BRAZIL-JINR FORUM "Frontiers in Nuclear, Elementary Particle, and Condensed Matter Physics" Dubna, Russia, June 15-19, 2015

Accelerator complex of the Flerov Laboratory: present and future (Project DRIBs-III)

> Andrey G. Popeko Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research

Basic directions of researches at FLNR

1. Heavy and superheavy nuclei

- > Synthesis and study of properties of superheavy elements
- > Chemistry of new elements
- > Fusion-fission and multi-nucleon transfer reactions
- > Mass-spectrometry and nuclear spectroscopy of SH nuclei

2. Light exotic nuclei

- > Properties and structure of light exotic nuclei
- > Reactions with exotic nuclei

3. Radiation effects and physical bases of nanotechnology

4. Accelerator technology

FLEROV LAB's ACCELERATORS ≈ 15,000 hours/year

U400M

U400

U200

MT-25

Plan to upgrade the facilities of the Flerov Laboratory (DRIBs, 2002)

DRIBs – I U400M – driver-accelerator Production target Beam transport line

DRIBs – I Transportation gallery Beam injection U400 – post accelerator

Chart of the Nuclides (decay modes)

156 158 160

Neutron number

GAS PHASE CHEMISTRY WITH ELEMENT 113

Whether the element 113 is a volatile metal? Experiment is running. Preliminary results – it is volatile.

DRIBs-II

MICROTRON MT-25 Electron energy: 25 MeV Beam intensity: 20 μ A γ -ray flux: 10¹⁴ s⁻¹ Target size: 30 × 15 mm² = 100g Fission rate: 1.3×10¹¹ s⁻¹

Yields of Kr and Xe isotopes in photofission of actinides at γ-energy of 25 MeV

Due to hard radiation conditions the project was stopped (not cancelled!)

Setup for ⁶He production study in ⁷Li(γ,p)⁶He reaction

DRIBs-I: experiments with 6He beam

Light superheavies

Breakdown of the N=8 shell in ¹⁰He.

Owing to specific angular and energy correlations of ¹⁰He decay products for the first time the **spin-parity assignment was made** for the low-lying states of ¹⁰He. The experimental data were interpreted as a superposition of 0^+ , 1^- and 2^+ states. The established level sequence shows that ¹⁰He is one more drip-line nucleus demonstrating the **shell structure breakdown**. ¹⁰He was produced in the **2n-transfer** reaction with the use of the **secondary** ⁸He beam and **cryogenic tritium target**: ³H(⁸He,*p*)¹⁰He.

That we have learnt:

- >SHE can be synthesized;
- >Chemistry of SHE can be studied;
- >We have only 12,000 hours beam time / year;
- **≻We need new facilities;**
- >We have not enough experimental space;
- > In the RIB-mode only one experiment can run;
- >We can not accelerate ions heavier than Xe;
- **>**Radiation safety requirements are strong;

Targets – radiation safety

Production cross-sections of heavy and super-heavy

What is beyond 118 element?

Heaviest target:
$${}^{249}Cf \rightarrow Z_{max} = 118$$

- > Heavier projectiles (⁵⁰Ti, ⁵⁴Cr, ⁵⁸Fe, ⁶⁴Ni)
- > Heavier targets (251 Cf, 254 Es -???);
- Symmetric reactions: ¹³⁶Xe+¹³⁶Xe, ¹³⁶Xe+¹⁵⁰Nd, ¹⁵⁰Nd, ¹⁵⁰Nd
- Multi–Nucleon–Exchange Reactions with RIB (??, or colliders – technique – (K4-K10)):
- > Nucleon transfer reactions ($^{136}Xe + ^{208}Pb$, $^{238}U + ^{248}Cm$).

Sufficient increasing of overall experiment efficiency is needed!

Alternative methods for synthesis of SHE

More intensive beam is needed

No chances for low-intensive beams of accelerated fission fragments like ¹³²Sn

 160 Gd + 186 W is a good testing reaction

Multi-nucleon transfer in damped collisions

In search of a new way to the Island of Stability

Production of neutron rich suuperheavy nuclei in transfer reactions

Super-heavy Element Factory @ FLNR the goal: high production rate of SHE

More beam time;
More beam current;
More transmission;
Less background;
More radiation safety.

