	864	-	1297	-	618
${ }^{252} \mathrm{Rf}_{148}$	-	633	-	1368	-	1032
${ }^{246} \mathrm{Cm}_{150}$	842	949	1079	1047	1250	1013
${ }^{248} \mathrm{Cf}_{150}$	592	612	-	1073	-	1064
${ }^{250} \mathrm{Fm}_{150}$	-	1061	-	1090	-	1061
${ }^{252} \mathrm{No}_{150}$	930	998	-	1089	-	1232
${ }^{254} \mathrm{Rf}_{150}$	-	746	-	1091	-	1355

$K^{\pi}=0^{-}, 1^{-}, 2^{-}$states

Nucleus	$E\left(K^{\pi}=2^{-}\right)$		$E\left(K^{\pi}=1^{-}\right)$		$E\left(K^{\pi}=0^{-}\right)$	
	exp	cal	exp	cal	exp	cal
${ }^{248} \mathrm{Cm}_{152}$	-	1055	-	1157	1049	1244
${ }^{250} \mathrm{Cf}_{152}$	872	724	1176	1184	1335	1288
${ }^{252} \mathrm{Fm}_{152}$	-	1168	-	1200	-	1250
${ }^{254} \mathrm{No}_{152}$	-	1124	-	1197	-	1424
${ }^{252} \mathrm{Cf}_{154}$	831	689	-	1423	-	1412
${ }^{254} \mathrm{Fm}_{154}$	-	1061	-	1435	-	1349

$K^{\pi}=0^{-}, 1^{-}, 2^{-}$states

Summary

We have investigated excited states with
$K^{\pi}=8^{-}, 3^{+}, 0^{-}, 1^{-}, 2^{-}$.

- The states with $K^{\pi}=8^{-}$are the pure two-quasiparticle states. It means that their energies are very sensitive to the single particle level scheme near the Fermi surface. However the blocking effect is very important for the calculations of the energies of these states.
- The experimental energies of the $K^{\pi}=3^{+}$states cannot be described without inclusion into consideration of the hexadecapole residual forces. To describe the energies of the $K^{\pi}=3^{+}$states we have taken practically the same interaction constant as was used before for the rare earths nuclei and the light actinides.

Summary

- The energies of the collective $K^{\pi}=0^{-}, 1^{-}, 2^{-}$states have been calculated taking into account octupole residual forces with the interaction constant which is the same for all considered K^{π}. The value of this constant is close to the value used before for the rare earth and the light actinide nuclei. For the majority of the considered nuclei the lowest ones among the octupole excitations are the 2^{-}states. These states are especially low in the isotopes of Cf and Rf. In the other considered nuclei, the energies of the 2^{-} states are close to 1 MeV .

FIG. 2. Schematic illustration of the energies of the $K^{\pi}=0^{-}, 1^{-}, 2^{-}$octupole vibrational bands as a function of the fractional filling of the proton and neutron valence shells. The approximate locations of the nuclei which are shown here generally reproduce the observed ordering.

Odd-proton nuclei with Z ~ 100

TABLE III. Experimental $E_{\text {exp }}^{*}$ and calculated $E_{\text {cal }}^{*}$ excitation energies and the structure of the excited states of ${ }^{249} \mathrm{Bk}$. The energies are given in keV . The experimental data are taken from [32]. $Q_{\lambda \mu}$ denotes a phonon of multipolarity $\lambda \mu$ and $i=1$.

J^{π}	$E_{\exp }^{*}$	$E_{\text {cal }}^{*}$	Structure
$7 / 2^{+}$	0	0	$7 / 2[633] 94 \%$
$3 / 2^{-}$	9	27	$3 / 2[521] 95 \%$
$5 / 2^{-}$		396	$5 / 2[523] 95 \%$
$1 / 2^{+}$	378	457	$1 / 2[660] 85 \%+3 / 2[651] \times Q_{22} 10 \%$
$5 / 2^{+}$	389	470	$5 / 2[642] 823 \%+5 / 2[642] \times Q_{20} 10 \%$
$3 / 2^{+}$		671	$3 / 2[651] 75 \%+1 / 2[660] \times Q_{22} 20 \%$
$1 / 2^{-}$	787	$1 / 2[530] 79 \%+5 / 2[642] \times Q_{32} 12 \%$	
$7 / 2^{-}$	879	$7 / 2[514] 96 \%$	
$1 / 2^{-}$		883	$1 / 2[521] 52 \%+3 / 2[521] \times Q_{22} 43 \%$
$9 / 2^{+}$	955	$9 / 2[624] 90 \%+5 / 2[512] \times Q_{32} 8 \%$	
$5 / 2^{-}$	1094	$3 / 2[402] 26 \%+7 / 2[633] \times Q_{22} 64 \%$	
$3 / 2^{+}$	1126	$3 / 2[521] \times Q_{22} 100 \%$	
$7 / 2^{-}$	1216	$\left.5 / 2[512] 65 \%+7 / 2[633] \times Q_{31} 15 \%+99 / 624\right] \times Q_{32} 13 \%$	
$1 / 2^{+}$	1252	$3 / 2[400] 14 \%+5 / 2[523] \times Q_{32} 12 \%$	
$5 / 2^{+}$	1284	$3 / 2[521] \times Q_{32} 51 \%+5 / 2[642] \times Q_{22} 19 \%+1 / 22 \%$	
$3 / 2^{-}$	1290	$1 / 2[660] \times Q_{22} 82 \%+5 / 2[402] 14 \%$	

Odd-neutron nuclei with Z ~ 100

Summary

We have presented the results of calculations of the excitation energies and the structure of the low-lying states of the odd-mass nuclei with $Z \sim 100$. The quasiparticle-phonon interaction and the blocking effect have been taken into account in the calculations. It is shown that below 400 keV the main component in the structure of the states is a one-quasiparticle component. However, above 600 keV the excitation of the phonons and the quasiparticle-phonon interaction begin to play an important role in a description of the properties of the excited states of nuclei with $Z \sim 100$.

Thank you

