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Outline

• Norm of an operator

• The abstract problem setup

– Maximal angle between subspaces

– The questions we answer

• Bounds on the shift of the spectrum (under offdiagonal perturbations)

• Review of known bounds on variation of spectral subspaces

We present rather general, abstract results that hold for operators on arbitrary

Hilbert spaces. Surely, these results can be also applied to quantummechanical

Hamiltonians.
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Recalling of the operator norm definition

If V is a bounded linear operator on a Hilbert space H, its norm
∥V∥ is given by

∥V∥= sup
∥ f∥=1

∥V f∥ (N.B.: sup = least upper bound).

For any f ∈ H we have ∥V f∥ ≤ ∥V∥∥ f∥.
If V is a selfadjoint (i.e. Hermitian) operator on H, and

mV = min spec(V ) and MV = max spec(V ),

then
∥V∥= max{|mV |, |MV |}.

Example 1. V = |ϕ⟩κ⟨ϕ | with ∥ϕ∥= 1, κ ∈ C =⇒ ∥V∥= |κ|.
Example 2. H = L2(R), (V f )(x) = V (x) f (x) with V (·) a bounded
function on R. In this case ∥V∥= sup

x∈R
|V (x)|.
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Let A be a selfadjoint operator on a separable Hilbert space H.
Assume that σ0 is an isolated subset of spec(A), i.e.

d := dist(σ0,σ1)> 0, where σ1 = spec(A)\σ0.

If V is a selfadjoint operator such that

∥V∥< d
2

(∗)

then the spectrum of the perturbed operator L = A+V will also
consist of two disjoint components ω0 and ω1:

spec(L) = ω0∪ω1, ωi = spec(L)∩O∥V∥(σi), i = 0,1.

Condition (∗) is sharp in the sense that, if ∥V∥ >
d
2
, the perturbed operator L may not have

separated parts of the spectrum at all.

Assuming (∗), let

P = EA(σ0) and Q = EL(ω0),

the corresponding spectral projections of A and L.
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For P = EA(σ0) and Q = EL(ω0), we address the following question:

(i) Is it true that under the single spectral condition

dist(σ0,σ1) = d > 0

the perturbation bound ∥V∥< d/2 necessarily implies

∥P−Q∥< 1? (Q1)

If not, then what is the best (largest) c in

∥V∥< cd

ensuring (Q1)?
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Geometrical interpretation. It is well known that

∥P−Q∥ ≤ 1

for any two orthogonal projections P and Q in the Hilbert space H.

Definition. Let HP = RanP and
HQ = RanQ. The quantity

θ(HP,HQ) := arcsin(∥P−Q∥)
is called the maximal angle between
the subspaces HP and HQ.

The concept of maximal angle is traced back at least to [Krein, Kras
noselsky, Milman (1948)]; [Dixmier (1949)].

Surely,
∥P−Q∥= sin

(
θ(HP,HQ)

)
.
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Definition. HP and HQ are in the acuteangle case if HP ̸= {0},
HQ ̸= {0}, and

θ(HP,HQ)<
π
2
.

Thus, equivalent geometric formulation of the question (i):

Do the conditions dist(σ0,σ1) = d > 0 and ∥V∥< d/2 always imply
that the spectral subspaces of A and L associated with the respec
tive unperturbed and perturbed spectral sets σ0 and ω0 are in the
acuteangle case?
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Return to P = EA(σ0) and Q = EL(ω0).

Provided (Q1) is answered and, thus, it is established that ∥P−Q∥< 1
holds, at least for

∥V∥< cd
with some constant c < 1/2, another important question arises:

(ii) What function M(x), x ∈ [0, c), is best possible in the bound

arcsin
(
∥P−Q∥

)
≤ M

(
∥V∥

d

)
? (Q2)

The estimating function M in (Q2) is required to be universal in the
sense that it should be the same for all selfadjoint A and V for
which the conditions dist(σ0,σ1) = d > 0 and ∥V∥< cd hold.
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Under the assumption that spec(A) = σ0∪σ1 and σ0∩σ1 = ∅ one
distinguishes the following three cases:

Generic case (G): The only condition dist(σ0,σ1) = d > 0.

Special case (S1): σ0 and σ1 are subordinated, conv(σ0)∩ conv(σ1) = ∅.

Special case (S2): One of the sets σ0 and σ1 lies in a finite gap of
the other one, say conv(σ0)∩σ1 = ∅.
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Known answers in the case of general s.a. perturbations

Recall, we assume spec(A) = σ0 ∪σ1, dist(σ0,σ1) = d > 0, ∥V∥ < d
2
,

ω0 = spec(L)∩O∥V∥(σ0), and P = EA(σ0), Q = EL(ω0).

