

CLEAR RESEARCH

Research Directions in the Frank Laboratory of Neutron Physics

V.Shvetsov

FLNP some numbers

457 staff members, 72 from member countries;

- 150 scientists;
- 140 engineers
- Average age 48 years;
- 18 M\$ annual budget; Numper of scientists

← → C 🖌 🗋 flnp.jinr.ru/25/

🗋 Foto.Mail.Ru 🗋 Go.Mail.Ru 🗋 Mail.Ru 🗋 Video.Mail.Ru 🧕 @MAIL.RU: поч...

About Laboratory

Scientific Directions

About Laboratory

Prizes »

Discoveries History »

Education »

<u>Найти</u>

06.07.2015

.

]	-
	-
	_
A new a wear parameter	
And a state of the	-
And the second s	-
S	2
	8
	2
Stream and a second	15

100000

...........

14/07/2011

17/10/2011

beams.

Results of physical start-up of pulsed reactor IBR-2M. Report of chief engineer of FLNP A.V.Vinogradov at the PAC Meeting on Condensed Matter 27-28.06.11

IBR-2 Pulsed Reactor

20/02/2011

Modernization of IBR-2 has been completed! Physical start-up of the reactor is in progress. On 04.02.2011 at 12.35 reactor IBR-2M reached subcritical conditions for delayed neutrons with accelerating period of about 300 s and power of 10 W. More>>

The IBR-2 reactor achieved the rated power of 2MW on October 12, 2011 at 14.34. The program of power startup has been completed and the reactor operates at 2MW for test physical experiments at extracted neutron

Web-site for proposal submission for IBR-2 ibr-2.jinr.ru

Current power of the IBR-2 reactor and state of the shutters

Local Network Info

Work schedule of the IBR-2 reactor in 2012

STC:

Annual Reports

Seminars:

Conferences:

Booklet FLNP

BRAZIL-JINR FORUM, Dubna, June 15-19, 2015

IREN Facility

Issues Archives

Virtual excursion to IBR-2M spectrometers http://uc2.jinr.ru/pano/Inf/

-

BRAZIL-JINR FORUM, Dubna, June 15-19, 2015

Virtual excursion to IREN facility http://uc2.jinr.ru/pano/iren/

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Z

FLNP research directions

- Two scientific directions:
 - -Neutron nuclear physics;
 - -Condensed matter physics;
- Methodic;
- Basic facilities:
 - -IBR-2M;
 - -IREN;

JINR Directorate members at the reactor hall

Loading of first fuel assembly into the active zone

First power stage was started on July 5 2011

06.07.2015

Γ	
Average power, MW	2
Burst power, MW	1850
Fuel	PuO ₂
Number of fuel assemblies	69
Maximum burnup, %	9
Pulse repetition rate, Hz	5; 10
Pulse half-width, µs: fast neutrons thermal neutrons	240 320
Rotation rate, rev/min: main reflector auxiliary reflector	600 300
MMR and AMR material	nickel + steel
MR service life, hours	55000
Background, %	7.5
Thermal neutron flux density from the surface of the moderator*: - time average - burst maximum	~10 ¹³ n/cm ² ·s ~10 ¹⁶ n/cm ² ·s

* More precise data on the thermal neutron flux density after the modernization will be available when the reactor operates at full power.

Complex of moderators of the IBR-2 reactor

The neutron moderators with cold part slow down neutrons on 9 orders of magnitude. (from the energy of MeV (reactor core) down to meV (moderator surface))

NANDA

3. Fuel assembly,

Z

OINT INSTITUTE OR NUCLEAR RESEARCH

4. Stationary reflector,

- 7. Water moderators,
- 8. Control rods;

Solid mesitylene as a material for cold moderators

T_m = 227 K

T_m = 225 K

Mixture with m-xylene or pseudocumene is of glassy structure, and has good neutron thermalization property.

