BLTP, JINR

Non Abelian Composite Confiqurrations in AdS $_{4}$ Spacetime

Ya Shnir

Thanks to my collaborators: O.Kichakova, J.Kunz and E.Radu

Brazil-JINR Forum, 18 June 2015

Outline

- $\mathbf{S U}(2)$ solitons in AdS spacetime
- Monopoles and Bartnik-McKinnon solutions
- Thermodynamics of AdS Black Holes
- Hairy AdS Black Holes
- Self-gravitating SU(2) monopoles
- SU(2) monopoles and dyons in AdS spacetime
- Dyons in AdS Holography

Yang-Mills-Higgs Theory

$$
S=\frac{1}{2} \int d^{4} x\left\{\operatorname{Tr} \mathrm{~F}_{\mu \nu} \mathrm{F}^{\mu \nu}+\operatorname{Tr}\left(\mathrm{D}_{\mu} \Phi\right)\left(\mathrm{D}^{\mu} \Phi\right)-\mathrm{V}(\Phi)\right\}
$$

$$
\begin{aligned}
& F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i e\left[A_{\mu}, A_{\nu}\right] \\
& D_{\mu} \Phi=\partial_{\mu} \Phi+i e\left[A_{\mu}, \Phi\right] \\
& V(\Phi)=\lambda\left(\Phi^{2}-\eta^{2}\right)^{2}
\end{aligned}
$$

't Hooft-Polyakov static spherically symmetric solution: monopole

$$
\begin{aligned}
& \phi^{a}=\frac{r^{a}}{e r^{2}} H(e \eta r) \\
& A_{n}^{a}=\varepsilon_{a m n} \frac{r^{m}}{e r^{2}}(1-K(e \eta r)) \\
& M=-\int d^{3} x \sqrt{-g} T_{0}^{0} ; \\
& g=\int d^{3} x \sqrt{-g} \operatorname{Tr}\left({ }^{*} F^{0 n} D_{n} \Phi\right) ; \\
& Q=\int d^{3} x \sqrt{-g} \operatorname{Tr}\left(F^{0 n} D_{n} \Phi\right) ; \\
& J=2 \int d^{3} x \sqrt{-g} \operatorname{Tr}\left(F_{r \varphi} F^{r 0}+F_{\theta \varphi} F^{\theta 0}+D_{\varphi} \Phi D^{0} \Phi\right) ;
\end{aligned}
$$

Yang-Mills-Higgs Theory

$$
\begin{aligned}
& \quad S=\frac{1}{2} \int d^{4} x\left\{\operatorname{Tr} \mathrm{~F}_{\mu \nu} \mathrm{F}^{\mu \nu}+\operatorname{Tr}\left(\mathrm{D}_{\mu} \Phi\right)\left(\mathrm{D}^{\mu} \Phi\right)-\mathrm{V}(\Phi)\right\} \\
& F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i e\left[A_{\mu}, A_{\nu}\right] \\
& D_{\mu} \Phi=\partial_{\mu} \Phi+i e\left[A_{\mu}, \Phi\right] \\
& V(\Phi)=\lambda\left(\Phi^{2}-\eta^{2}\right)^{2}
\end{aligned}
$$

't Hooft-Polyakov static spherically symmetric solution: monopole

Hedgehog ansatz

Monopole core: $R_{c} \sim_{m}{ }^{-1}$

Localised solitons: Gravity vs Yang-Mills

Pure gravity (attraction)

Pure Yang-Mills (attraction/repulsion)

$$
L=-\frac{R}{16 \pi G}
$$

Lichenrowitz: there are black holes but there are no gravitational solitons, the only globally regular, asymptotically flat, static vacuum solution to the Einstein eqs with finite energy is Minkowski space.

$$
L=\frac{1}{2} \operatorname{Tr} F_{\mu \nu}^{2}
$$

Deser, Coleman: Classical Yang-Mills theory in 3+1 dim is scale invariant there is no soliton solutions

Israel's theorem: Static Einstein-Maxwell black holes are spherically symmetric

'No-hair' theorem:
Stationary black holes are completely characterized by their mass \mathbf{M}, charge \mathbf{Q} and angular momentum J

Einstein-Yang-Mills model

$$
S=\frac{1}{2} \int d^{4} x \sqrt{-g}\left\{(R-2 \Lambda)-\operatorname{Tr} \mathrm{F}_{\mu \nu} \mathrm{F}^{\mu \nu}\right\}
$$