(S1 & S2) The best constant c is equal just to 1/2. The optimal
function M is

M(x) =
1
2

arcsin(2x), x ∈ [0,1/2).

That is, for any s.a. V such that ∥V∥ < d/2 one has the (sharp)
bound

arcsin∥P−Q∥ ≤ 1
2

arcsin
2∥V∥

d
<

π
4
.

This is the essence of DavisKahan sin2θ Theorem, 1970.
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(G) The subspaces Ran(P) and Ran(Q) are in the acuteangle case,

∥P−Q∥< 1, provided ∥V∥<cS d, cS = 0.454839 . . .

[A. Seelmann (2013)], based on [S. Albeverio, A.K.M. (2011)];
Seelmann also gives the best known expression for M(x)]

In particular, there is a new sin2θ bound

arcsin∥P−Q∥ ≤ 1
2

arcsin
π∥V∥

d
<

π
4

if ∥V∥<1
π

d

[S. Albeverio, A.K.M. (2011)].

It remains the strongest known bound for ∥V∥ ≤ 4
π2+4

d.
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Graphs of the functions 2
π MKMM(x) [Kostrykin Makarov AKM, 2003], 2

π MMS(x) [Makarov Seelmann,

2010], 2
π MAM(x) [Albeverio AKM, 2011], and 2

π MS(x) [Seelmann, 2013]. The upper curve depicts

the graph of 2
π MKMM(x), the intermediate curve is the graph of 2

π MMS(x), and the lower curve

represents the graphs of both 2
π MAM(x) and 2

π MS(x) (indistinguishable in this picture).
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Offdiagonal perturbations

Let H0 = Ran(P) = Ran(EA(σ0)) and H1 = Ran(P⊥) = Ran(EA(σ1)).

One can decompose any bounded V into the sum V =Vdiag+Voff of
the diagonal and offdiagonal (w.r.t. H= H0⊕H1 ) parts

Vdiag =

(
PV
∣∣
H0

0
0 P⊥V

∣∣
H1

)
and Voff =

(
0 PV

∣∣
H1

P⊥V
∣∣
H0

0

)
,

The subspaces H0 and H1 remain invariant under Vdiag and, hence,
under A+Vdiag. Therefore, for the diagonal perturbations the prob
lem reduces to the perturbation of spectra only.

The action of the offdiagonal part Voff is completely nontrivial: it
may change the spectrum and does change the spectral subspaces.
Thus, the core of the perturbation theory for invariant subspaces
is in the study of their variation under offdiagonal perturbations.
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A 2× 2 operator block matrix representation of A w.r.t. the de
composition H= H0⊕H1 :

A =

(
A0 0
0 A1

)
, A0 = A

∣∣
H0
, A1 = A

∣∣
H1
.

Now we focus on the problem of variation of the spectral subspaces
under offdiagonal perturbations

V =

(
0 B
B∗ 0

)
(∥V∥= ∥B∥).

Perturbed operator:

L = A+V =

(
A0 B
B∗ A1

)
.
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Generic case (G): The only condition dist(σ0,σ1) = d > 0.

Special case (S1): σ0 and σ1 are subordinated, conv(σ0)∩ conv(σ1) = ∅.

Special case (S2): One of the sets σ0 and σ1 lies in a finite gap of
the other one, say conv(σ0)∩σ1 = ∅.
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Bounds on position of the perturbed spectrum

(G) [V.Kostrykin, K.A.Makarov, A.K.M., 2007, bounded A],
[C. Tretter, 2009, unbounded A]:

ωi ⊂ OrV(σi), i = 0,1,

where OrV(σi) denotes the closed rVneighborhood of σi with

rV = ∥V∥ tan
(

1
2

arctan
2∥V∥

d

)
< ∥V∥.

(S1) The gap between σ0 and σ1 remains in ρ(A+V ).

(S2) ω0 ∈ OrV(σ0). The gaps between OrV(σ0) and σ1

remain in ρ(A+V ).

We ask the same questions (i) and (ii).
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Known results for offdiagonal selfadjoint V=
(

0 B
B∗ 0

)

(S1) For any ∥V∥ the initial gap between σ0 and σ1 remains in ρ(L).
In this case cbest =+∞ and M(x) =

1
2

arctan(2x). The sharp bound

for the maximal angle:

arcsin∥P−Q∥ ≤ 1
2

arctan
2∥V∥

d

(
<

π
4

)
.