Principal scheme of the IBR-2 moderator system

The full scaled model of the conveying path and technological system of the IBR-2 cryogenic moderator

1 – chamber-imitator of cryogenic moderator, 2 –thermal exchanger with helium blower, 3 - cryogenic pipelines from\to refrigerator, 4 – charging device, 5 – transport cryogenic pipeline

View through windows into the chamber

Completely loaded chamber (18 cm x 18 cm x 4 cm) by beads. Temperature inside is ~50K (1 l of volume of cryogenic moderator is ~ 24 000 of beads, d=3.8 mm)

Bi-spectral moderator for beams 7,8,10,11

TP

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Bi-spectral moderator for beams 7,8,10,11

Gain factor of CM at T=30K.

Measurements of spectra change after 7 days of irradiation

OINT INSTITUTE OR NUCLEAR RESEARCH

7 days of irradiation

IREN facility

JOINT INSTITUTE FOR NUCLEAR RESEARCH

06.07.2015

The priority directions of fundamental research :

Nanoscale physics

Physics and Chemistry of Functional Materials

JOINT INSTITUTE FOR NUCLEAR RESEARCH

The priority directions of applied research:

• Structural characterization of functional materials used in different (nano)technologies

 Non-destructive control of residual stresses and internal organization of bulk materials and products

• Texture analysis of geomaterials and constructional materials

OR NUCLEAR RESEARCH

Structural organization of bioactive fullerene derivatives (FLNP JINR – KNU – MSU)

Rg=15.7(2) nm (3 month 0.004 Rg=18.4(8) nm (6 month) (j) d _{0.002} l(q), cm⁻¹ 0.1 30 r, nm 0.01 C60FAS 0.15 mg/ml (6 month) • 0.15 mg/ml (3 month) 1E-3 26 μg/ml (3 month) 0.1 q, nm⁻¹ **SANS**

AFM

(1000) (100) (100)

Yu.I.Prylutskyy, V.I.Petrenko, O.I.Ivankov, O.A.Kyzyma, L.A.Bulavin, O.O.Litsis, M.P.Evstigneev, V.V.Cherepanov, A.G.Naumovets, U.Ritter. *Langmuir* 30 (2014) 3967–3970. Kyzyma O.A., Tomchuk A.A., Bulavin L.A., Petrenko V.I., Almasy L., Korobov M.V., Volkov D.S., Koshlan` I.V., Koshlan` N.A., Blaha P., Avdeev M.V., Aksenov V.L. *J. Surface Invest.* (2014) in press.

29

Structural study of TiN hardening coatings

Reflection coefficients obtained by neutron and X-ray reflectometry and the scattering length density profile obtained from the experimental data for the TiN(36nm)/Si system.

06.07.2015

Vibrational dynamics of water withheld in graphene oxide

Experimental INS spectra and calculated amplitude weighted vibrational density of states (AWDOS) of graphene oxide obtained by DFT calculations taking into account interlayer water molecules.

BRAZIL DRużbicki K. D. Natkanie C.L. Chamical Physics Letters (2014).

A study of residual stresses in welds obtained by different beam welding metho<mark>ds</mark>

The layout of experiment for residual stress study in steel plate with LBW

in steel plate with laser beam welding

06.07.2015

Sample and detector position

Development of neutron tomography technique at neutron

imaging instrument

3D reconstruction of internal structure of Protosequoia cone (cretaceous period) from Paleontological Institute RAS

3D reconstruction of internal structure of the biotite gneiss sample from Kola Superdeep Borehole, depth 8802 m and its surface analogue

BRAZIL-JINR FORUM, Dubna, June 15-19, 2015

06.07.2015

Neutron nuclear physics

New klystron modulators assembling and testing April 14 – May 8 2015

06.07.2015

T

Fundamental symmetries in neutron induced reactions

Measurements of the P-odd asymmetry in neutron induced reactions at light nuclei;