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda g_{\mu \nu}=T_{\mu \nu} ; \quad D_{\mu} F_{\nu}^{\mu}=\nabla_{\mu} F_{\nu}^{\mu}+\left[A_{\mu}, F_{\nu}^{\mu}\right]=0
$$

Spherical symmetry:

$$
d s^{2}=-\sigma^{2}(r) N(r) d t^{2}+\frac{1}{N(r)} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

$$
A_{k}^{a}=\varepsilon_{i a k} \frac{x^{k}}{r^{2}}(w(r)-1)
$$

The Bartnik-McKinnon solitons (1988)

- Found numerically by the shooting method;
- The solution is globally regular;
- Analytic proof of existence of solutions of the differential equation;

Gauge function $\boldsymbol{\omega}(\mathbf{r})$ has at least one zero, the solutions are characterized by the number of nodes of the $\omega(\mathbf{r})$

Properties of the solutions

Dimensionless variables:

$\mathscr{X}=\frac{e}{\sqrt{4 \pi G}} r \sim \frac{r}{l_{P l}} ; \quad \quad \sim M=e M \sqrt{M} \frac{G}{4 \pi} \sim \frac{M}{M_{P l}}$ $M_{P l} \sim 1 / \sqrt{G} ; \quad l_{P l} \sim \sqrt{G}$

- Region I: Yang-Mills field is almost trivial, the metric is close to Schwarzchild
- Region II: Yang-Mills field corresponds to monopole the metric is almost Reissner-Nordström
- Region III: Yang-Mills field is almost trivial, the metric is asymptotically Schwarzchild

All Bartnik-McKinnon configurations are sphalerons

Galtsov, Volkov: There are EYM black hole solutions with long-range non-abelian fields (hairy black holes)

BM solutions are static asymptotically flat gravitationally bound EYM sphaleron solutions; the exterior of the limiting solution approaches RN black hole

Generalised Bartnik-McKinnon solitons

Axial symmetry:

$$
d s^{2}=-f d t^{2}+\frac{m}{f}\left(d r^{2}+r^{2} d \theta^{2}\right)+\frac{l}{f} r^{2} \sin ^{2} \theta d \varphi^{2}
$$

$$
A_{\mu} d x^{\mu}=\left(\frac{K_{1}}{r} d r+\left(1-K_{2}\right) d \theta\right) \frac{\tau_{\varphi}^{(n)}}{2 e}-n \sin \theta\left(K_{3} \frac{\tau_{r}^{(n, k)}}{2 e}+\left(1-K_{4}\right) \frac{\tau_{\theta}^{(n, k)}}{2 e}\right) d \varphi
$$

Self-gravitating Dyons

- $n=1, m=1$

Branch of gravitating solutions links the monopole to the RN black hole
Dimensionless parameters of the model: $\alpha^{2}=4 \pi^{2} G \eta^{2}, \beta^{2}=\mathrm{e}^{2} / \eta$

- $\mathbf{n = 1 , m = 2 , 3 . . ~ B r a n c h ~ o f ~ g r a v i t a t i n g ~ M A - c h a i n s ~ i s ~ l i n k e d ~ t o ~ t h e ~ B M ~ s o l u t i o n s ~}$

From gravitating Dyons to Bartnik-MacKinnon solutions

As gravity increases, the second branch of graviting axially symmetric n-MA chain evolve toward composite system of a Bartnik-McKinnon solution of EYM theory in the inner region and an outer $\mathbf{n - 2} \mathbf{- 2}$ flat space solution of

AdS Bartnik-McKinnon solitons

(Maison, Winstanley, Radu, Bjoraker, Hosotani et al)

- Found numerically: There are continous families of solutions;
- Boundary conditions on the gauge function $\omega(\mathbf{r})$ can be relaxed: $\omega(\mathbf{r})=1-\omega_{0}$
- Gauge function $\boldsymbol{\omega}(\mathbf{r})$ may have no zero, the solutions possess a non-integer non-topological magnetic charge $\mathrm{Q}_{\mathrm{g}}=\mathrm{n}\left(1-\omega_{0}{ }^{2}\right)$
- There are rotating and electrically charged BM solitons
- There are stable configurations, both colored black holes and self-gravitating lumps