Project DRIBs-III accepted for 2010 – 2016

Creation of SHE factory based on the high-intensity universal DC280 cyclotron (A≤238, E ≤ 10 MeV ·A, I ≤ 20 pµA) in a new separate radiation safety class II experimental building.
Creation of new generation experimental set-ups.
Construction of a special building for physical groundwork of nanotechnology (1500 m²), based on IC100 and U400M.

Further development proposed for 2017 – 2023

Completion of modernization of the cyclotron U400.
 Total reconstruction of the U400 experimental hall, including 6 radiation safe experimental caves.

- **Completion of modernization of the cyclotron U400M.**
- >Sharing of physical tasks between accelerators.
- **>**Reconstruction of the U200 cyclotron.

Basic facilities and SHE-factory

New 18 GHz Ion sources DECRIS-SC1, SC2

MIVOC-method (Metal Ions from VOlatile Compounds)

The vapour pressure of a compound should be about 10⁻³ torr Evaporation of a compound and its diffusion into the source take place without dissociation.

Working substance - C₂B₁₀H₁₂

Ti - $(CH_3)_5C_5Ti(CH_3)_3$ Fe - Fe $(C_5H_5)_2$; Ni - Ni $(C_5H_5)_2$ Cr - Cr $(CO)_6$; W - W $(CO)_6$

U-400 – ⁵⁸Fe ⁷⁺ - 40÷50 µA Material consumption ~ 3 mg/h

(~ 1.5 mg/h for 58Fe)

DC280-cyclotron – stand-alone SHE-factory

- Synthesis and study of properties of superheavy elements.
- Search for new reactions for SHEsynthesis.
- Chemistry of new elements.

DC280 (expected) E=4÷8 MeV/A				
lon	lon energy	Output intensity		
⁷ Li	4	1×10 ¹⁴		
¹⁸ O	8	1×10 ¹⁴		
⁴⁰ Ar	5	6×10 ¹³		
⁴⁸ Ca	5	0,6-1,2×10		
⁵⁴ Cr	5	2×10 ¹³		
⁵⁸ Fe	5	1×10 ¹³		
¹²⁴ Sn	5	2×10 ¹²		
¹³⁶ Xe	5	1×10 ¹⁴		
²³⁸ U	7	5×10 ¹⁰		

The magnet of DC280

DC280 Main Parameters

Ion source	DECRIS-4 - 14 GHz DECRIS-SC3 - 18 GHz
Injecting beam potential	Up to 100 kV
A/Z range	4÷7
Energy	4÷8 MeV/n
Magnetic field level	0.6÷1.35 T
K factor	280
Gap between plugs	400 mm
Valley/hill gap	500/208 mm/mm
Magnet weight	1000 t
Magnet power	300 kW
Dee voltage	2x130 kV
RF power consumption	2x30 kW
Flat-top dee voltage	2x14 kV

DC280 Parameters and Goals

	DC280 Parameter	Goals
1.	High injecting beam energy (up to 100 kV)	Shift of space charge limits for factor 30
2.	High gap in the center	Space for long spiral inflector
3.	Low magnetic field	Large starting radius. High turns separation. Low deflector voltage
4.	High acceleration rate	High turns separation.
5.	Flat-top system	High capture. Single orbit extraction. Beam quality.

Experimental Hall of the SHE-Factory radiation safety class-II

on-line: http://inflnr.jinr.ru/dc280.html

SHE Factory. Liquid radioactive waste tanks

- Fusion-fission;
- > Quasi-fission;
- Nuclear spectroscopy;
- New heavy isotopes;
- Multi nucleon transfer reactions;
- Sub-barrier fusion;
- Reactions with exotic nuclei
- > Structure of light exotic nuclei.