(The DavisKahan tan2θ Theorem, 1970)

Estimates like that in tan2θ Theorem (but in terms of quadratic
forms of A and V ) have been obtained also for some unbounded
V (see [A.K.M., A.V.Selin, IEOT 56 (2006), 511], [L. Grubišić, V. Kostrykin,

K. A. Makarov, K. Veselić, J. Spectr. Theory 3 (2013), 83]).
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(S2) [V.Kostrykin, K.A.Makarov, A.K.M. (2005)]: Gaps between σ0 and σ1

remain open whenever ∥V∥<
√

2d (sharp).

In this case also cbest =
√

2 in the answer to question (i), while
M(x) = arctanx. The sharp bound for the maximal angle reads:

arcsin∥P−Q∥ ≤ arctan
∥V∥

d
[S. Albeverio, A.V. Selin, A.K.M. (2006, 2012)]

(for the final result see [S.Albeverio, A.K.M., IEOT 73 (2012), 413]).
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(G) [V.Kostrykin, K.A.Makarov, A.K.M. (2007)]: Gaps between σ0 and σ1

remain open whenever ∥V∥<
√

3
2

d (sharp);
√

3
2

= 0.866025 . . ..

Thus, in an answer to the question ((i)) one necessarily has the
following upper bound

c∗ ≤
√

3
2
.

The latest published answer to the question (i):

∥P−Q∥< 1 whenever ∥V∥<c∗d, c∗ ≥ 0.69407 . . .
[A.Seelmann (2014)]

The previous best published estimates for c∗:

c∗ ≥ 0.6928 . . . [S.Albeverio, A.K.M. (2014)]

c∗ ≥ 0.6759 . . . [K.A.Makarov, A. Seelmann (2010)]

c∗ ≥ 0.5032 . . . [V.Kostrykin, K.A.Makarov, A.K.M. (2007)].
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“Evolution” of the answer to question (ii) [on M(x)] in case of offdiagonal V .
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Offdiagonal case. Graphs of the functions 2
π MKMM(x) [Kostrykin Makarov AKM, 2007], 2

π MMS(x)

[Makarov Seelmann, 2010], and 2
π MAM(x) [Albeverio AKM, 2014]. The upper curve depicts

the graph of 2
π MKMM(x), the intermediate curve is the graph of 2

π MMS(x), and the lower curve

represents the graph of 2
π MAM(x).
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Ideas of the proof

• Triangle inequality for the maximal angle between subspaces.

Lemma [L.G.Brown, 1993] Let P, Q, and R be three arbitrary subspaces of
the Hilbert space H. The following inequality holds:

θ(P,Q)≤ θ(P,R)+θ(R,Q).

• Generic a priori sin2θ estimate for the maximal angle.

Theorem [S.Albeverio, A.K.M., 2011]. Assume for a selfadjoint A the spec

tral case (G). Suppose that V is s.a., offdiagonal, and ∥V∥< 1
π

d. Then

θ(H0,H
′
0)≤

1
2

arcsin
π∥V∥

d
,

where d = dist(σ0,σ1) and H0 = Ran(EA(σ0)), H′
0 = Ran(EA+V(ω0)).
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• Consider the consecutive operators Lti = A+ tiV , i = 0,1, . . . ,n, 0 = t0 < t1 <
t2 < .. . < tn = 1 and arrive at the optimization problem

arcsin
(
∥P−Q∥

)
≤ 1

2
inf

n,{ti}n
i=0

n−1

∑
j=0

arcsin
π(t j+1− t j)∥V∥

dist
(
ω0(t j),ω1(t j)

), (M)

where ti, i = 1,2, . . . ,n−1, should be chosen such that

0 <
(t j+1− t j)∥V∥

dist
(
ω0(t j),ω1(t j)

) ≤ 1
π
.

In case of generic (nonoffdiagonal) V we have

dist
(
ω0(t j),ω1(t j)

)
≥ d −2∥V∥t j. (d −gen)

If V is offdiagonal then

dist
(
ω0(t j),ω1(t j)

)
≥ 2d −

√
d2+4t2

j∥V∥2. (d −o f f )

For nonoffdiagonal V , a first bound from above for the r.h.s. of (M) has
been obtained in [S.Albeverio, A.K.M. 2011], with the help of (d − gen).
Complete optimization for the r.h.s. of (M) with (d − gen) has been done in
[A.Seelmann 2013].

In [Albeverio A.K.M., 2014] and [Seelmann, 2014] the bound (d −o f f ) has
been employed.
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Conclusions

• We have reviewed the best known norm bounds on rotation of
spectral subspaces of a selfadjoint operator under a perturba
tion.

• The general results may be applied to quantummechanical (in
particular, to fewbody) Hamiltonians.

• The spectral shift and subspace variation bounds may be em
ployed to verify the quality of numerical calculations. They may
be used to give the corresponding upper estimates prior the
actual calculations.