Fixed AdS space
Asymptotically AdS space
Limiting AdS

AdS SU(2) EYM theory

$$
A_{\mu} d x^{\mu}=\left(\frac{K_{1}}{r} d r+\left(1-K_{2}\right) d \theta\right) \frac{\tau_{\varphi}^{(n)}}{2 e}-n \sin \theta\left(K_{3} \frac{\tau_{r}^{(n, k)}}{2 e}+\left(1-K_{4}\right) \frac{\tau_{\theta}^{(n, k)}}{2 e}\right) d \varphi
$$

Boundary conditions:

- Odd m :

$$
\begin{aligned}
& H_{1}=0, \quad H_{2}=1-m+w_{0} \\
& H_{3}=\frac{\cos \theta}{\sin \theta}(\cos ((m-1) \theta)-1)+w_{0} \sin ((m-1) \theta) \\
& H_{4}=-\frac{\cos \theta}{\sin \theta} \sin ((m-1) \theta)+w_{0} \cos ((m-1) \theta)
\end{aligned}
$$

Magnetic charge: $Q_{M}=n\left|1-w_{0}^{2}\right|$

> Nonquantized Monopoles

- Even $m: \quad H_{1}=0, \quad H_{2}=1-m w_{0}$

$$
H_{3}=w_{0} \frac{\cos (m-1) \theta-\cos \theta}{\sin \theta} ; \quad H_{4}=1-w_{0}-w_{0} \frac{\sin (m-1) \theta}{\sin \theta}
$$

Magnetic charge: $Q_{M}=\frac{m n}{2}\left|\left(1-w_{0}\right) w_{0}\right|$

AdS - YM composite solitons

Probe limit: $d s^{2}=-N(r) d t^{2}+\frac{d r^{2}}{N(r)}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right) ; \quad N(r)=1+\frac{r^{2}}{l^{2}}$

- $\mathrm{n}=4$ and $\mathrm{n}=6$ solution consists of 2 and 3 constituents, respectively, each of them representing a $\mathrm{n}=2$ soliton.
- Each of the components of the composite configuration possesses a magnetic dipole moment, whose magnitude increases with n
- Dipole-dipole interaction energy becomes a significant part of the total energy

Bartnik-McKinnon solitons in asympotically AdS space

Axial symmetry in the bulk:

$$
d s^{2}=-f\left(1-\frac{\Lambda}{3} r^{2}\right) d t^{2}+\frac{m}{f}\left(\frac{d r^{2}}{1-\frac{\Lambda}{3} r^{2}}+r^{2} d \theta^{2}\right)+\frac{l}{f} r^{2} \sin ^{2} \theta d \varphi^{2}
$$

Gravitational coupling: $\quad \alpha=\frac{\sqrt{4 \pi G}}{e l} \rightarrow 0$

Two branches of the solutions

$$
l \rightarrow \infty(\Lambda \rightarrow 0)
$$

Introducing temperature: AdS black holes

- Hawking temperature is dual to the temperature of the system on the boundary in $d=3$
- Temperature of the black hole is proportional to the surface gravity, $T=K / 2 \pi$
- Entropy of a black hole is proportional to surface area of event horizon
- Dynamics in the bulk yields the boundary thermal field theory including non-equilibrium processes (dissipation)

AdS Schwarzschield:

$$
d s^{2}=\frac{d r^{2}}{N(r)}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)-N(r) \sigma(r)^{2} d t^{2} ; \quad N(r)=1-\frac{2 m(r)}{r}-\frac{\Lambda}{3} r^{2}
$$

Spherical symmetry: $A_{k}^{a}=\varepsilon_{i a k} \frac{x^{k}}{r^{2}}(w(r)-1) \quad$ ADM mass: $\lim _{r \rightarrow \infty} m(r)=M$
AdS Reissner-Nordström: $\quad N(r)=1-\frac{2 m(r)}{r}+\frac{Q^{2}}{r^{2}}-\frac{\Lambda}{3} r^{2}$
Magnetic charge:

$$
Q=\frac{1}{4 \pi} \int_{S^{2}} d \theta d \phi \operatorname{Tr}\left(F_{\theta \phi} \cdot \tau_{r}\right)
$$

Thermodynamics of AdS Black Holes

- Temperature: $T=\frac{1}{4 \pi r_{h}}\left(1-\frac{Q^{2}}{r^{2}}+\frac{3 r_{h}^{2}}{l^{2}}\right) \quad$ - Entropy: $S=4 \pi r_{h}^{2}$
- Free energy: $F=M-T S \quad$ Canonical ansemble $-\boldsymbol{Q}_{\mathrm{m}}$ is fixed