U400R CYCLOTRON stand-alone & post-accelerator

U400R (expected)				
Ion	Ion energy [MeV/A]	Output intensity		
⁶ He	2.8 ÷ 14	108		
⁸ He	1.6 ÷ 8	105		
⁷ Li	2-17	1×10 ¹⁴		
¹⁶ O	6,4 -27	1×10 ¹⁴		
⁴⁰ Ar	1-5,1	6×10 ¹³		
⁴⁸ Ca	1,6-11	1.5×10 ¹³		
⁵⁰ Ti	4,1-21	6×10 ¹²		
⁵⁸ Fe	1,2-7,5	6×10 ¹²		
⁸⁴ Kr	0,8-3,5	2×10 ¹²		
¹³² Xe	0,8-3,5	3×10 ¹²		
238U	1,5-8	5×10 ¹¹		

U400M CYCLOTRON stand-alone & driving accelerator

- Properties and structure of light exotic nuclei;
- > Astrophysics;
- > Reactions with exotic nuclei;
- Light neutron-rich nuclei;
- Deep inelastic scattering;
- Producing of RIBs.

U400M E=30 ÷ 50 MeV/A E=4.5 ÷ 9 MeV/A				
Ion	Ion energy [MeV/A]	Output intensity		
⁷ Li	35	6×10 ¹³		
¹⁸ O	33	1×10 ¹³		
⁴⁰ Ar	40	1×10 ¹²		
⁴⁸ Ca	5	6×10 ¹²		
⁵⁴ Cr	5	3×10 ¹²		
⁵⁸ Fe	5	3×10 ¹²		
¹²⁴ Sn	5	2×10 ¹¹		
¹³⁶ Xe	5	4×10 ¹¹		
238U	7	2×10 ¹⁰		

Instrumentation

New set-ups

- >New gas filled separators,
- >New separators-spectrometers,
- **Something for transfer reactions products,**
- **≻**Preseparator,
- ≻Gas catcher,
- ► Laser ionization,
- ► Fast radiochemical methods, ...

New FLNR gas-filled "physical" separator

New FLNR gas-filled "chemical" separator

Velocity filter SHELS

High transmission for asymmetric combinations (beams of ¹²C, ¹⁴N, ¹⁶O, ²²Ne) Availability for symmetric combinations ($^{136}Xe + {}^{136}Xe \rightarrow {}^{272}Hs^*$)

Mass-spectrometer MASHA

Fragment-separator ACCULINNA-2: assembling and testing.

Production of new heavy nuclei in the region of N=126

Reactions with $Q \approx 0$ are very favorable for proton transfer The use of 132Sn is even better !

New setup for selective laser ionization (project GaLS)

GABRIELA @ SHELS

GABRIELA 2015: Gamma detection efficiency estimations for new detector set up

Clover detector

Preliminary GEANT4 detector arrangement including a Clover and 4 EUROGAM phase-I. These surround the 10x10 cm² implantation detector (in blue) and its PCB (green). Right : A first estimate of the achievable singles efficiency as a function of photon energy f or a distributed source. First research experiment with accelerated ⁵⁰Ti beam at FLNR U400 cyclotron. ⁵⁰Ti beam intensity – 3x10¹² pps. Modernized VASSILISSA separator and neutron detector at the focal plane. ⁵⁰Ti + ²⁰⁸Pb = 2n + ²⁵⁶Rf more than 1500 events detected.

³He neutron detector at the focal plane of separator

For the first time: neutron multiplicity was measured for spontaneous fission of the ²⁵⁶Rf isotope.

TKE spectra of ²⁵⁶Rf s.f. fragments

Other projects are under preparation

Innovation projects in the Nanotechnology Centre

>A new roll-to roll etching facility for the development of new track-etch membranes

>Facilities for surface modification of nano-structured composite filmy materials

≻A diversified electron microscopy laboratory for performing the studies of micro- and nano-structured materials produced using ion beam modification methods

>A diversified laboratory for the studies of ion-induced radiation effects in matter, including AFM, optical spectroscopy, IR Raman spectroscopy, luminescence, and others

Full-scale realization off the DRIBs-III

Nuclear physics with stable & RI-beams

THANK YOU FOR YOUR ATTENTION !