⁶Li(n, α) ³H, $A_t = -(8.8 \pm 2.1) \cdot 10^{-8}$ ¹⁰B(n, α_1) ⁷Li* \rightarrow ⁷Li + γ , $A_{\gamma} = (0.7 \pm 2.3) \cdot 10^{-8}$

3

 Investigations of the T-odd effects in neutron induced fission: TRI and ROT effects studies;

 $W(\Omega) \sim 1 + \alpha_{PNC} \left(\sigma_n \cdot \mathbf{P_f} \right) + \alpha_{PC} \cdot \sigma_n \cdot \left[\mathbf{P_f} \ \mathbf{x} \ \mathbf{P_n} \right] + D_{TRI} \cdot \sigma_n \cdot \left[\mathbf{P_f} \ \mathbf{x} \ \mathbf{P_\alpha} \right] + D_{ROT} \cdot \sigma_n \cdot \left[\mathbf{P_f} \ \mathbf{x} \ \mathbf{P_\alpha} \right] \cdot \left(\mathbf{P_f} \cdot \mathbf{P_\alpha} \right)$

Experiments with tagged neutrons

UCN physics

Nonstationary quantum effects in neutron optics

UCN spectra at diffraction on stationary diffraction grating and rotating at 1500 and 2400 rpm (left-right)

Proposal of the new type UCN sourve

Applied research: NAA and detectors for space crafts

TFI

G

Methodical research

- Neutron spectrometers;
- Detectors;
- Sample environment;
- Hardware & software;
- Cryogenics;
- Network and computing;

06.07.2015

R RESEARCH

1D PSD 200x80 mm² Multi-purpose instrument

for neutron scattering measurements TH

Parameter	Value
Sensitive area	200 x 80 mm ²
Position resolution (FWHM)	∆x ≈ 1,8 mm
Sensitivity for thermal neutrons	60%
Range of neutron wavelength	0.4 Å – 12 🖘
Channel nonlinearity	>5%
Count rate	1 – 100 kHz
Readout	Delay lines

Diffraction spectra of the $(La_{0.1}Pr_{0.9})_{0.7}Ca_{0.3}Mn_{0.3}$ sample, measured at the channel No. At low temperatures it separated at FM-metallic and AFM-CO-insulating mesoscopic phases.

Spectrum of the MgO/(4.7nm)Fe/(4.7nm)V]10/[(1ML)Fe/(1ML)V]17/(36.5nm)V/(2nm)Pd multilaye r sample measured at the refletometer REFLEX (channel №9)

BRAZIL-JINR FORUM.

Dubna, June 15-19, 2015

JOINT INSTITUTE FOR NUCLEAR RESEARCH

06.07.2015

Neutron Spectrometer (NS)

Gamma Spectrometer

Neutron detectors at space

HEND

Neutron detectors at space

The first neutron mapping data from LEND

RESEARCH

FLNP and LRB of JINR are collaborating with Russian Space Research Institute since 1997. DAN device was proposed in 2003 as one of the scientific instruments onboard of the Mars Science Laboratory and in the beginning of 2004 after 06.07.2015non-advocating review was accepted by NASAa, June 15-19, 2015

Pulsed neutron Logging: idea belongs to G.N.Flerov. Fast neutrons from generator penetrates into the soil and moderated. Time profile of the slow neutron counter located above the soil drastically depends on the hydrogen content in the soil.

Dynamic Albedo of Neutrons (DAN) Russian detector onboard of the Curiosity Rover

DAN neutron

generator

Dynamic Albedo of Neutrons (DAN) Russian detector onboard of the Curiosity Rover: first data

During Curiosity landing top layer of soil was blown aside and some kind of scour appears (few centimeters depth). During sol21 Curiosity moved over the scour and DAN registered slight difference in thermal neutrons fluxes above the scour and out of it

Epithermal and thermal neutron detectors die-away inverse times during first month of Curiosity operation

Test site for planetary soils modeling

Ť

Thank you for your attention and welcome to FLNP JINR