Two exact solutions:

$$
\begin{array}{cc}
\omega=1 \quad N(r)=\left(1-\frac{r_{h}}{r}\right)\left(1+\frac{1}{l^{2}}\left[r^{2}+r r_{h}+r_{h}^{2}\right]\right) ; \quad \sigma(r)=1 & \text { SAdS } \\
Q=0, \quad M=\frac{r_{h}}{2}\left(1+\frac{r_{h}^{2}}{l^{2}}\right) \\
\omega=0 \quad N(r)=\left(1-\frac{r_{h}}{r}\right)\left(1+\frac{1}{l^{2}}\left[r^{2}+r r_{h}+r_{h}^{2}\right]-\frac{\alpha^{2}}{r r_{h}}\right) ; \quad \sigma(r)=1 & \text { RNAdS } \\
Q=1, \quad M=\frac{1}{2 r_{h}}\left(\alpha^{2}+r_{h}^{2}\left(1+\frac{r_{h}^{2}}{l^{2}}\right)\right)
\end{array}
$$

Thermodynamics of RNAdS Black Holes

-There is soliton limit of the nA RNAdS solutions: as $r_{h} \rightarrow 0 \quad \omega(r)=1 / \sqrt{1+\frac{r^{2}}{l^{2}}}$

- Free energy of all hairy solutions is minimized by the RNAdS solution

Thermodynamics of SAdS Black Holes

- Hairy solitons with $Q=0$ possess non-vanishing magnetic field in the bulk
- Hairy BH do not appear as perturbation of the SAdS solutions
- The branch structure of the solutions: $\alpha=\sqrt{4 \pi G} / e l \rightarrow 0$
- First law of thermodynamics is satisfied by the generic hairy solutions:

$$
\mathrm{dM}=\mathrm{TdS}+\Phi \mathrm{dQ}
$$

Einstein-deTurck Equations

(M. Headrick, S. Kitchen and T. Wiseman, Class. Quant. Grav. 27 (2010) 035002)

Harmonic Einstein equations:

$$
R_{\mu \nu}-\nabla_{(\mu} \xi_{\nu)}-\Lambda g_{\mu \nu}=2 \alpha^{2} T_{\mu \nu}
$$

DeTurck choice of ξ :

$$
\xi^{\mu}=g^{\nu \rho}\left(\Gamma_{\nu \rho}^{\mu}-\bar{\Gamma}_{\nu \rho}^{\mu}\right)
$$

$$
\begin{array}{r}
\text { Spacetime metric: } d s^{2}=f_{1}(r, \theta) \frac{d r^{2}}{N(r)}+S_{1}(r, \theta)\left(r d \theta+S_{2}(r, \theta) d r\right)^{2} \\
f_{2}(r, \theta) r^{2} \sin ^{2} \theta d \phi^{2}-f_{0}(r, \theta) N(r) d t^{2} \\
\text { Reference metric: } d s^{2}=\frac{d r^{2}}{N(r)}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)-N(r) d t^{2} \\
N(r)=1+\frac{r^{2}}{l^{2}}
\end{array}
$$

Advantage: better quality of the numerical results

AdS/gauge theory correspondence

-The dual gravitational system has at least one extra dimension z; the field theory properties can be extracted by working on the boundary.

The extra dimension z should be interpreted as an energy scale.

It represents the renormalisation group flow of the quantum field theory defined on the boundary.

The AdS/CFT correspondence "geometrises" the field theory energy scale.
\square Geometrisation: in the dual bulk gravitational description the energy scale is treated geometrically on an equal footing to the spatial directions of the boundary field theory


```
Classical Einstein gravity
d+1-dim space-time
```


AdS SU(2) EYMH theory

$$
\left.S=\frac{1}{2} \int d^{4} x \sqrt{-g}\left\{(R-2 \Lambda)-\operatorname{Tr} \mathrm{F}_{\mu \nu} \mathrm{F}^{\mu \nu}-\operatorname{Tr}\left(\mathrm{D}_{\mu} \Phi\right)\left(\mathrm{D}^{\mu} \Phi\right)-\mathrm{V}(\Phi)\right\}\right)
$$

(Maison, Breitenlocher, Shaposhnik, Moreno, Tong, Bolognesi, Kunz, Radu, Shnir..)

$\mathrm{V}=0$: \quad Gauge field $\mathrm{A}_{\mu} \Leftrightarrow$ triplet of conserved currents J_{μ}^{a} Scalar field $\phi^{\mathrm{a}} \Leftrightarrow$ scalar operators \mathcal{Q}^{a} BPS limit:

$$
\Phi^{a}(z) \rightarrow \eta^{a}+\frac{C^{a}}{z^{3}}+\ldots
$$

$\mathbf{S U (2)}$ global symmetry on the boundary is broken:

$$
\partial^{\mu} J_{\mu}^{a}=\varepsilon^{a b c} \eta^{b} \mathcal{Q}^{c} \quad \eta^{b}=\text { const } \Rightarrow U(1)
$$

Boundary CFT
$-\mathrm{V}<0$: Abelian symmetry in the bulk $\Leftrightarrow \mathbf{U}(1)$ conserved boundary current J_{μ}, massive gauge boson \Leftrightarrow charged spin-1 operator Scalar field $\Phi \Leftrightarrow$ relevant scalar operator

$$
\Phi^{a}(z) \rightarrow n^{a}\left(\eta+\frac{C_{0}}{z^{\Delta_{-}}}+\frac{C_{1}}{z^{\Delta_{+}}}+\ldots\right)
$$

- $\mathrm{V}>0$: Scalar field is irrelevant

Holographic AdS dyon

BPS limit: $V=0$

$$
\begin{aligned}
& A_{k}=B \varepsilon_{k i} x_{i}+\ldots \Longrightarrow L_{Q F T}(A)=A_{i} J_{i} \\
& \Phi^{a}=\eta^{a}+\frac{C^{a}}{r^{3}}+\ldots \Longrightarrow L_{Q F T}(\Phi)=\Phi \cdot \mathcal{O}(x) \\
& A_{0}^{a}=e \eta \hat{n}^{a}\left(\mu+\frac{Q}{r}+\ldots\right)
\end{aligned}
$$

On the boundary: $\mathrm{d}=2+1$ Abelian Quantum Field Theory which undergoes a phase transition exhibiting condensation below a critical temperature.

Abelian Higgs model at finite temperature

In the bulk we have:

- d=3+1 Yang-Mills-Higgs theory;

Holographic p-wave superconductors a Schwarzschild-AdS black hole

$$
\begin{aligned}
& d s^{2}=\frac{d r^{2}}{N(r)}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)-N(r) d t^{2} \\
& N(r)=1-\frac{\Lambda}{3} r^{2}-\frac{2 M}{r} \\
& N(r)=\left(1-\frac{r_{h}}{r}\right)\left[1-\frac{\Lambda}{3}\left(r^{2}+r r_{h}+r_{h}^{2}\right)\right]
\end{aligned}
$$

Dyons in AdS space

- $\Lambda=0$
- $\Lambda=-3$

The Higgs field on the boundary becomes a constant It does not qualify as a proper order parameter

Some more numerics..

Physics in the bulk/boundary

Interpretation: Phase transition in the bulk at $T=T_{\text {cr }}$

Bulk:

Boundary:

$$
\begin{aligned}
& L_{Q F T}(A)=A_{i} J_{i} \\
& L_{Q F T}(\Phi)=\Phi \cdot \mathcal{O}(x) \\
& J_{k}=0 ; B=0 \\
& \mathcal{O}=0
\end{aligned}
$$

-To the right of T_{cr} the conguration becomes trivial, $\mathrm{SU}(2)$ global symmetry is restored.

- To the left of $\mathrm{T}_{\text {cr }}$ the congurations, which correspond to v.e.v.'s in the dual field theory are non-trivial.
- There is a finite temperature continuous symmetry breaking transition.
- The system condenses below a critical temperature $\mathrm{T}_{\text {, }}$
- Fitting the curves one confirms that this is a second order phase transition:

$$
K_{1} \propto\left(T_{c r}-T\right)^{1 / 2} ; \quad H_{1} \propto\left(T_{c r}-T\right)
$$

Summary and Outlook

- We constructed generalized BM AdS solutions
- Using de Turck approach we obtained static axially symmetric dyonic solutions in AdS spacetime
- Dyonic black hole in AdS yields phase transition on the boundary at critical temperature
- Vortex condensation?

